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PREFACE
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Neugebauer for his reading and helpful criticisms of the rough draft of
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Professor Derek de Solla Price for his always stimulating suggestions, and
to the late Professor Abraham Sachs, who furnished me with much infor-
mation abont Babylonian astronomy and with translations of unpublished
cuneiform texts. .
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Doctor Alan C. Bowen, who initiated and carried through the publication
of this work as editor. Without his resourceful and persistent labors, guided
by a discriminating and sensible Judgment, this publication would not have
happened.
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Permissions. The substance of chapter 1 appeared in Centaurus 14 (1969)
28-41, as ‘Ptolemy’s Determination of the Obliquity of the Eeliptic’ It
1s reprinted here, with revisions, with the kind permission of Munksgaard
International Publishers, Ltd.



INTRODUCTION

The following study grew out of a survey of attemnpts by astronomers of the
nineteenth and carly twentieth centuries to determinc the amnounts of the
Moon’s secular acceleration and the retardation of the Earth’s rotation, In
the course of it, I found substantial differcices among determinations by
different investigators, and particularly between the values of the secular
acceleration of the Moon’s clongation obtained by Newcomb [1878, 1912]
from his analysis of Ptolemaic and Arabian eclipse-data, and the results
obtained by others from analyses of different ancient obscrvations. The
latter include ohservations of equincxes, occultations, and lunar eclipse-
magnitudes reported by Ptolemy, as well as rcfercncees in ancient literary
sources to cvents which could be interpreted as solar eclipses that were
total at a speeific place.

It became apparent that the differences between the various determina-
tions of the accelerations in question were partly due to assumptions madc
by investigators about the quality of the available evidence, and e¢specially
to assumptions about the reliability of the observations which Ptolemy re-
ports. Newcomb, for example, argucd that the Ptolemaic eclipses afforded
the only re rell’lmlafa from antiquity, and that taken together these Lchpse-
reports gave a secure value for the acceleration of the Moon's clongation.
Fotheringham [1915a, 1918, 1920] and Schoch [1930], on the other hand,
regarded the lunar cclipses described by Prolemy as too ambiguous, too in-
consistent, or too suspect to be uscful. Hence, they preferred to use either
those other observations reported by Ptolemy but made by his predecessors, -
or the literary reports of tatal solar eclipses.

The latter approach was cousisteut with a tradition of eritical scepticism
about Ptolemy's abilities as a practical astronomer and cven his integrity
as a reporter, which became widely aceepted during the cighteenth cen-
tury and was most cffcetively articulated by Delambre in his Histoire de
P'astronomie ancienne [1817]. The substance of this erificism was _that
Ptolemy was a,t__’_pcgt an inferior and clumsy observer, that his reports o_f
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both his own and his predecessors’ observations were imprecise and often
ambiguous, and that his general use of ouly a minimal number of observa-
tions in deriving the parameters of his models reflected an unsophisticated
and indeed simplistic disregard of the inevitability of observational errors.
Furthermore, the instances where Ptolemy confirms parameters obtained
by Hipparchus and the general agreement between Ptolemy’s models and
his reported observations were both considered evidence that Ptolemy ei-
ther selected or altered the original ohservations to obtain siich agreement
[ef. Lalande 1757, 421-422}, or even that the observations were fictitious
[Delambre 1817, i xxv—xxvi]. Finally, the comumon assumption, first artie-
ulated by Tycho Brahe [Dreyer 1918, 349], that Ptolemy's star-catalogue
was merely a plagiarism of Hipparchus® was cxtended by Delambre, who
argued [1817, { xxv-xxix] that much of the substance of the Almagest was
really the work of Hipparchus which Ptolemy revised and presented without
proper credit.

Delambre’s premise that Hipparchus was the real author of much of the
Almagest gave him an casy explanation for many of the difficulties and
inconsistencies which emerge when one examines the Almagest in detail.
Not only did this assumption support Delambre’s aspersions on Ptolemy’s
integrity, it also reinforced his criticisms of Ptolemy’s abilities as a prac-
tical astronomer. Thus, by assuming that most of Ptolemy’s results were
either taken directly from Hipparchus or derived sub rosa from the latter’s
observations, Delainbre could freely, if somewhat anachronistically, criti-
cize Ptolemy's observations, his descriptions of his instruinents, and, most
forcefully, Ptolemy's methods for obtaining the values of his paramecters,

Subsequent research has substantially qualified Delambre’s estimate of
Hipparchus’ accomplishments aud of the cxtent of Ptolemy’s unacknow-
ledged debt to Hipparchus [cf. Aaboe 1955, 1974; Neugebauer 1956 and
1975, 274 -341; Swerdlow 1969, 1979; Toomer 1967, 1973, 1974, and 1930].
In particular, Kugler's discovery [1911, 111] that nearly all of the param-
eters for mean motion ascribed to Hipparchus were of Babylonian ongin,
destroyed most of the direct evidence supporting Delambre’s thesis that
Hipparchus was the superior practical astronomer and that Ptolemy de-
pended heavily on his predecessor for his empirical results. Delambre’s
argument was further weakened by Vogt's [1925} careful demonstration
that Ptolemy's star-catalogue could not have been sitnply taken from Hip-
parchan data with an adjustment in longitude for precession [cf. Neuge-
bauer 1975, 200-284; Evans 1987).

The emergence of a more realistic, if still fragmentary, picture of Hip-
parchus’ accomplishments reopens many questions about the practical as-
tronomy of the Almagest, which hitherto had been conveniently answered
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by reference to hypothetical lost works of Hipparchus. The following study
addresses some of these questions. In particular, it seeks, through an anal-
ysis of the solar and lunar observations reported in the Almagest and of
the associated modcls, to gain a better understanding of both Ptolemy's
abilities as a practical astronomer and of the role of observations in the
development of his theory.

Specifically, in chapter 1, 1 examine Ptolemy's description of his de-
termination of the obliquity of the ecliptic to ascertain whether Ptolemy
could have confirmed Eratosthenes’ value from real and independent ob-
servations. Since Ptolemy’s {and Eratosthenes’) value for the obliquity
(23:51,20°} is too large by roughly 0;10°——<orresponding to an error of
0;20° in the measurement of the double obliguity---it scems unlikely that
independent observations should yield an identical, erroneous result. I
show, however, that the peculiar motion of the Sun’s shadow on the plinth,
the instriiment Ptolemy appears to have used, would tend io produce just
the error found in Ptolemy’s value if this behavior of the shadow were not
taken properly into account.

In chapter 2, I investigate the solar observations Ptolemy reports and
determine both the periodic and secular errors in his solar model. 1 first
examine the observations and their errors and discuss the possible sources
of systematic error in Hipparchus' and Ptolemy’'s observations. Here I
show that both the relative accuracy of the timnes of Hipparchus® equinox-
observations and the small systematic crror in deelination which they ex-
hibit can be explained by supposing that Hipparchus knew at least one
parameter of his solar model beforehand and that he used this to fix the
alignment of his instrument.

Ptolemy’s solar observations, in contrast, are systematically in error by
roughly a day, and they do not exhibit a systematic crror in declination.
Previous investigators [e.g., Delambre 1817, 1 xxvii; Tannery 1893, 142 £,
Fotheringham 1918, 420] have argued that the observations are too much
in error and too consistent with Hipparchus' solar parameters to be in-
dependent observations, Consequently, I have investigated whether these
errors could arise from a misalignment of the equatorial ring which Ptolemy
appcars to have used, or from the effects of refraction. Since neither effect
would produce the errors found in Ptolemy's observations, I conclude that
these errors could not have resulted merely from systernatic observational
errors, On the other hand, the irregularities in the Sun's apparent behav-
1or which are due to refraction would have made it extremely difficult for
Ptolemy to obtain a scries of consistent equinox-observations, and so to
make any appreciable improvement on Hipparchus' solar model by means
of such obgervations. Thus, although it does not seem reasonable to accept
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Ptolemy's solar observations as the results of careful, independent meas-
urements, the irregularities in the Sun's apparent behavior and Ptolemy’s
need for solar tables to make other observations, would have given Piolemy
good reason to accept Hipparchus® solar model.

After discussing the errors in Ptolemny’s and Hipparchus' solar observa-
tions, I consider whether Ptolemy’s solar tables were identical with those of
Hipparchus. I conclude that they were not, although Ptolemy may have
used a Hipparchan equinox-observation as the basis for the epoch of the
Sun’s mean motion.

Finally, I determine the errors in Ptolemy’s solar model. Although the
secular part of this error has been analyzed by others [e.g., Kepler 1627,
praec: 196; Lalande 1766, 467; Ideler 1806, 107], the influence of this error
on Ptolemy’s reductions of most of his other observations made it desirable
to re-determine it using modern solar elements. This error, which is 1;5° in
the year +135, is comnpounded by an additional error from Ptoleiny’s solar
inequality of roughly £0;25% which must be taken into account when one
compares his reduced observations with modern eomputations.

One of the principal.prnblems addressed in chapters 1 and 2 is whether
real observations could plausibly have agreed with previously determined
but erroneous parameters and, thus, whether Ptolemy’s statements about
his own observations and procedures are credible. In the case of the Moon,
however, the problem is quite different. In the first place, Ptolemy's own
lunar observations are not clearly distinguishable from those of his predeces-
sors, since the latter are not significantly more aceurate or consistent than
Ptolemy's. Secondly, although two parameters in Ptolemy's lunar model—
the mean motion in elongation and the Moon’s maximum latitude—are
identical with those used by Hipparchus, other paramneters such as the mean
motions and epochs of the arguments of anomaly and latitude, the ratio
of the diamneter of the Moon to the diameter of the Earth’s shadow, and
{most. probably) the radius of the Moon’s epicycle, are different from those
of Hipparchus. Consequently, the question of whether real observations (in
the case of the Maoon) could confirm a predetermined, but erroneocus set
of parameters does not arise. On the contrary, what is intriguing is that all
of Ptolemy’s lunar parameters are quite accurate, while the observations
from which he derives them are often imprecise and inaceursately reduced.
Accordingly, the question here 1s whether Ptolemy’s lunar parameters were
derived solely from the observations which he reports or whether some
other explanation for their accuracy must be found.

Chapters 3 and 4 address this question. In chapter 3, I investigate the
quality of the lunar observations which Ptolemny reports, and determine
the errors in the observations themselves and in the data which result from
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Ptolemy’s reductions. These observations fall into three groups: lunar
aclipses; occultations; and measurements of the Moon's clongation from
the Sun, stars, or planets. Although not all these observations were used
by Ptolemy to specify the parameters of his lunar modcl, [ have included
them as additional evidenee of the quality of lunar ebservations in antiquity.

The eclipse-reports are the most accurate of the three groups. They
exhibit an average error in the Moon’s elongation of roughly £0;6% while
that found for the measurements of elongation 1s around £0;20° The oe-
cultations show an average crror in the Moon’s sidereal position of around
+0;10¢ and thus are somewhat less accurate than the eclipse-observations,
but far more accurate than the direct measurements of the Moon’s elonga-
tion. On the whole, the errors of the observations agree well with what we
would expect from careful observations made with the techniques available
in antiguity. Furthermore, the errors are well distributed with regard to
sign and show no systematic deviation froru modern computations.

In addition to observational errors, the data resulting from Plolemy’s
reductions are also affected by numerous other errors, frequently of com-
putation; and one of the purposes of chapter 3 is to determine the additional
error engendered by Ptolemy’s reductions. In each group of observations
the average additional error from this source was found to be around 10;4°
In the occultations, however, Ptolemny’s reductions introduced a large sys-
tematic error of roughly —0;25%

In chapter 4, I compare the parameters of Ptolemy's lunar model with
their modern equivalents in order to asscss the errors in Ptolemy's pa-
rumeters. 1 then compare these errors with what we would expect from
the average errors in Ptolemny’s reductions of his observations and from
the procedures by which he derives his parameters. For cach of the cight
parameters so tested, I found that Ptolemy’s value is significantly more
accurate than we would expect. In partienlar, it is striking that the ae-
tual values of Ptolemy’s lunar arguments at his own time are extremely
accurate, even though the methods by which he derives them do not favor
observations made at his own epoch over others made at earlier epochs.

These findings strongly suggest that Ptolemy was not entirely candid in
describing the procedures by which he determined his parameters, for the
relatively high accuracy of each of these parameters eannot be explained
satisfactorily by assuming that Ptolemny was merely lucky or that he relied
on Hipparehus® results. The most plausible explanation for the accuracy
of these parameters is that they were the result of some average of many
determinations from a much larger number of observations than Ptolemy
deseribes, This conclusion departs sharply from the traditional view that
Ptolemy’s procedures for analyzing observations and deriving the param-
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eters of his models were quite unsophisticated. Indeed, it secins likely that
the procedures he actually followed were much closer to modern procedures
than has been thought.

The question remains, Why should Ptolemy have described procedures
for determining his paraineters less sound than those which he actunally
cmployed? While it is immpossible to answer such a question with certainty,
it is my view that the Almagest was not intended to be a historical account
but rather a pcdagogical treatise. In peneral, Ptolemy takes great care to
make his demonstrations and determinations conform as nearly as possible
to the standards of logical rigor encountered in Greek mathematics. Hence,
he may reasonably have concluded that the interests of clarity and rigor
were better served by examples of how his results were obtained than by
a lengthy, and necessarily non-rigorous, discussion of his procedures for
obtainiug parameters from discordant observations,

One corollary to this conclusion is that Ptolemy almost certainly selected
the observations which he reports because they yiclded just the values
of paramneters which he wished to demnoustrate. This 18 not to say that
Ptolemy tampered with the reports of the observations or that he made
intentional errors in their reduction and analysis. Indeed, he would have
had no nced to do so, since among a large number of determinations a few
could be expected to illustrate alinost any desired value for a paraincter
(as long as this value was approximately correct).

Since the investigations deseribed above draw heavily on comparisons of
Ptolemy’s ebservations with modern theory, it secined desirable to use a
consistent set of lunar and solar clements throughout instead of the variety
of clements used by previous investigators. Consequently, I have adopted
the elements used by the Nautical Almanac Office (1961, 98, 107] with
two modifications. These modifications affect only the apparent secular
accelerations of the Sun and Moon, the modern values for which I found to
be based on an crroucous analysis by de Sitter [1927]. In appendix 1, I
discuss previous determinations of these parameters and derive the revised
values which I have used throughout this work. In appendix 2, I give those
corrections which reduce the elements used by earlier investigators to the
elements 1 have adopted.

Sinee this study was first completed in 1966, our resources for under-
standing Ptolemy and the Almagest have been importantly affected by
four major works. These include two extensive commentaries on the Al-
magest, one by Olaf Pedersen in 1974 entitled 4 Survey of the Almagest,
and the other by Otto Neugebauer in 1975 as part of A History of Ancient
Mathematical Astronomy. The primary objective of both Neugebauer’s
and Pedersen’s commentaries is to deseribe the metheds, models, and fine-
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tions which Ptolemy cinploys in the Afmagest, with emphasis on textual
and intcrnal evidence and a few comparisons with calculations from modern
astronomy. Consequently, most of the substance of the present study is not
duplicated in cither work.

A third major resource for understanding Ptolemny and the Almages! is
Gerald Toomer's superb English translation, Ptolemy’s Almagest. Prior to
its publication in 1984, the best modern translation was Manitius’ [1912-
1913]: Halma's French translation [1813-1816] and Taliafcrro’s mediocre
English translation [1952] both suffer from textual and interpretative in-
adequacies. Apart from being the first good English translation of the
Almagest, Toomer’s version also cornes with several hundred (noted) cor-
rections to Heiberg’s text, with the result that we now have as secure
a text as we arc likely to. Morcover, Toomner has extensively annotated
the translation and includes accurate values for many calculations, thus
supplementing the commentaries by Pedersen and Neugebauer.

These works by Neugebauer and Pedersen and Toomer have substantially
enhanced both our rescurces for understanding Ptolemy and our apprecia-
tion of his accomplishments as an astronotner, mathematician, and author
of the Almagest. Contemporancously, R. R. Newton published several
books which attempt to prove an extreme and opposite conclusion. This
is that Ptolerny was at best a mediocre astronomer [1977, 364] who fab-
ricated all but a few of the observations reported in the Almagest {1977,
344-346, 364, 378}, thereby committing an elaborate fraud resulting in the
destruction of much ‘valid Greek astronomy’ [1977, 362]. Conscequently,
Newton concludes {1977, 379] that the Almagest ‘has done more damage
to astronomy than any other work ever written’

This is ‘the crime of Claudius Ptolemny’ that Newton alleges at length
in his book of that title [1977], a crime said to have been ‘commitied by
a scientist against his fellow scientists and scholars,. .. that has forever
deprived mankind of fundamental information about an important area
of astronomy and history’ [1677, xiii]. This book expands upen several
earlier works [Newten 1970, 1973, 1974a-b, 1976] published in connection
with efforts to determine the effective accelerations of the Sun and Moon.
In turn it is followed by two related works [Newton 1982, 1985a~b] which
discuss the origing of Ptolemy’s parameters and tables, and which further
amplify Newton’s thesis that ‘Ptolemy was the most successful fraud in the
history of science’ [1977, 379].

Newton’s work has been widely criticized—see, e.g., Swerdlow’s excellent
review [1979] of The Crime of Claudius Ptolemy [1977}—and, indeed, it
affords ample ground for criticism. In general, it is a biased and unrelieved
polemic against Ptolemy, composed in a vexatious and intemperate style (as
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may be sensed from the foregoing quotations), and it contains many errors
of fact and comprehension, as well as inconsistencies in both argument and
logic. Indeed, were it not for the sheer scope of Newton’s work, the zealous
energy it reflects, and the emotional langnage it employs, I suspect that few
would have paid it much heed. As it 1s, however, Newton’s work has come
to represent a counterview of Ptolemy’s contributions which has proven
difficult to dislodge.

I have not attempted, nor is there space, to present a critical analysis
of Newton's work here. In general, I think that his main conclusion with
respect to Ptolemy’s stature and achievements as an astronomer is simply
wrong, and that the Almagest should be seen as a great, if not the indeed
the first, scientific treatise. Furthermore, I am inclined to wonder if New-
ton’s unrelenting animus towards Ptolemy may not arise from the fact that
the observations in the Almagest do not suppert the (anomalous) accelera-
tions that Newton [1969, 1970, 1972, 1979-1984] finds from other data and
secks to have accepted. Finally, I note from errors scattered throughout
Newton's work, that he has relied extensively on Halma’s Greek text by
way of Halma's or Taliaferro’s translations, and that he cvidences little fa-
miliarity with either Manitius’ superior translation or Heiberg's far superior
text. While consistent with Newton’s acknowledgment [1985, 53] of having
‘small Latin and less Greek’, this contrasts with his purported methodology
and ralses a small but important question regarding his own candor,

For all its deficiencies, however, Newton's work does focus critical at-
tention on the many difficulties and inconsistencies apparent in the fine
structure of the Almagest. In particular, his conclusion that the Almagest
is not a historical account of how Ptolemy actually derived his models and
parameters is essentially the samc as mine, although our reasons for this
conclusion and our inferences from it differ radically.

In revising this study, 1 considered how best to treat Newton's work,
which raises important issues regarding virtually all the material discussed
here. In the end, I decided that to address these issues directly would
substantially change both the character and scope of this work, a work
completed some years before Newton’s first publications on these subjects.
Consequently, I have purposefully omitted what weuld otherwise have been
extensive references to Newton's writings, preferring that this study address
Ptolemy rather Newton.

In preparing this work for publication, I have made a number of changes
to the 1966 text. The most important of these is the replacement of all
previous translations of passages from the Almagest with Toomer's trans-
lations. Generally, this has improved the clarity and cousistency of such
extracts, but in no instance has it changed the substantive conclusions relat-
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ing to any given passage. Other changes include corrections of calculations
and the updating of notes and references to acknowledge relevant mate-
rial published sinee 1966. This resulted in some expansion of the material
on the secular accelerations [appendix 1], though its principle conclusion
remains the same. Finally, I have made minor revisions throughout the
text in the hope of improving its clarity. The net effect of these changes
15 modest in scope and cither technical or literary in nature. Thus, the
findings and conclusions of this study are essentially unchanged from thosc
in my original dissertation,

New Haven, Connecticut

June, 19382






Models and Precision: The Quality of
Ptolemy’s Observations and Parameters

H Ptolemy in continuing the same observalions near-
ly 300 years after Hipparchus, had been content
to publich a general history, if he had not more-
over changed the positions of the stars in the Cata-
logue, and instead of establishing the elements of
the movement of the planets with the aid of hy-
potheses and from a small number of obscrvations,
had he discussed and collected faithfully all that
which could be brought to bear on the mean mo-
tions, the nodes, the inclinations, the apheha, and
the eccentricities or greatest equations of the orbits
of the planeis, il Is ¢ertain that astronomy would
be much further advanced than it is today, and
we would know the laws of the celestial motions
much better at present,  Buot he was less inter-
ested in rendering his Almagest or Synataxis useful
to astronomers than in making it available to the
ordinary man and the calculators. And since the
trae way to perpeiuate this sort of work is 1o an-
nihilate all the observations which would be con-
trary to it, it has happened thal except for only
the abservations which he was obliged to use in the
construclion of his tables, the other astranamical
observations have been lost.

Le Mannier






Ptolemy and the Obliquity of the Ecliptic

Ptolemy’s determination of the obliquity of the ecliptic [Alm 1 12] illus-
trates some of the problems one encounters in trying to understand the
interplay between the cbservations and the parameters Ptolemy adopts in
the Almmagest. The determination is straightforward and requires no previ-
ously developed theory for the reduction of the observations. I z,, is the
noon zenith-distance of the Sun at winter solstice [sec Figure 1.1], and z,
the noon zenith-distance at sumumer saolstice, then

2y 2y = 26

Ty — 2y = 2€,

Zenith
Summer Solstice

Equator

Winter Solstice

South

Figure 1.1
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where ¢ 1s the latitude of the place of observation and e is the obliquity.

After describing the procedure for finding the zenith-distance of the Sun
on the meridian by means of a plinth or quadrant [see Figure 1.2], Ptolemy
writes [Afm. 1 12: Toomer, 63]:

From observations of this kind, and especially from comparing obser-
vations near the actual solstices, which revealed that, over a number
of returns [of the Sun], the distance from the zenith was in general
the same number of degrees of the meridian circle at the [same] sol-
stice, whether summer or winter, we found that the arc between the
northernmost and southernmost points, which is the arc between the
solstitial points, is always greater than 472/4° and less than 473/
From this we derive very much the same ratio as Eratosthenes, which
Hipparchus also used. For [according to this] the are between the
solstices is approximately 11 parts where the meridian is 83.

Three points in this passage are noteworthy. First, Piolemy states explie-
itly that the angle measured was the zenith-distance and not the altitude.
Second, he reports that the zenith-distances measured were nearly always
the same and thus denies a solar motion in latitude.! Finally, Ptolemy
says, in effeet, that from several years of his own observations he confirmed
Eratosthenes’ value for the obliquity,

11
Ze = — . 360° =4742,39,2...°
£ 83 d
€ = 23:51,20°

which is the value Ptolemy [Alm. 1 15] adopts in his table of declinations.

1 According to Theon of Smyrna [Dupuis 1892, 2809, 313], Fudoxus made the
Sun move on a sphere whose axis was inclined 1o that “through the middle of
the [zodiacal} signs’ Theon says further that this inclination was 14% so that
the maximum altitude of the Sun at summer solstice, for example, could vary
by as much as 1° In his Commentary to the Phacnomena of Aratus and Eudoxus
[Manitius 1894, 88], Hipparchus discusses this question and remarks thai Attalus
and other contemporary mathematicians allirmed the existence of a solar motion
in latitude. Hipparchus asserts that such a motion is impossible, since the dis-
crepancy between computed and observed eclipse-magnitudes was seldom found
to be greater than 2 digits or 0;53% Despite Ilipparchus’ argument, the notion that
the Sun exhibited a periodic deviation from the mean ecliptic remained current
at Ptolemy's time, as witnessed by Theon of Smyrna [Dupuis 1802, 211, 223, 279,
289, 313]. Indeed, in spite of Ptolemy’s denial, Martianus Capella maintained
it as late as the 5th century AD. Sce Dreyer 1906, 94-95, for a summary of the
several variants of this theory and further references.



Ptolemy and the Obliquity of the Ecliptic _ 3

In contrast, the modern value for the obliquity at Ptolemy’s time (+130) is

e = 2340467 so
2e = 47,21,32%%

The error in {correction to) the value adopted by Ptolemy is, therefore,
—0;10% while the error in the angle actually measured is —0;21° Since the
latter error is four times greater than the precision claimed by Ptolemy
(£0;5°), and since Ptolemy’s results confirm almost exactly the carlier value
obtained by Eratosthenes, it 1s natural to ask if Ptolemy could have ob-
tained his result from careful, independent observations.? Is it plausible
that a carcful observer, following the procedures described by Ptolemy,
could have consistently found Ptolemy’s limits without adapting his obser-
vatlonal procedures to yield the predetermined result?

2 The modern expression for the abliquity of the ecliptic [Nautical Almanac OF

fice 1961, 81], epoch 1900.0, is 23;27,08.26° — 46,8457 0.0059712 4+ 0.00181773
In year +130, (T'= —17.7), its value is 23;40,46% in —140, it is 23;42,46°

3 f, Delambre 1871, 1 86, ii 75. When Delambre wrote his Iistoire de Pastro-
nomie ancienne, lhe rate of change of the obliquity (and, thus, the value of the
obliquity at Ptolemy’s time) was still uncertain, Delambre notes that Plolemy
uses Fralosthenes” value in hiz tables of declinalion rather than Lthe mean of
the limits which Ptolemy claimed to have [ound; and this is also remarked by
Manitius [1912-1913, 1 44nb]. This fact is, of course, irrelevant to the question of
whether Ptolemy re-delermined the obliquity, since the difference, 0;0,5% is far
loo small Lo warrant changing an apparently satisfactory value.

A mare significant question was raised by Derger [1880, 131] who pointed
out thal the text is ambiguous concerning the value of the obliquity used by
Eratosthenes and Hipparchus. Berger suggests that Eratosthenes and Hipparchus
used 24° for the obliquity and ihat the ralio, 11:83, was Plolemy’s invenijon, T
Berger is correct, then the question of how I'tolemy confirmed the value of his
predecessors of course vanishes. DBerger's argument, however, seems weak for
two reasons. One is that Theon of Alexandria [Rome 1936-1943, ii 52, 528-529]
states that Eratosibenes discovered the value 11/g; of a circle far the double
obliquity. Theen may have had no further information than that given in the
Almagest, and thus his testimony is not conclusive. Nevertheless, his statement
scems (o deserve some weight. Secondly, if the value, 23;51,20° (= 11/3 . 180"),
did not originate with Eratosthenes, it is difficult to understand why 'tolemy did
not merely take the mean between his observed limits for the donble obliguity,
47:42,30°% corresponding to an obliquity of 23:31,15°%

For further discussion, see also Tannery 1893, 119-120; Toomer, 63n75; Gold-
stein 1983.
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Ptolemy describes two instruments for making these observations, a
meridional armillary and a plinth or quadrant.? It appears, however, that
he used only the plinth and not the meridional armillary. This is sug-
gested by two facts. First, Ptolemy begins his description of the construe-
tion and use of the plinth [Heiberg 1898-1903, i 66.5] with the statement,
€T 8¢ elxpnurarepor énooipeba. . . (‘even more conveniently, however, we
made..."). In contrast, he begins his deseription of the ineridional armil-
lary [Heiberg 1898-1903, 1 64.12] by saying in the future tense, wouijoopey
yap kikhov ydikeov . .. (‘we shall make a bronze ring..."). Second, both in
the statement quoted above describing his results and in his deseription of
the plinth, Ptolemy explicitly mentions ‘marks’ indicating the midpeint of
the Sun’s shadow. In describing the meridional armillary, however, he says
only that the zenith-distance can be read directly from the secale. Accord-
ingly, I shall consider here enly the problems which Ptolemy might have
encountered in making such observations by mecans of a plinth.’

First, we should note that the precision claimed by Ptolemy (£0;5°)
15 consistent with what can be achieved with a plinth of moderate size.
Ptolemy gives no indication of the size of either of the two instruments
he describes; he simply states that the scales on each instrument should
be divided into integer degrees and their subdivisions. Proclus [Manitius
1909, 43 ff.] does not discuss the plinth but does describe the construction
of the meridional armillary, which he says should be ‘not less than half
a cubit in diameter’® DProclus adds, however, that the scale on such an
instrument should be subdivided to 0;1% This would have been impossible
on such a small instrument,” and we are left to wonder how much Proclus
actually knew about such instruments. Pappus [Rome 1931-1943, i 6]
describes a ‘meteorscope’ similar in construction to Ptolemy's armillary
astrolabe, whose diameter, Pappus says, was equal to one cubit. Finally,

4 See Dicks 1954, 78-79 and Price 1957, 587-589, for a discussion and description

of these two instruments.

5 Tannery (1893, 119-120] observed that Ptolemy’s determination was actually

made on the plinth, which Tannery describes as more convenient but less accurate
than the scaphe that he supposes Eratosthenes to have used.

® Accarding to Hullsch [1888, 200-203], the Egypiian cubit was 525 mm. (=
20.6 in.) and the Roman cubit, 443.6 mm. {= 17.2 in.}. The range In size of
the instrumenis mentioned by Proclus, Pappus, and Theon is, therefore, from
9 in. to 41 in.

7 See Dicks 1954, 77-85 and Price 1857, 582-619, for a discussion of the magni-
tude of possible subdivisions on instruments of different sizes in antiquity. Both

authors give 0:5° as the subdivision recommended by Proclus. The text, however,
gives 0;1% cf. Manitius 1909, 44-45: Halma 1813 -1816, 79.
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Theon [Rome 1931-1943, ii 819-820] notes that an cquatorial ring of his
day had a diameter of two cubits.

These later descriptions afford us no certain information about the size of
Ptolemy’s plinth, but they do suggest the order of magnitude of graduated
instruments in antiguity, If we assume that subdivisions much smaller
than a millimeter were impractical, then a scale graduated to 0;15° would
require a radius of roughly half a cubit {9-10 in.), while subdivisions of
0:5° would require a radius of 11/z cubits {27-30 in.). Though it is possible
that Ptolemy’s plinth was graduated to 0359 it seems more likely that it
was graduated to 0;10°% or possibly to 0;20% from which readings might be
estimated to halves or quarters of a division.® In cither casc an error of
0;20° should lic well outside the limits of instrumental precisien. Thus,
considerations of precision alone suggest that Ptolemy should have been
able to improve upon Eratosthenes’ value for the obliquity and to have
obtained a value of € accurate to within £0;5°

A sccond question is whether using a plinth to determine the obliquity
would tend to produce valucs systematically greater than those found fromn
accurate observations. Since the shadow on the plinth loses definition as
the Sun crosses the meridian, I shall first consider what should be observed
exactly at noon and, then, how the shadow moves in the interval just
before noon, when readings could have been made more easily. Assuming
for the latitude of Alexandria ¢ = 31;125¢ we find the following apparent
(corrected for refraction) noon zenith-distances of the Sun at summer and
winter solstice for the year 4+130:

z, = T;31°
2, = 54;51°

In contrast, using Ptolemy’s value for the latitude of Alexandria [Alm. v
12], ¢' = 30;58° and his value for the obliquity (¢ = 23;51,20%), we obtain
the following noon zcnith-distances (2'):

2

= T, 640° = T, 5
71, = 54:49,20° = 54,50,

8 See Vogt 1925, 40-42, for a discussion of the possibility that Piolemy’s armil-
lary astrolabe may have been graduated at 0;20° and read ta Q;10°

® P. V. Neugebauer [1929, ii 101] gives 31.2% Drever [1906, 176] states that
the latitude of the Museum at Alexandria was 31;11,75 but gives no source for
this siatement. Since it is nol known where in Alexandria Ptolemy made his
observations, it is possible that the value 31;12° may be high by one or two
minutes of arc. See Lalande 1766, 496; Chazelles 1761, 172,
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Ptolemy does not say cxplicitly that he derived his value for the latitude
of Alexandria from such observations; he merely comments that it is easy
to determine the latitude of auy place from such observations. (Indeed,
the identity of his value for the latitude of Alexandria with that implicit
in the crude ratio of 5:3 between the length of a gnomon and its equinoc-
tial shadow at noon,!?
Nevertheless, assuming a precision of 0;5% the above values are the only
possibilities consistent with Ptolemy’s value for the latitude of Alexandria,
and so are most probably the zenith-distances he actually observed. If

suggests an alternative source for this parameter.)

50, Ptolemy’s determination of the Sun’s zenith-distance at winter solstice
was essentially accurate, and the error in his value for the obliquity arose
solely froin the error in his measurement of the Sun’s zenith-distance at
summer solstice.

Sun

North

Figure 1.2. Ptolemy’s Plinth as Seen from the Northeast

Consider next the movement of the Sun's shadow on the plinth as the
Sun approaches the meridian. In Figure 1.2, BT represents a small cylinder
parallel to the horizon and perpendicular to the plane of the meridian,
whose shadow, BF(@, intersects the scale of the plinth at F. The face of
the plinth 15 in the plane of the meridian and the line BG perpendicular
to the horizon. The Sun’s actual zenith-distance is denoted by 2z and its
azimuth by —A. Finally 2’ (= /G BF) is the angle which would be read

10 The ratio 5:3 between the gnomon and its cquinoctial shadew at Alexandria
was attributed to Hipparchus by Strabe. See Dicks 1960, 95, 174.
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off the plinth when the Sun was at zenith-distance z, and azimuth —A.!!
In what follows, I shall refer to 2z’ as the apparent zenith-distance (on the

plinth). At noon, when the Sun erosses the meridian, 2/(0) = 2(0).

The problem I wish to investigate is:

Given the Sun’s declination (6), its hour-angle (¢}, and the latitude
of the place of observation (g¢), what is the difference between the
noon zenith-distance of the Sun and the apparent zenith-distance

measured on the plinth at ¢, i.e., 2(0) — 2/(¢)?

First, consider Figure 1.2 and observe that
tanz' = tanz - cos A,
where [see Smart 1962, 35]

sinz-co8 A= —cosd-sind +sing-cosd - cost, and

cosz =sing-sind 4 cosd - cosd - cost.
If we now let

m - sin M = siné,

m - cos M = cosé - cost,
and substitute for sinéd and cos § - cost in {2) and {3), we obtain

tanz « cos A = tan(¢ — M)

= tan z',

whence

() = ¢ — M(4).

t
M(t) = arctan ( ané) .

From (4) and (5},

cost

Since the noon zenith-distance is

2(0) :(}5—5,

(9)

11 . : ‘s . . .
Here azimuth is counted from the southern meridian, and is considered posi-

tive to the west and negative to the cast,
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our desired quantity is

2{0) — ") = M(#) - §
tan 6) —5 (10}

= arctan (
I

Interestingl}.r‘ z(0) — 2'(¢) is independent of ¢; that is, the error in the
Sun’s apparent zenith-distance observed on a plinth some time before noon
is the same for all places of observation. More importantly, (10} shows
that for

0° < & < 90° 2'(0) > 2'(¢)
0° =4 2(0)=2'(t) (11)
0° > & > —90° 2 (0) < 2'(2).

Thus, when the Sun i1s north of the cquator z'(#), the apparent zenith-
distance, reaches a maximum at noon (I = 0°), whercas when the Sun
is south of the equator, 2'(¢) is a minimum at noon. The behavior of
the shadow on the plinth when the Sun has a positive declination is just
the reverse of what we might intuitively expect, since the Sun’s actual
zenith-distance has, of course, always a minimum at noor.

The error in the value of the obliquity which arises from accurate meas-
urements made at summer and winter solstice some time (t) before noon, is
determined as follows. For

&= +te,
we have from (10)

cove = 32'(Ehw = /(1]
e "

cost

The error in the obliquity from such a determination 1s, therefore,

L
€ — €,4, = € — arctan ( ane) . (13)

cost

Hence, the effect of making cither observation somewhat before noon is to
make the measured obliquity greater than the true obliquity. Since this is
the direction of the error in Ptolemy's value for the obliquity, it 1s I}()‘G‘Glblc
then, that Ptolemy’s error of —0;10% arose in this way.

Table 1.1 shows the error, € — €,45, which would result from aecurate
observations at winter and summer solstice in Alexandria T' minutes before
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noon. This error is numerically the same as the error in a single observed
zenith-distarnce at either solstice measured at that time. (The sign of the
crror at summer solstice is positive.) An error in the obliquity of —0;10°
would arise from two observations made nearly 30 minutes before noon,
or from a single observation made roughly 40 minutes before noon. At
summer solstice in Alexandria 40 minutes before noon, for the shadow to
reach the scale of the plinth, the cylinder which casts the shadow would
have to be greater than 0.25r, where » is the radius of the scale of the
plinth, i.e., greater than & inches if r = 1 cubit. This requirecment does
not seem unreasonable, and we can safely assume that readings could have
been made at this time.

Minutes . '! Distance
before £ — €ohs Summer Wintler 1o
Neoon (0;1%) Zg —A, Zew —A, | Meridian

0 0.0 Po7.62°  0.00° | 54.88° 0.00° 0.00°

—20 —4.8 ' 873 31.73 | 55.09 5.59 4.58

—30 —10.9 10.04  43.31 | 55.35 8.36 6.87

—40 —19.5 11.62 52.13 | 55.71 11.10 9.15

—60 —44.3 15.27 64.17 | 56.73  16.47 13.71

Table 1.1

The error in Ptolemy’s valuc for the obliquity can thus be accounted
for by assuming that he made his observations roughly half an hour before
noon. If, on the other hand, the error arose primarily from the observations
at summer solstice, as seems implied by Ptolemy’s value for the latitude
of Alexandria, then the time before noon required to produce this error is
around 40 minutes. This seems a rather long time, although the Sun is
already very near the meridian then. Moreover, this assumption fails to
explain Ptolemy's apparently accurate determination of the Sun's zenith-
distance at winter solstice.

An alternative, and to my mind preferable, explanation is that Ptolemy
madc his determination some time before noon and cstimated the progress
of the shadow in the interval to noon. If in so doing, he extrapolated
the wrong way at summer solstice {(which would be a natural mistake), the
crror in the determination at summer solstice would be twice the estimated
correction. Thus, if Ptelemy made accurate observations roughly half an
howr before noon and assumed that the shadow moved 0;10° further in
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the direction of decreasing zenith-distance during the interval to noon, his
results would be in error by just the amounts which we find.

This explanation is neither altogether satisfactory nor conclusive, For
his part, Ptolemy mentions the difficulty of observing the shadow at noon
[Alm. 1 12: Toomer, 63] and says that he placed something at the edge of
the scale to make the shadow wvisible. Theoretically, this procedure would
obviate the difficulty and would allow him to obscerve the shadow just as
the Sun eressed the meridian. In any event, the preceding explanation of
the possible origin of Ptolemy’s error requires us to assume that Ptolemy’s
actual procedure was slightly different from what he deseribes, for no other
plausible source of systematic error comes to mind which would tend to
produce consistently high values for the obliquity.!?

A different explanation, which Delambre {see 3n3, above] and other crities
of Ptolemy have favored, is that Ptolemy's entire description of his deter-
mination is an elaborate misrepresentation, and that his observed limits for
the double obliquity are either imaginary or the result of careless efforts
to confirm Eratosthenes’ value for the obliquity. This, however, seems even
less satisfactory than the explanation offered above for several reasons.

First, it ignores the fact that even after Hipparchus, some astronemers
upheld the theory that the Sun possessed a perceptible motion in latitude
[see 2nl, above], so that for theoretical reasons Ptolemy would have been
concerned to establish the constancy of the Sun's extreme altitude froin his
own observations. Second, Delambre’s explanation requires that we assume
a highly contrived and unlikely distortion by Ptolemy. For, if Ptolemy did
not determine the obliquity from his own observations and, instead, merely
accepted the value of Eratosthenes, it is difficult to understand why he
should have bothered te describe two instruments for determining it, to

12 The most obvicus other sources of systematic error are graduation-error or an
error in centering the eylinder which casts the shadow. The first should least
aflect observations at summer solstice, when the Sun’s zenith-distance is small,
whereas it appears that this observation was the one most seriously in error.
Concerning the second, it can easily be shown that the apparent error in the
Sun’s zenith-dislance at summer solstice would require an error of 1 inch in the
lateral positioning of the cylinder on a plinth of radius 1 cubit. Such an errcr
seems far too large to have been possible.

Another possible source of error is that the plinth was not accnrately aligned
in the plane of the meridian. To produce the observed ercor in the obliquity, the
azimuth of the plinth would have to be +12° at both solstices. For the error to
arise from the determination at summer solstice alone, the azimuth of the plinth
at summer solstice would have to be roughly +17°
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indicate which of these he actually used, and to state the limits he found
for the observed arc.

On balance, therefore, it seems that we should withhold judgment on
whether Ptolemy actually determined the obliquity as he said he did, since
it is quite possible that the systematic errors discussed above affected his
determination. Furthermore, the evidence we have suggests that one of the
two observed limits for the Sun’s zenith-distance was indeed quite accurate,
while the other may have been distorted by the peculiar behavior of the
Sun’s shadow on the plinth in summer.



Observations of Solar Position

and Ptolemy’s Solar Model

Ptolemy mentions a total of 28 observations of solstices and equinoxes. Four
of these are his own, and the rest are taken from two works by Hipparchus,
On the Changes of the Solstitial and Equincctial Points and On the Length
of the Year {Aln. iii 1: cf. Table 2.1 for dates aud times]. The latter
chservations concern two summer solstices, one observed by ‘the school
of Meton and Euctemon’ (—431) and one by Aristarchus (—279), and a
spring equinox (—145) observed at Alexandria. The remainder is comprised
of a summer solstice observed by Hipparchus in —134, six fall and three
spring equinoxes which Hipparchus designated ‘very accurately ohserved’,
and eleven spring equinoxes which arc described as agreeing with the other
three in accordance with the 1/s-day surplus. The gap between —140 and
—134 in what is otherwise a complete series of spring equinoxes suggests
that these eleven equinoxes were in fact observed, and I have therefore
included them in the discussion.

' According to Ptolemy {Alm. iii 1: Toomer, 138], llipparchus discusses the sol-
stices observed by Aristarchus {(—279) and himself {—134) in his work, On the
Length of the Year, which is probably also Ptolemy’s source for the report of
the solstice of —4131. Ptolemy gives only the year in which Aristarchus® and
Hipparchus' solstices were ohserved. Thus, we have no direct evidence that Hip-
parchus found the solstice of —134 to have occurred 941/ days after Lhe spring
equinox of thai year. This date, however, is the only one consistent with the
time of the solstice of Meton and Euctemon and Hipparchus® value for the length
of the year, Since Ptolemy notes thal Hipparchus computed the interval between
the solstice of Meton and Euctemon {(—431) and that of Aristarchus (—279) as
well as that between the solstice of —279 and —134, it is probable that all three
were consistent with his value for the length of the year. [ assume, therefore, that

12
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Ptolemy’s four observations include one spring equinex {+140), two fall
equinoxes (+132, +139), and a determination of the summer solstice in
+140. He tells us [Alm. i1 7] that the earlier fall equinox was ‘one of
the most accurately determined’, and that it was ‘among the first of the
equinox observed by us’ He also says [Alm. iii 1: Toomer, 138] that he
observed ‘very securely’ the other fall equinox, which he compares with
the one Hipparchus observed in —146 to verify the length of the year. In
contrast, Ptolemy says only that he found the following spring equinox to
have occurred at the stated time. Finally, he reports that he ‘determined
securely’ and ‘as accurately as possible’ that the summer solstice of +140
occurred about 2 hours after midnight.

Ptolemy does not state explicitly what instruments or measurements ei-
ther he or Hipparchus used to determine the equinoxes and solstices, but
only indicates the observations in which he and Hipparchus had great-
est confidence. There is some evidence, however, that the two men used
different methods to find the times of the equinoxes.

the times (using a midnight epoch% of the two solstices were: —279 Jun 26 18"
(Aristarchus) and —134 Jun 26 12" (Hipparchus). For a discussion of Meton’s
solstice-observation, see Bowen and Goldstein 1988.

The equinoxes listed as accuraiely obscrved are:

Spring Fall
Equinox Equinox

—-161 Sep 27 18"

—158 Sep 27 6
—157 Sep 27 12
—146 Sep 27 O

—145Mar 24 68 | —1458ep 27 6
—142 Sep 26 18
—134 Mar 24 O
—12¥ Mar 23 18

The spring eguinoxes are all consistent with cach other and with ihe 1/y-day sur-
plus. The fall equinoxes are less consistent, and are observed progressively earlier
than would accord with the 1/i-day surplus. Thus, the equinoxes of —158, — 148,
and —142 were each observed 6" earlier than would be cxpected from the preced-
ing equinox, while those of 157 and —145 agree with ihe preceding equinoxes.
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In discussing the 1/i-day discrepancies in the fall equinoxes reported by
Hipparchus,? Ptolemy remarks that an error of this amount would arise ‘if
the placing or division of the instruments deviated from exactness by only
one 3600*" part of the circle [of declination], (i.e., by (;6°). This implies
that Hipparchus used a graduated instrument similar to the meridional
armillary described in book 1 12. With such an instrument the Sun’s dec-
lination could be determined from its meridian-altitude and the latitude of
the place of observation (or read directly from the scale if the equator were
marked on the instrument). A meridional armillary with a diameter of 1
cubit (=2 18 in.) could have been graduated to 1/° (0;12° = 0.85 mm.),*
or twice the amount Ptolemy mentions. Subdivisions of 1/;* would also
mean that near the equinoxes the Sun’s declination would change just two
divisions a day. This would permit the times of the equinoxes to be es-
timated to the nearest 1/5 day from successive observations either before or
after the equinox, while any greater precision would require a considerably
larger instrument.

Hipparchus’ report [Alm. iii 1] of the spring equinox of ~145 also suggests
that he measured the Sun’s declination directly to determine the equinoxes,
rather than using an equatorial ring. For he says he found that the equinox
occurred at dawn, but that the ring at Alexandria was illuminated equally
from both sides at about the fifth hour {of the day), so that the ‘same

equinox, differently observed, was found to differ by nearly five hours’*

2 8ee 12n1 above, for a list of discordant equinoxes. Ptolemy [Alra. iii 1: Toomer,
135] says that Hipparchus found from eclipses that the magnitude of suspected
inequality in the length of the vear was not greater than 3/; day. This is the
amount by which the fall equinox of —142 differs from that of —161 assuming
a tropical year of 3651/ days, and is also equal to the maximum error due to
refraction for equinoxes observed on an equatorial ring.

3 See chapter 1 for a discussion of the possible dimensions and graduations of
ancient instruments. Rome [1937-1938, 218] notes that Theon ‘admits’ gradua-
tions of 0;5% on a meridional armillary, which Rome points out would correspond
to 3 divisions per millimeter on a scale 1 cubit o diameter.

1 Considerable confusion has surrounded Hipparchus' report of this cquinox
{—145 Mar) and its relation to the rest. Delambre [1817, | xxiii] interprets the
passage [Alm. iii 1: Toomer, 134] to mean that the ring at Alexandria showed
the equinox first at dawn and again at the fifth hour, but he concludes that Hip-
parchus observed the equinox at Rhodes at dawn, and that this report was sec-
ondhand. Tannery [1893, 149] refers to the ‘double determination’ and concludes
that this equinox was part of a series which included the three fall equinoxes of
—161, —158, and —157. Tannery thinks that thesc equinoxes were all observed at
Alexandria, by someone other than Hipparehus. Fotheringham [1918, 408] dis-
putes this conclusion, and alsoc shows that there is no evidence that Hipparchus
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Furthcermore, Hipparchus’ stateinent [Toomer, 133] that the variation in the
vear-length could be seen fromn cquinoxes obscrved on the ring in the Square
Stoa at Alexandria also implies that he did not use such an instrument for
the observations he rcports.

It scems likely, then, that Hipparchus determined the times of the equi-
noxes from direct observations of solar declinations: that he observed
themn we know from Ptolemy [Alm. vil 3] and his own commentary on
the Phaenomena of Aratus and Eudoxus. Moreover, scven of Hipparchus'
eighteen reported determinations of the declinations of stars [Alm. vii 3]
are quoted in 159 and the others could readily have been made on an in-
strument so graduated.5 This further suggests that Hipparchus may have
possessed an instrument with graduations of 0:12% which, as we have seen,
would have been most convenient for finding the times of the equinoxes.

The other instrument for this purpose mentioned in the Almagest is a
ring set in the planc of the cquator. Hipparchus' report of an equinox
observed on such a ring at Alexandria (~145) and his staterent in On the
Displacement of the Solstitial and Equinoctial Points [Alm. 1ii 1@ Toomer,
132-133) that such a ring, madc of bronze, was placed in the ‘place called
the Square Stoa’ at Alexandria, have already heen cited.®

Ptolemy [Alm. iii 1: Toomer, 134] also refers to at least two metal rings,
in the samne passage in which he discusses how errors in the alignments of

made his observations in Alexandria. Rome [1937-1938, 230] points out that the
text does notl imply that this equinax appeared twice on the ring at Alexandria,
He also notes [1931-1943, 817] that Theon understands this passage {o mean
that Hipparchus observed the equinox at Rhodes at dawn, and that someone else
observed it at Alexandria at 11 hours. Thus, there is no evidence that Hipparchus
did not observe the equinoxes which he reports at Rhodes.

5 Vogt [1925, 19] states that In Arat. includes more than 40 designations of
declinations not mentioned in the Almagest. Of the declinations determined by
Hipparchus and eited in the Alm. vii 3 [Toomer, 331], four are given in integer
degrees, cne in half degrees, two in thirds of a degree, two in quarters of a degree,
seven in fifths of a degree, and two in sixths of a degree. Thus, if we include the
declinations given in integers, nearly two thirds of the total can be accounted for
by assuming a scale subdivided to 0;12% The remaining fractions can be explained
if we assume that they were read as ‘a little more than' or ‘a little Jess than’ a
certain division, Although the distribution of fractions other than fifths is not
quite symmetrical, it is difficult to imagine another subdivision in which it would
be natural to estimate positions between the divisions to fifihs of a degree.

5 Of. Romel937, 233 f., for u detailed discussion of equatorial rings. See also
Price 1957, 587-589 and Dicks 1954, 79. Rome [1937, 226] notes that there is

nu reasen to identify this ring with one of those Ptolemy mentions as being in the
Palaestra.
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instruments could have led to errors in the times of the equinoxes. After
noting that an error in declination of only 0;6° will produce an error of a
/¢ day, he continuecs:

The error could be even greater in the case of an instrument which,
instead of being set up for the specific oceasion and positioned ac-
curately at the time of the actual observation, has been fixed once
[and] for all on a base intended to preserve it in the same position
for a long period, [if] the instrument is affected by a [gradual] dis-
placement which is unnoticed because of the length of time over
which it takes place. One can see this in the case of the bronze
rings in our Palacstra, which are supposcd to be fixed in the plane
of the equator. When we ohserve with them the distortion in their
positioning 1s apparent, especially that of the larger and older of the
two, to such an extent that sometimes the direction of illumination
of the concave surface in them shifts from one side to the other twice
on the same eqminoctial day.

Unfortunately the interpretation of this passage is not entirely sccurce in
some details. Yet, 1t is clear that Ptoleiny observed some equinexes on at
least two different equatonal rings, that he found discrepancies and irreg-
ularitics in the results obtained, and specifically that he discovered that
an equinox sometimes appearcd twice on the same instrument. Further-
more, Ptolemy implies that by carefully adjusting and checking his own
instrument he overcame these difficulties, although he docs not say how.’

Ptolemy states his observations of equinoxes to the nearest hour. This
would require an implausibly large instrument if the equinoxes were deter-
mined from noon-altitudes or declinations of the Sun. On an equatorial
ring, however, such apparent precision could be obtained by observing the
time when the edge of the ring in shadow first became illuminated, or vice
versa. The equinox would oeeur, of course, when the two edges of the ring
were equally lit, as Hipparchus indicates in connection with the equinox
observed at Alexandria in —145. Hipparchus and Ptolemy both mention
the ‘change of light’ observed in these rings, which would occur roughly
3 hours before or after the actual equinox (if there were no refraction), and

" Rome [1937, 224, 231; 1931-1943, 817-818] argues that no astronomer would
believe that the equinoxes appeared twice on the same ring, despite the transient
effect due to refraction, since the shadow would cross the ring in the proper direc-
tion only once. Thus, he prefers the interpretation that the equinox was mercly
observed at two different times on two different rings. This interpretation seems
somewhat forced, and also unnecessary, since Ptolemy mentions the phenomenon
only to indicate the poor alignment of the rings.
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which would have been apparent within an hour.? A simple extrapolation
would then yield the time of the equinox. Therefore, although Ptolemy
does not explicitly say so, we may conclude that if he did indeed observe
the times of the equinoxes which he reports, his instrument must have been
an egquatorial ring.

In sum, Hipparchus probably determined the times of equinoxes from
measurements of the Sun’s declination, while Ptolemy's observations, if
real, were probably made on an equatorial ring. Furthermore, Hipparchus’
meridional armillary seems likely to have been graduated to /5% which
would have enabled Lim to estimate the times of equinoxes to the nearest
1/ day. In contrast, the equatorial ring should, in theory, have enabled
Ptolemy to determine the hour at which an equinox occurred, a precision
which 1s consistent with Ptolemy’s reported observations. As I shall show
stibsequently, however, the gain in precsion aflorded by an equatoral ring
would have been more than offset by other difficultics encountered in its use.

The errors of the observations

In Table 2.1, columns I and II show the times of the equinoxes and sol-
stices Ptolemy reports and the Sun’s modern longitudes for these times.
Three different scts of errors are also presented. Column I shows the er-
rors deduced from my elements [¢f. appendix 1] expressed as corrections to
Ptolemy’'s stated times. Column IV gives these errors reduced to Schoch’s

9

® Rome [1937, 233] shows it would be difficult to estimate the time of equal illumi-
nalion to within 4 on a ring 2 cubits in diameter. He ignores refraction, however,

® Compuled from Tuckerman [1962-1964] and corrected by
A(L) = 4 0.86" + 1.237T — 0.517T? (epoch, 1900.0)

in accordance with the elements derived in appendix 1. i A{L) is ihe correction
to the Sun’s computed longitude at a given moment in Universal Time, and
A(t) is the mean correction to the time computed {Tuckerman) at which the
Sun would have a given longitude, A{{) is equal to —A(L) divided by the Sun’s
mean motion, 147.8" per hour, These correclions, for the dates covered by the
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I 1I I v V
Local Solar Error in | Brror Error
Date and Place Apparent | Longitude Time {Schoch)  (Newcomb)
Time {Computed) | Observed

—431 Jun 27  Athens 6" 88.83° | 429.5% | y274" 4327
—279 Jun 26 [Alexandrial {18] 39.52 +12.1 +10.3 +15.0
—161 Sep 27 [Rhodes] 18 180.62 -15.0 -16.6 -12.3
—158 Sep 27 [Rhodes] 6 180.40 —9.6 —-11.2 —6.9
—157 Sep 27 [Rhodes] 12 130.41 —9.8 —11.4 -7.1
—146 Sep 27  [Rhodes] 0 180.23 —3.6 -7.2 —3.1
—145 Mar 24 Rhodes 6 359.61 +9.5 +7.9 12.0
—145 Mar 24 Alexandria 11 359.81 +4.6 +3.0 +7.1
—145 Sep 27 Rhodes 6 180.24 —5.8 7.4 —3.3
—144 Mar 23 Rhodes 12 359.62 9.3 +7.7 +11.8
—143 Mar 23 Rhodes 18 359.63 +9.1 +7.5 +11.6
—142 Mar 24  Rhodes 0 359.64 +8.9 +7.3 +11.4
—142 Sep 26  Rhodes 18 180.01 -0.2 —-18 +23
—141 Mar 24 Rlodes 6 359.65 +8.9 +7.1 +11.2
—140 Mar 23 Rhodes 12 359.66 +8.5 +6.9 +11.0
—134 Mar 24  Rhodes 0 359.70 +7.4 +5.8 +9.8
—134 Jun 26 Rhodes 12 90.17 —4.0 —h.6 —-1.6
—133 Mar 24  Rhodes 6 359.71 +7.2 +5.6 +9.6
—132 Mar 23  Rhodes 12 359.72 +7.0 +9.4 +0.4
—131 Mar 23 Rhodes 18 359.73 +6.8 +52 +9.2
—130 Mar 24 Rhodes 0 359.73 +6.6 +4.0 +9.0
—129 Mar 24 Rhodes 6 359.74 +6.4 +4.8 +8.8
—128 Mar 23  Rhodes 12 358.76 +6.2 +4.6 +8.6
—127 Mar 23  Rhodes 18 359.76 +6.0 +4.4 +8.4
+132 Sep 2b Alexandria 14 181.36 —-32.7 —33.9 -30.9
+139 Sep 20 Alexandria 7 181.37 -33.0 —34.2 —31.2
+140 Mar 22 Alexandria 13 0.83 —20.4 —21.6 —188
4+140 Jun 25 Alexandria 2 91.42 —35.4 —36.6 —33.6

Table 2.1. Errors in Solar Ohservations




Observations of Sclar Position _ 19

elements for the Sun,'® which I have included sinee these elements form

the basis for Tuckerman’s tables [1962-1964]. Finally, column V shows
the errors which result from omitting the Sun’s secular acceleration from
the computations. These errors are virtually identical with thosc found
by using any of the older solar tables,'' and I have included them merely
to illustrate how the Sun's acceleration affects the distribution and mag-
nitudes of the errors in Hipparchus® observations. The following discussion
refers to the errors in colummn I unless stated otherwise.

It is evident that Ptolemy’s equinox-observations are significantly and
systematically in error; whereas the times Hipparchus reports fall on either

equinoxes, are:

Date A(L) A(l)
—431  —3057 = —0.085° +2.11
—279 268 = —0.074 +1.8
—150 —238 = —0.066 +1.6
~130  —234 = 0065 1.6
+130 —181 = —0.050 +1.2
4140 —179 = —0.050 +41.2

The errors shown in column I11 of Table 2.1 arc determincd from L” — L divided
by the Sunr’s true velocity; thng, they represent the corrections to Ptolemy's
stated times. The solar velocities have been laken to be 0.0405° per hour at
spring equinox, 0,03%9° per hour at summer solstice, and 0.0415° per hour at fall
equinex. The longitudes of the equinoxes in column II and the errors in column ITI
have been checked against Fotheringham’s [1918] with the appropriate corrections
[¢f. appendix 2]; small adjustments (less than 0.2") have been made in some of
the errors in the times (column II) to compensate for the errors in rounding in
Tuckerman. Thus, the errors in the times should be accurate ta +0.11

1" Determined from colunn 2 by applying A(1) shown in 1703 above.

11 These errors are determined by Folheringham [1918, 410], and for the sol-
slices from my calculations using Newcomb’s solar tables [Newcomb 1898]. The
differences between Newcomb's longitude for the Sun and that shown in column
1 (Cy ) may be found [rom

AY(L) = L{Cy) — L (Newcomb) = 1.06" + 2.66/T% {1900).

Cf. the comparisons by Rome [1937, 215-216) which are based on Schram’s Tables
[1808]. These tables, like Newcomb's, do not contain a correction for the Sun’s
secular acceleration.
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side of the computed times, and exhibit relatively small errors.*? Alsa,
Hipparchus’ observations display a systematic error in declination, while
Ptolemy’s do not.

I iI 111 v

Year Type Sclar §  Residual Error Sclar § Residual Error
{Declination) (Cel. 1 4+0;7.0°) | (Schoch) {Col. 111 +0;6.0°)

—161 FE —15.0 —8.0 —16.6 -10.6
—158 FE —9.6 —2.6 —11.2 -52
=157 ¥R —9.8 —28 —-11.4 —5.4
—146 FE —5.6 +1.4 -7.2 —-1.2
—145 S8E -9.5 —2.5 -7.9 —-19
—-145 FE —5.8 +1.2 —7.4 -1.4
—-144 SE 9.3 —2.3 =77 -1.7
—143 Fr -9.1 -21 =79 -1.3
—142 FE —8.9 —-1.9 -7.3 -13
—142 FE -0.2 +6.8 —-1.8 +5.2
—141 SE —-8.7 -1.7 -7.1 -11
—140 SE —8.5 -1.5 —6.9 -0.9
-134 sE —74 —0.4 -5.8 +0.2
—133 SE —7.2 —0.2 —5.6 +0.4
—132 sE =7.0 —0.0 —54 +0.6
—-131 sE —6.8 +0.2 —5.2 +0.8
—130 sE —6.6 +0.4 —5.0 +1.0
—-129 SE —6.4 +40.6 —4.8 +1.2
—128 SE —6.2 +0.8 —4.6 +1.4
—127 SE —6.0 +1.0 —-44 +1.6
+132  FE —32.7 -33.9
+139 FFE —33.0 =34.2
4140 sE +20.4 +21.6

Table 2.2, Solar Declinations and Residual Errors at the Times
of Equinoxes Reported by Hipparchus and Ptolemy
in Units of 0;1°

12 Naote that the relatively small errors of the solstices (—i—29.5h in —431, +12.1b
in —279, and —4.0" in —134) are generally less than the errors in Ptolemy’s
equinoxes. Note also that the error in the equinox observed on the ring at Alexan-
dria {—145) is equivalent to an error of less than 0;5° in declination. Thus, the
alignment of this ring at the time must have been quite accurate.
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This can be seen in Table 2.2, where column I shows the Sun’s declina-
tions at the times reported for the equinoxes.!? All of Hipparchus' ob-
servations require a negative correction to the observed declination (i.e.,
8). The average error for all twenty observations is —0;7.79 or —0;7.0°%
excluding the three carlicst observations (=161, —158, —157). Column II
shows the error remaining when a systematic error of —0;7° is removed.
Except for the fall equinoxes of —161 and —142, these residual errors are
all less than 0;3%!? Thus, if we ignore the systematic error in declination,
Hipparchus’ equinox-observations are accurate o the nearest 1/ day with
only two exceptions.

For comparison, columns III and IV in Table 2.2 show the errors in
declination derived from Schoch's elements and the residuals after correct-
ing for a inean systematic error of —0;6% The differences between the
two sets of residuals, especially for all but the three carliest observations,
are very slight and of questionable significance for determining the Sun’s
acceleration.’® Indeed, the only significant difference occurs in the equinox-
observations of —158 and —157, where the residual errors exceed (1;3° ac-
cording to Schoch’s elements, in contrast 1o those shown in column II.

13 Near the equinoxes the Sun’s declination changes at a rate of very nearly
+0;1° per hour. Therefore, the magnitudes of the errors in the times of the
equinoxes are also equal to those of the errors in the observed declinations of the
Sun at the staled times., The sign of the correction to the observed declination is
always the same as the sign of the error in the time at fall equinox, while at spring
equinox the errot in the observed declination has the opposite sign of the error in
the time. Thus, for example, the fall equinox of —146 occurred roughly oM earfier
than reported by Hipparchus, so that ai 1he observed time the Sun's declination
was nearly —0;6°% Similarly, 1he following spring equinox occurred about 9" after
it was observed, so that al the observed time the Sun’s declination was s ~0;9°

1% As may be seen from Table 2.2 column I, any value for the systematic errar
in declination between —0;6.9° and —0;8.5° will leave all ihe residuals less than
0;3° except for Lthe observations of —161 and —142,

15 Fotheringham's initial least-squares determination [1918, 482] of the system-
atic error in declination (Ad8) and of the Sun’s acceleration (S5,) from the errors
in Hipparchus' equinoxes determined from Newcomb’s tables was

S, = +1.0" £ 0.18"
Af = —0:7.6° + 0:0.467

a resull virtually identical with the elements used here.

Oun the assumption that Iipparchus ‘would not be the man we assume him
to have been if his equator at the latter dates had not been cansiderably better
than his mean equator for the whole range of dates’ Fotheringham [1918, 415
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Except for the equinoxes of —161 and —142, {and perhaps also —158
and —157), then, Hipparchus® reported observations form a consistent se-
rics which exhibit a systematic error in declination of &= —(0;7% but which
otherwise appear accurate to the nearcest fraction of a day that Hipparchus
could have observed.'® In contrast, Ptolemy’s three equinox-observations
show a systematic error in time but not in declination, since the errors in
declination of his spring and fall equinoxes differ by nearly a degree.

Hipparchus' observations and solar parameters

Before turning to the questions raised by Ptolemy’s errors, let us first con-
sider how the systematic error in Hipparchus’ observations may have arisen.
While the error of —(3;7° might have been purely accidental, it is remark-
able that this 1s precisely the error which would lead to an interval between
spring and fall equinoxes of 187 days.” Thus, if Hipparchus thought that
the length of this interval was 187 days before he made his observations,
he could have adjusted the equator of his meridional armillary to yield
this result.

Such a procedure would reduce the uncertainty inherent in any attempt
to determine fundamental alignments by direct measurements, a problem
Ptolemy [Alm. iii 1: Toomer, 134] notes when discussing the alignment of
equaforial rings. More importantly, this procedure would also ensure that
the average error in the times of accurately observed individual equinoxes

subsequently abtained, after eliminating the three carliest observations,

S = +1.95" £ 0.27
AS = —0;6.4° + 0;0.8"

Within these limits, any value of the secular acceleration deduced from these
observations will clearly depend on the assumptions made about weights and the
methods of combining the observations.

'$ "I'his is somewhat surprising in view of the apparent discordance between the
[all equinoxes of —138, ~157, and —146, and the long run of spring equinoxes
consistent with a year of 3651/4 days. In 18 ycars the time of the equinox moves
[orward nearly 4 hours.

Y7 In —145 the actual interval between spring and fall equinox was 186 days 8.8
hours, or 15.2 hours less than that found by Hipparchus. Since a systematic error
of —=0.7° in declination would make the observed limes of the spring equinoxes
early by an average of 7 hours and the times of the [lall cquinoxes late by the
same amount, the observed interval between the two types of equinoxes would be
almost exactly 187 days.
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would be only half as great as the error in the length of the interval between
spring and fall equinoxcs. Hence, if Hipparchus assumed that the interval
from spring to fall equinox was 187 days to within 1/; day, he could have
expeeted the times of individual equinoxes which reproduced this interval to
be accurate, on the average, to within half this amount. Such a procedure
would have been especially advantageous if, as Ptolemy suggests [Alm. iii
1], Hipparchus was particularly coneerned with whether the year-length was
constant, for determining this would require that the timnes of successive
equinoxes of the same type be accurately observed.1®

Thus, one explanation for both the systematic declination error and the
relative accuracy of the times of Hipparchus’ equinoxes is that they were
determimed by tneasuring the Sun’s declination on an instrument whose
equator was adjusted to vield a predetermined interval between spring and
fall equinoxes. This would have been a perfectly rational observational
procedure, which would have served to control the errors in the times of
individual equinoxes. Still, it requires us to assume that at least one of Hip-
parchus’ solar parameters was not determined from his own observations.

This scems probable, since the 187-day value for the interval from fall to
§pring equinox is attested in a solar scheme described by Geminus [Man-
itius 1898, 211] and attributed to Callippus {ca. —340}, which gives the
number of days which the Sun spends in cach zodiacal sign.'¥ As Aaboe

18 Ptolemny-[Alm. iii 1] addresses the first part of his discussion of the length of
the year to the quesiion of whether it varies. Ie tells us [Toomer, 132] that ‘the
inequality [in 1he lengih of the year]} revealed by successive observations disturbed
Hipparchus, and he indicates that part of Hipparchus’ work, On the Changes of
the Solstitial and Equinoctial Points, discusses this problem. Stating further
that Hipparchus tried to resolve this question by means of eclipses, Ptolemy cites
two eclipses {—145 Apr 21 and —134 Mar 21) from which Hipparchus found the
longilude of Spica to he Virgo 231/4° and Virgo 243/4% Theon [Rome 1931-1943,
826-830] gives further details of the eclipse of —134 and Hipparchus' procedure.
These eclipses are cited as examples of the maximum observed deviation, and
Hipparchus is said to have concluded [Alm. iii 1: Toomer, 135] that the in-
equality, if it existed, was no greater than +3/; day [see 14n2, above]. Ptolemy
concludes that no such inequality exists, and attributes the observed irregularities
to ahservational and computational crrors. He also notes [Alm. iii 1: Toomer,
136] that Iipparchus’ solar model included only one inequality.

Hipparchus' concern about the existence of a second solar inequality may have
been founded upon the irregularity of the appearances of the equinoxes an equa-
torial rings due to refraction, sinee he notes [Alm. iii 1: Toomer, 133] that the
inequality may be observed on the ring in the Square Stoa at Alexandria.

1% This scheme is included in the calendar attributed to Geminus. The dates
of the Sun’s entry into cach of ihe signs are explicitly ascribed to Callippus. For
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and Price [1964, 13] have poiuted out, this rough value might easily have
been determined by means of the skaphe sundials known from about —300.
Indeed, the value is fairly close to the average which one would find using
an accurate dial of this sort, since in the majority of instances the shadow
at one equinox or another would be significantly affected by refraction in
such a way as to make the apparent interval longer than it actually is [cf.
Table 2.5]. Whatever the case, the assumption that 187 days separated
the two equinoxes clearly antedates Hipparchus, and there is no reason to
attribute this parameter to him.

In summary, the general accuracy of Hipparchus' equinox-observations
appears to result from observations made with a meridional armillary from
which the Sun’s declination could be estimated to perhaps 1/10% and which
may have been adjusted to yield an interval between fall and spring equinoxes
of 187 days. Such a procedure would explain not only the individual sys-
tematie errers, but also the symmetry of the errors at the fall and spring
equincx. In addition, it would have given Hipparchus a sound methed for
detecting any significant second inequality in the Sun’s motion.

Ptolemy's observations

Ptolemy's observations raise different problems thau those of Hipparchus.
Whereas Hipparchus found the times of the equinoxes rather accurately,
and the interval from spring to fall equinox less accurately, Ptolemy finds
the same result as Hipparchus for the interval from spring to fall equinox,
while the times Ptolemy gives for the equinoxes {and solstice) are badly
in error. Furthermore, as alrcady noted, this error could not have arisen
solely from a systematic error in the deelination of his equatorial ring, since
such an error would have made the spring equinoxes appear too early by as
much as it made the fall equinexes too late. We may ask, therefore, whether
the cquinox times Ptolemy reports could have resulted from actual obser-
vations, or whether these reports can only be understoad as calculations
based on Hipparchus’ solar model using one of his equinoxes as epoch,

The apparent advantage of using an equatorial ring rather than a merid-
ional armillary is that the ring is a null-reading device which marks the
moments of the equinoxes with much greater precision than dircet mea-
surements on any seale of modest size would yield. This apparent advan-

a discussion of Callippus' authorship of this scheme, see Manitius 1898, 281n34;
Boeckh 1863, 27-28, 46. Aaboe and Price {1964, 10-11] note that the interval

of 187 days from spring to fall equinox appears in this scheme cited by Geminus,
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tage, however, is more than offset by two serious difficuities which Ptolemy
mentions and which any user of such a ring could hardly have avoided.

The first difficulty 1s that an equatorial ring must be accurately ori-
ented not only with respect to the altitude of its morth-south diameter,
but also with respect to the level of its east-west diameter. Furthermore,
unlike the meridional armillary, an equatorial ring does not allow the ob-
server to check its alignment directly by means of a plumb-line. Ptolemy’s
statement [Alm. iii 1: Toomer, 134] that such instruments require careful
adjustment (‘positioning’) at the time of the actual observations suggests
that he was aware of the difficulties of aligning an equatorial ring by direct
measurement, without indicating how he accomplished it.

The second and more sericus shortcoming of the equatorial ring is that
its results are very sensitive to the effect of refraction. On a meridional
instrumnent this effect is both small and constant, but on an equatorial ring
the effect of refraction on its apparent lighting is both significant and highly
variable, since the effect depends on the tine of day at which the actual
equinox occurs.??

To understand how refraction affects observations made with an equato-
rial ring, consider first the apparent declination of the equator as a function
of hour-angle. In Figure 2.1, N5 represents the eastern horizon seem from
duc west, O the truc equator, C'D' the apparent equator {that is, the
locus of points at which a body located at each point of the true equator
would be scen due to refraction), SDD' the meridian, ¢ the co-latitude of
the place of obscrvation, P some point on the true equator with altitude
h{t} at hour-angle £, and P’ the point on the apparent equator at which
a body located at P would be seen due to refraction. Finally, r{h) is the
refraction and §'(¢) the declination of P".

20 {n Mcditerranean latitudes the gpring equinox should appear on 2 meridional
armillary aboui half an hour before it occurs due to refraction, while the fall
equinox should appear half an hour after it occurred. See Table 2.3.

Manitius [1898, 427n21] remarks that refraction would make a spring equinox
appear on such a ring befare it occurred. He also explains the double equinoxes
mentioned by Ptolemy and the two times reported for the spring equinox of
—145 [Alm. iii 1: Toomer, 135-136] as due to the variation of refraction during
the day. Thus, he implies that both the latter observations were made on the same
ring, Rome [1937, 231-232] discusses the effect of refraction and the resulting
appearance of double equinoxes in more detail, but some of his statements are
misleading and incorrect. Thus, speaking of spring equinoxes he says that ‘in
order to register one false ¢quinox and one true one, the Sun must rise at least
12 hours before it passes the vernal point.” This is incorrect, as may be seen from
Figure 2.2. Neither Rome nor Manitius describes the general effect of refraction
at both equinoxes in detail.
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Figure 2.1
Since r{k) is small, we may put
5’(1) =r(h) sina, (1)

where a 1s the angle between the altitude-crcle through P and the equator
as shown. Furthermore, since

cos ¢
cos h(t)’ @)

sinag =

we have _
v{h) cos ¢

6’(0: cosh(f,) ’

(3)
Finally, h(t) is determined from the formula

sin h(t) = sin g cost. {4)

To find the error in the apparent time of an equinox observed on the ring,

we first observe that, near the equinoxes, the Sun’s true declination changes
at very nearly 30;1° per hour.?! Thus, if the equinox occurs at some time

21 Near fall equinox the Sun’s declination changes at a rate of —0;0.98° per hour,
while at spring equinox the rate of change is +0;1.03* per hour,
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T Altitude  Refraction #{(Ty= AT
(midnight epoch) (T r{h) {0;1° or hours)
5:57.4% 18; 2.6" | —-0;33.9° 0;34,64° 17.95
558 18; 2 —0:25.7 0:33,12 17.1
G; 0 18; 0 0; 0.0 0;28,52 14.9
6; 4 17,56 0:51.5 0;22,44 11.7
6; 8 17;:52 1;43.0 0;18, 6 9.3
6;12 17;48 2:34.5 0;14,48 7.6
6;16 17;44 3;,25.9 0;12,32 6.5
6;20 17;40 4:17.3 0;10,40 5.5
6:30 17;30 6:25.4 Q; 7,40 3.96
6;40 17;20 834 Q; 5,58 3.1
6;50 17;10 10542 0; 4,52 2.54
720 17: 0 12:49 0 4, 6 2.16
80 16; 0 25:24 0; 2,1 1.14
9 0 15; 0 37;32 0; 1,16 0.81
10; 0 14; 0 47:52 Q; 0,562 0.67
11; 0 13; 0 54:55 0; 0,41 0.61
12; 0 12; 0 59; 0 0; 0,35 0.583

Table 2.3. Apparent Declination, $'(T"), of the Sun on the
Ecquator T Hours after Midnight

T, but appears on the ring at the time T the Sun's true declination at 7
will be equal to F(T'-T")- [];10}'1? if T and T are cxpressed in hours. (Here
and below, the upper sign applies to spring equinox and the lower sign to

fall equinox.)

At T the Sun's negative declination is just offsct by its apparent elevation
due to refraction. It follows that

AT 2T — T = +6(T"), (5)

where AT is the crror in (correction to) the time of the apparent eguinox
and 6'(T") is the apparent declination at time T* due to refraction as given
in (3). Strictly, §'(T") should be determined from (3) using the apparent
altitude &', instead of the true altitude h; but since A’ is not as easily
computed, T have used the approximation given by (5). This approximation
will affect the times of apparent equinoxes near dawn by a few minutes,
but it will not otherwise affect the results discussed below.
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Table 2.3 shows values of &, r(k), and §'(T"), computed for ¢ = 59;0°
for different times during the day. Since +6(7") is the error in the time
of an equinox which appeared at T, it is also the error in the time of an
cquinox which eccurred at T +6'(T'). Thus, the error in the observed time
of an equinox, as a function of the time at which it occurred, can easily
be computed for

T=T+¢&(T), (6)

and found by interpolation for other T.

Figure 2.2 shows the error in the time at which an equinox would be
observed?? as a function of the time at which it actually occurred. Since
the error in the time of a spring equinox is the reflection, about noon, of
the error in the time of a fall equinox, two time scales have been used.
The upper one, which begins at midnight and reads from left to right,
is for fall equinoxes, while the lower one, which also begins at midnight
but which reads from right to left, is for spring equinoxes. The sign of the
error (correction to the observed times) is positive for spring cquinexes and
negative for fall equinoxes. '

In Figure 2.3, the times (T") at which equinoxes of both types would be
observed are plotted against the time (7'} at which they occurred. As in
Figure 2.2, the time scales for spring and fall equinoxes are the reverse of
each other.

These graphs show that multiple appearances of an cquinox on a well-
aligned equatorial ring are common rather than exceptional. Thus, at
fall equinoxes occurring between midnight and noon, the shadow crosses
the ring twice, first in the correct direction and, then, near Sunset in the
opposite direction. At fall equinoxes occurring between 12* (noon) and 15t
(3 p.m.), the shadow crosses the ring three times: once shortly after the
equinox ocecurs, once again before Sunsct, and a third time shortly after
Sunrise on the following day. Here again the shadow crosses the ring in
the wrong direction on its second appearance, but the third crossing, at
dawn, iz in the proper direction.

After 16" at fall equinox, refraction causes the apparent declination of
the Sun to increase more rapidly than the Sun’s true declination decreases.
Fall equinoxes occurring after 15]: therefore, do not appear on the ring
that day, but rather they appear the following morning, near Sunrise, when
the shadow crosses the ring in the correct direction. Similarly, at spring
equinox, ‘double equinoxes’ appear when the equinox occurs between 121

22 In speaking of the ‘observation of an equinex’ on an equatorial ring, I mean
merely that the shadow is obhserved to cross the ring, regardless of which direction
it moves.
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Figure 2.2, Error in an Equinox Qbserved on an Equatorial Ring

(noon) and the following midnight; whereas ‘triple equinoxes’ appear when
the equinox occurs between 9* and 12% and single equinoxes appear when
the equinox occurs between midnight (O") and g%

That the Sun’s shadow may cross the ring two and even three times
at a single equinox is only one of the problems encountered in using an
cquatorial ring to determine the equinaxes. Another difficulty is that cven
if the second and third appearances of equinoxes were ignored, equinoxes of
the same type would still appear at very irregular intervals [ef. Bruin 1976].
Furthermore, although one should sce (and would expeet to see) only two
successive equinoxes of the same type followed by two years in which these
equinoxes occurred at night, both equinoxes would appear on an equatorial
ring every year with the shadow moving in the correct direction.

For example, a fall equinex occurring between 7% and 14" would be ob-
served only slightly {m 3/4") after its occurrence, while those occurriug after
16" and before ™ would all appear near Sunrise. Thus, a fall equinox ob-
served in the middle of the morning would be followed by cne which would
not be observed until Sunrise of the day after that which the 1/;-day surplus
would lead us to expect. This equinox, furthermore, would be followed by
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Figure 2.3. Apparent Time (T"} of an Equinox Qccurring at T

twe more which would appear at almoest exactly the same time of day at
intervals of 365 days. The samc problem would be encountered at spring
equinoxes, with the difference that an equinox observed in mid-afternoon
just before it actually occurred would be preceded by one obscrved ncar
Sunsect on the day before it should have appeared, and so on.

To illustrate the behavior of the shadow more clearly, Table 2.4 gives
the times of the true equinoxes during the period for which Ptolemaic
observations are preserved, together with the times at which the Sun’s
shadow would appear centered on an accurately aligned ring.?* The times
in parentheses denote the cases in which the shadow would move in & diree-
tion opposite to that characteristic of the type of equinox in question. The
times of the apparent ‘correct’ equinoxes—i.e., those at which the shadow
first crosses the ring in the proper direction at fall equinox and last crosses it

23 The times of the true equinoxes are computed from Schoeh’s elements and
serve merely to illustrate irregularities due to refraction. To reduce the times
al which the equinox occurred to the elements derived in appendix 1, add 1.2k
The times of the apparent equinoxes can then be obtained from Figure 2.3.



Spring Equinoxes

Fall Equinoxes

Year Month True Time Apparent Timne Month I True Time Apparent Time
Day Hour Iday Hour Day Hour Day Hour | Day Hour Day Hour Day Hour

+125 || Mar |22 0; 5|21 1743 Sep |24 1132 | 24 12; 8 | (24 17;42)

+126 || Mar |22 555 | 21 1758 Sep 124 1722 |25 6: 2

+127 || Mar |22 11344 |22 11 5| (22 6:21) | 21 18; 2| Sep 124 2311 |25 6 4

+128 || Mar |21 17;33 {21 16:15 | (21 6; 3) Sep |24 23;11125 6; 4

+129 || Mar | 21 23:31 | 22 17:40 | (21 5:58) Sep |24 10:48 | 24 11,26 | (24 17:45)

+130 Mar | 22 5;10 | 21 1557 Sep |24 1637 |25 6; 1

131 (| Mar |22 11; 0|22 10522 | (22 6;29) | 21 18; 2 || Sep |24 2227 [ 25 6;13

+132 || Mar |21 1649 | 21 1547 | (21 6; 4) Sep |24 4;16 |24 6:49 | (24 17;59)

+133 || Mar |21 22:38 | 22 17;37 | (21 5;59 Sep |24 10; 5 | 24 10:40 | (24 17;48)

+134 || Mar |22 427|21 725 Sep |24 1554 |25 6: 1 .

+135 || Mar {22 10;16 | 22 9;32 | (22 6;34) | 21 18; 1 Sep 24 2143 | 20 6;10

+136 || Mar |21 16; 6 | 21 15:15 | (21 6; 6) Sep |24 3:33 |24 6:41 | (24 17;59)

+137 || Mar |21 21;55 | 22 17:32 | (21 5:59) Sep |24 9:22 | 24 10; 3 | (24 17;5D)

+138 || Mar 122 34421 715 Sep |24 15;11 | 21 17;54

+139 )] Mar |22 93322 841 | (228 9)|21 18 1| Sep [2421;0(25 6; 9|

+140 || Mar |21 1522 | 21 14;37 | (21 6; 7) Sep |24 2;49 |24 6:33 J (24 18; 0)

Table 2.4. True and Apparent Times of Spring and Fall Equinoxes
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at spring equinox—have been used to compute the intervals between spring
and fall equinox and the lengths of the “year’ between successive equinoxes
of the same type. Table 2.5 shows these intervals, and also that the average
apparent time from spring to fall equinox is very nearly 187 days.

These two tables illustrate the grave deficiencies of even a perfectly
aligned equatorial ring due to refraction. The erratic behavior of the
Sun’s shadow also explains why Hipparchus noted that the inequality in
the length of the year eould be seen on the ring at Alexandria. The max-
imum difference between the apparent lengths of two successive vears is
very nearly 18" or 3/y day [see Table 2.5, column B], which agrees with
Hipparchus' limit for the inequality of the year-length, Thus, although
Ptolemy says that this limit was derived from observations of lunar eclipses,
Hipparchus cotld have found confirmnation of this estimate in reports of
equinoxes observed on the ring at Alexandria.?4

7 Ttolemy’s discussion of the sources of errors in such observations and his
unequivocal rejection of a second solar inequality show clearly that he was
satisfied that observational errors caused these irregularities. In particular,
he seems to attribute the appearances of double equinoxes to errors in

' the alignment of the rings on which they were observed. Furthermore, he
remarks that such errors were likely to occur if the instruments were not
set up and adjusted for each actual (set of) observations, implying that he
succeeded in eliminating these errors in some fashion.

It is difficult to see how Ptolemy could have done this, since no single
alignment of his equatorial ring would eliminate the irrcgularities due to
refraction. A deviation in his ring’s altitude from the altitude of the equator
at Alexandria would not affect the behavior of the shadow when the Sun
was near the horizon, and so would not affect the appearances of multiple
equinoxes. Similarly, an error in the level of the east-west diameter of the
ring would net prevent double equinoxes from appearing when the Sun was
near the horizon, while accentuating the irregularity of the appearances of
equinoxes occurring at different times during the day. Thus, correcting
any error in the alignment of such an instrument would not alleviate the
difficulties described above.

Nor could Ptolemy have aligned his ring so that equinoxes of both types
would appear at the times expected from Hipparchus’ observations and the

M According lo Ptolemy {Alm. it 1: Toomer, 135], Hipparchus was unwilling to

accept errors of this sort as decisive evidence of the existence of an inequality
in the length of the year and had more confidence in measurements made during
lunar eclipses. Since Hipparchus [Alm. iii 1: Toomer, 136] did not include a
second inequality in his solar model, however, it seems that he, as well as Ptolemy,
eventually concluded that these irregularities were due to observational errors.
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A B
Apparent Time | Apparent Year Lengih (365d + &h]
Year —— e
SE io FE* from SE from FE
A A? A A2

+125 [ 1869 1842 | 0:;15" 416:52" | 18;10h —17;52h
+126 | 187 121 | 17; 7 —11:57 0;12  40;40
+127 | 186 191 510 —3;45 0:52 +3:26
+128 1186  14.9 1,25 -1: 8 420 14515
+129 1186  17.8 0;17 +16; 8 | 18;35 —18;23

+130 {187 121 | 1625 —11; 0 0;12  +0;24
+131 {186 199 595 —3;35 0:36  +3;18
+132 1186 5.0 150 —1:32 3;5¢ +15;24
+133 | 186 171 0:18 +1519 | 10,18 —19; 9
+134 | 187 121 | 1537  —9;54 0; 9 +0;22

+135 | 186 206 5:43 —3:26 0;31 +2;51
+136 | 186 15.4 2:17  —1:59 322 +16;36
+137 | 186 16.5 0;18  +14;29 19:58 —19:50
+138 | 187 121 | 1447 —8:51 0; 8 +0:16
4138 | 186 21.5 5:566 0;24

+140 | 186 15.9

® Mean: 1869 223"  True: 1869 11.45%
Table 2.5

length of the tropical year. This may be seen by cousidering the align-
ment errors necessary to produce the observed times of the three equinoxes
which Ptolemy reports, and which agree almost exactly with Hipparchus’
observations of —146 and —145 [Alm. 11 1: Toomer, 134-135].

As shown in Figure 2.4, any (small) deviation from the plane of the
equator 1n a ring’s alignment may be considered the result of independent
rotations about the ring's cast-west and north-south diameters. Let m
denote a rotation about the east-west axis and n a rotation about the
north-south axis. Let both angles be positive in the direction shown in
Figure 2.4, and let #' equal the hour-angle of the Sun when an equinox
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“310‘- QA“,&\QT
m n
Figure 2.4a Figure 2.4b

appears on the ring.**> Then, if §u (') is the declination of P’ due solely to
m, and 6,;(¢') is the declination of P’ due solely to n, we have

tan 8., (') = tanm - cos ¢’ (T)
and
tan é,(t'} = tann - sint! (8)
If both m and n are small, (7) and (8) may be replaced by
Sm(t") = mcost’ (9)
and
3n(t") = nsintl (10)
Thus, the declination of P! due to the combined rotations is
8(t'Y = mcost’ + nsint. (11}

For an equinox to appear on the ring, the Sun's apparent declination
(affected by refraction) must just equal the declination of P Thus, if § is
the Sun’s true declination and & is the apparent increase due to refraction,
an equinox will appear to occur when

§4 8 =rcost +nsint. (12)

5 ' is positive when the Sun is west of the meridian and negative when the Sun
15 east of the meridian. The time at which an equinox appears expressed in hours

after midnight is T' = 128 4 t//15,
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Conversely, given T", (T"), and §'(T"), we can determine mn and n from the
times {7') at which any two cquinoxes are said to have been observed.

Applying (12) to the three equinoxes reported by Ptolemy taken in pairs,
we find:?® from the fall equinoxes of 4132 and +139,

m = —0:48° and n = +0;19°;

from the fall equinox of +132 and the spring equinox of 4140,
m = +1;13" and n = -2;40°%;

and from the fall equinox of +139 and the spring equinox of +140,
m = —0;19° and n = +0;27°

Clearly, all three equinoxes could not have been (accurately) observed
on a ring with the same alignment, and in general Ptolemy could not have
so observed the times of both the spring and fall equinoxes which he would
have expected from Hipparchus® observations and length of the tropical
year. n the other hand, Ptolemy could have aligned his ring so that
equinoxes of one type or the other would appear at the expected times,
although these would have been followed by appearances of equinoxes of
the same type which he would have expected to occur at night.

This may be scen from Table 2.6, which shows that pairs of equinoxes of
both types would be expected in the morning and shortly after noon. Since
at these times the effect of refraction is relatively small (1-2") and nearly
the same [cf. Figure 2.2], a ring set up so that one such pair appeared would
also produce appearances of the following pairs of the same type.

It is evident that Ptolemy’s equinox-observations should not be under-
stood as independent observations affected by an inadvertent systematic
error, or even as consistent obscrvations designed to verify Hipparchus'
solar parameters. In view, however, of Ptolemy’s explicit statements con-
cerning the two fall equinoxes which he reports, particularly that of +132,
it 1s also difficult to conclude that he did not observe the equinoxes at all.
Furthermore, such a conclusion fails to explain Ptolemy's evident familiar-
ity with the difficulties encountered in such observations. Nevertheless, it
seems that at best Ptolemy could have set up his equatorial ring to show
only one of the equinoxes expected from Hipparchus’ solar model, and

28 Given T, 1’ is computed from the relationship shown in 34n25, above. &(Tn
can be found from Table 2.3, and é is obtained from modern theory. See Table 2.2.
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Spring Equinoxes Fall Equinoxes
Daie Time Date Time

127 Mar 23 18;15% 127 Sep 26 810"
128 Mar 22 14:10 128 Sep 256 14; 5
131 Mar 23 7;55 131 Sep 26 T;50
132 Mar 22 13;50 132 Sep 25 13;45°
135 Mar 23 7;35 135 Sep 26 T;30
136 Mar 22 13,30 136 Sep 25 1325
139 Mar 23 7,15 139 Sep 26  7;10°
140 Mar 22 13;10° 140 Sep 25 13; 5

¢ Ptolemy: 14 tholemy: 7h “Ptolemy: 13h

Table 2.6. Observable Equinoxes Computed from Hipparchus’
Fall Equinox of —146 and Spring Equinox of —1435,
Assuming a Tropical Year of 365;14 48 Days

then found that the following pair of equinoxes of the same type occurred
at roughly the times predicted for them.

Such a procedure would hardly have provided any significant evidence
to confirm Hipparchus’' solar model, and Ptolerny would still have had to
ignore the appearances of double equinoxes, of equinoxes which should have
occurred at night, and of discordant equinoxes characteristic of the other
season from that for which the ring was set up. Furthermore, such a proce-
dure is hardly consistent with Ptolemy’s assertion [Alm. iii 1: Toomer, 139]
that he confirmed Hipparchus’ solar parameters by his own observations.

Although the conclusion that Ptolemy’s equinox-observations can scarcely
have been more than the results of computations is unsatisfying, I can find
no other explanation of the errors in his reported times and their agree-
ment with Hipparchus’ observations and year-length. On the other hand, if
Ptolemy set out to determine the times of the equinoxes using an equatorial
ring, he could not have avoided the difficulties and irregularities described
above. So he might easily have concluded that he could make no secure
nnprovement on Hipparchus’ solar parameters. Furthermore, since not only
his observations of planetary oppositions, but all observations made with
his armillary astrolabe, require knowing the longitude of some celestial
body for use as a reference point, Ptolemy could not have observed the
longitudes of any other celestial body without a solar model.2” Thus, he

2T Ptolemy reports three observations of planets he made with an armillary as-
trolabe which antedate his earliest reported equinox-observation (+132). The
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might well have adopted Hipparchus’ solar parameters in order to proceed
with other observations.

Finally, it is quite possible that Ptolemy was aware of the errors in his
equinox-‘observations’, but chose to accept a poor equinox and tropical
year-length to avoid undermining his (correct) conclusion that the year-
length was constant and not subject to a second solar inequality. Hip-
parchus apparently left this an open question, while reporting at least two
older observations which supported his determination of the tropical year-
length, Accordingly, if Ptolemy had accurately observed the cquinoxes and
consequently found a nearly correct year-length from comparisons with
Hipparchus' equinox-observations, he would either have had to show that
the year-length derived by Hipparchus' was in error or accept a variation
in the length of the year. It is probable that Plolemy lacked a sufficient
number of early equinox-observations to demonstrate such an error; and it
is quite possible that no such observations existed, since Hipparchus appar-
ently mentions only solstice-observations prior to his own time. Lacking
reliable carly observations of tropical phenomena to settle the question,
Ptolemy may well have chosen to sacrifice the accuracy of his equinox for
theoretical clarity.

Ptolemy’s solar tables

Whatever the explanation of Ptolemy’s reported observations of the Sumn,
it is clear that he needed both mean and true solar positions and, thus,
solar tables, long before he observed the equinoxes and solstice in +139
and +140. These are the observations which he cites to justify accepting
Hipparchus® values for the lengths of the vear and the seasons. Since both
Ptolemy and Hipparchus used the same values far the mean motion, ec-
centricity, and apogee of the Sun, it is natural to ask if Piolemy's solar
tables were identical with Hipparchus’ The little evidence there is suggests
that they were not.

earliest of these is an observation of an opposition of Saturn on +127 Mar 26
[Alm. xi 5: Toomer, 525]. The others are an opposition of Mars in +130 Dec
15 [Alm. x 7: Toomer, 484] and of Mercury’s greatest elongalion as an evening
star in +132 Feb 2 {Alm. ix T: Toomer, 149].

In such observations it is necessary to know the longitude of some reference
body in order to align the longiiude ring of the armillary astrolabe in the plane of
the ecliptic, Ptolemy would thus have needed to know at least the longitude of a
few reference stars to make these observations. To determine these longitudes
or even to check provisional longitudes derived from Hipparchus® observations,
Ptolemny would have needed solar tables.
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Date —127 Aug 5 —126 May 2 —126 Jul 7
. d ¥ h d ¥ h d ¥
Timne (since epach) 619 314" 17;50 | 620 219° 18;20 620 286 4P
Mean Solar Anomaly
{Tables) 64;59° 331; 7° 36;34°
Solar Longitude (°)
ipparchus Leo 8 1/2 1/;5° Tau 7 1f 1/12b Can 11 — 1/45°
Ptolemy Leo 8;20 Tan T:45 Can 10;40
Recomputed Leo 8;22 Tau T7;44 Can 10;42
Tables: Hipparchus —0;13° -0; 1° —0;12°

? =835 P=745° €= 10;54°
Table 2.7. Comparison of Hipparchus’ Computed Solar Longitudes

with Values Computed by Ptolemny and Values Recom-
puted from Ptolemy’s Tables

Ptolemy quetes three observations of the elongation of the Moon which
Hipparchus made at Rhodes [Alm. v 3, 8: Toomer, 224, 227, 230]. In each
Hipparchus reports the computed solar lougitudes which he used to find
the Moon’s elongation (possibly with an instrument similar to Ptolemy’s
armillary astrolabe, since the elongations are given dircetly in longitude).

Table 2.7 shows these longitudes compared with those Ptolemy com-
puted for the same times, and also with longitudes accurately computed
from Ptolemy's tables for the times of Hipparchus’ observations. These
comparisons show discrepancies of 14° in two cases and close agreement
for the second of the three observations. Ptolemy [Alm. iv 11: Toomer,
211--216] also cites four computations of the Sun’s progress in longitude
during the intervals between eclipses,”® which Hipparchus used to obtain
erroneous values for the Moon's eccentricity. As Ptolemy remarks, each of
these intervals of longitude differs significantly those he himself computed
for the same eclipses. Since the actual solar longitudes are not given, it
is irnpossible to deduce the values of the solar equation that would account

28 The eclipses are:

(1} =382 Dec 23  (2) =381 Jun 18 (3) ~381 Dec 12
{4) —200 Sep 22 {3) —199 Mar 19 (6] —199 Sep 12

The possihility that only the solar longitude for the middle eclipse of cach triad is
in errar is excluded, since such an error would produce equal errors with opposite
signs in each pair of successive intervals. The actual errors, however, arc as shown
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for the observed discrepancy. Nevertheless, it is clear that some of those
values must have differed from tolemy’s.

All these discrepancies can be explained, of course, by assuming that Hip-
parchus was a poor computer. A more plausible explanation, however, is
that Hipparchus’ correction for the solar inequality differed from Ptolemy's.
If so, his tabular mean solar longitude should also have differed.??

Whatever the case, it appears unlikely that Ptolemy's solar tables are
merely copies or extensions of Hipparchus’ tables, even though they are
based upon identical parameters and reproduce almost preciscly Hipparchus'
fall equinoxes of —145 and —146 [cf. Table 2.8]. In vicw of the fact that
Ptolemy could hardly have waited until +1440 or even +132 to construct his
solar tables, it is quite possible that he first rigorously recomputed the solar
inequality from Hipparchus’ parameters, and then determined the epoch of
the mean motion to agree with Hipparchus’ fall equinox of either —145 ar
—146. This would have given him a set of provisional tables to work with
in order, for example, to determine the opposition of Saturn in +127.

In summary, it seems impossible that the errors in Ptolemy's equinox-
observations arose either from a systematic error in independent observa-
tions or from procedures designed to confirin Hipparchus' parameters. It
does appear, however, that Ptolemy's solar tables arc not identical with
Hipparchus’ despite the identity of the underlying parameters, and that
Ptolemy must have at least recomputed the values for the solar inequality
and, hence, the epoch of the Sun’s mean motion.

below.
Solar Progress in Longilude between Eclipses
Eelipses Hipparchus | Plolemy A
{1} and (2) 172;52,30° {  173;28° | +0535,30°
{2) and (3) 175; 7,30 174344 | +0536,30
{4) and (5) 180;20 180;11 | —-0; &
{5) and (6) 16%8;33 168;55 | +0;22

For extended discussion of these data and Hipparchus’ solar medel, see Jones 1991,

2% Hipparchus’ determination of the Sun’s mean longitude at any equinox must
have depended on his value for the Sun’s inequality at that time. Thus, the
observed discrepancies cannot be viewed as solely due to an error in Hipparchus’
equation. Unfortunately, I can find no plausible scheme which would account for
the discrepancies which appear.
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HIPPARCHUS
Type Date Time® Era Computed Soalar AL
Nabonassar Longjitude® (Comp. — Obs.)

FE | —161 Sep 27 18" 5847 359¢ ¢ | 180;4147° +0;41,47°
FE —158 Sep 27 6 588 359 18 180;12,25 +0;12,25
FE =157 Sep 27 12 58% 360 0 180;12,37 +0;12,37
FF, —146 Sep 27 0 GO0 362 12 179;59,47 —0; 0,12
SE | —145 Mar 24 6 601 175 18 0; 1, 8 +0; 1, 3

. Sy L rz Ut Uy
FE | —142 Sep 26 )4 363 € —(:14,26

SE | —134 Mar 24 178 0; 3,16 +0; 3,16
SE | —127 Mar 23 180 0; 4,37 +0; 4,37

+132 Sep 25 14 879¥ 664 2h | 180; 0,24°
+139 Sep 26 7 886 67 19 | 179;50,18
+140 Mar 22 886 246 1 0; 0,39
+140 Jun 25 886 340 14 90; 2,42

Table 2.8. Spring and Fall Equinoxes Observed by Hipparchus
and Ptolemy. Comparison with Ptoleiny’s Tables

In view of his need for an adequate solar table for other observations,
and the difficulties he must have encountered in whatever observations he
mnade on the equatorial ring, it is not surprising that Ptolemy did not
attempt to improve on Hipparchus' solar model but only on the tables
derived from it. Indeed, considering the irregularities he must have found
with his equatorial ring, it is perhaps more surprising that he did not accept
the false conclusion of a second inequality in the Sun’s motion. Instcad, his
remarks in Alm. iii 1 [Toomer, 138] suggest, that he excluded this possibility
because a second solar inequality would destroy the agreement of his lunar
moedel at syzygy with the observed times of eclipses,

‘The errors of Ptolemy’s solar model

Since Ptolemy’s solar model forms the basis—directly or indirectly—for
the reduction of all his longitude-observations of other celestial hodies,
it is convenient to determine here the corrections to Ptolemy’s tabular
longitudes which bring them into agreement with modern theory. This
error has two components. One is a secular error in Ptolemy’s mean solar
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longitude resulting from the error in his mean motion and epoch. The
other is a nearly periodic error due to the inaceuracy of his eccentricity
and apogee, which changes slowly with the motion of the Sun’s apsidal
line. In the following discussion, symbols with primes (') dencte Ptolemy’s
elements while symbols without primes denote modern elements.

The error in Plolemy’s mean solar longitude. The mean longitude of the
Sun according to Ptolemy may be expressed as

L' = 330:45° + (1007 + 0;19,42,8°)T5, (13)

where T} is the number of Julian centuries from Ptolemy’s epoch, — 746 Feb
26, noon [Alm. iii 7! Toomer, 183]. From the elements derived in appendix
1, we find for the the same epoch,

L = 328;13,58° + (100" + 0;44,20.6°)T; + 0;0,2.1°T32 (14)

Thus, the error in Ptolerny’s mean longitude of the Sun is

L— L' =—-2:31.0° + 0;24.63°Ty + 0;0,2.1°Ty2 {15)

If T is the number of Julian centuries from 0 AD, January 0, the error is®°

L—I'=+0;30.7° + 0;25.15°T + 0;6,2.1°T2 (16}

0 From Schoch’s elements [P V. Neugebanuer 1929, i 35], the error in Ptolemy’s
mean longitude for 0.0 AD, is

Lschoch — L' = + 0;34.1° + 0;24.80°T + 0;0,2.6°T2

From Newcomb's elements [1898, 1}, which do not include the Sun's secular ac-
celeration, the error is

INewcomb — L' = + 0;25.5° 4 0;25.74°T + 0;0,1.1°T2

The laiter error is nearly identical with the error found by Ideler [1R08, 107].
In F140 the errors in Ptolemy’s mean solar longitude according io Schoch and

Newcomb are:
Schoch  Newcomb

—140 —0;1° —:10°
+140 +1;9°  +0:58°
Thus, for any reasonable assumption about the magnitude of the Sun’s accelera-

tion, Ptolemy’s mean solar longitude is very nearly accurate in —140 and roughly
1% in error in his own time.
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Figure 2.5. Error in Ptolemy’s Mean Solar Longitude

This error is plotted in Figure 2.5. It is zero In —122, and +1;5° at
+137.5, the epoch of Ptolemy’s star catalogne. By 1500 the error is nearly
+7° (46;56°). For Schoch’s (Tuckerman's) elements the error is zero in
—138 and 1;8° at Ptolemy’s epoch.

The error in Ptolemy’s solar inequality. Figure 2.6 shows Ptolemy's solar
model. The Sun at S moves on a circle A'SP’ with uniform motion about
its center C which coincides with the center of the zodiac. The observer at
O sees the Sun at I' = L' + ¢, where ¢' is the angle O5C. (As shown
here, ¢’ is negative.) A" and P' denote the Sun’s apogee and perigee, @'
(= L'— A’) the Sun’s mean anomaly, and a’ (= L' — A’} its true anomaly. In
Ptolemy’s model the longitude of the apogee is 65;30° and the eccentricity,
e (= 00C), 15 0;2,30, where R=C5 = 1.
For uniform eccentric motion, the equation (¢') may be expressed as

(17)

AP R S G B
_e’sma'—!—ée' 51n2a’—§e' s1n3a’+...,
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P
Figure 2.6: Ptolemy’s Solar Maodel

where the powers of the cccentricitics are expressed in radians or their
equivalents in degrees [see appendix 3]. In undisturbed clliptic motion, the
corresponding equation s

1 5 11 .
g=a—a=—(2e— ~e¢*)sina + (—62 — —e'}sin2a
4 4 24 (18)

(Eca)sin 3a +
1 e

*1 For a development of this expression for the inequality in undisturbed elliptic
mation, see Brown 1896, 30 (.
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Since for our purposes accuracy of 0;1° suffices, for the Sun we may ignore
pawers of e and €' greater than 2. Thus, (17) and (18) become

% sin 2&' (19}

1
i t =i LY | ¥
§ =a —a = —¢ s5mna +§e

g=a—a=—2esind + Zez gin 2a. (20)

To compare (19) and (20) we must first determine the relationship be-
tween the Sun’s actual mean anomaly (a@) and Ptolemy’s mean anomaly
(@'). From Newcomb's Tables of the Sun [1898, 1], we find for the year
0 AD

A = 68;43,12° + 1,42.7°T, (21)

and, thus, that the error in Ptolemy’s apogee {A' = 65;30°) ig32
A—A"=313.2° 4+ 1;42.1°T (epoch, 0 AD). (22)

Finally, from (22) and (16) above, we obtain for the error in Ptolemy’s
mean anomaly

a—a = —242.5° — 1;17.0°T (epoch, 0 AD). (23)

From (19), (20), and (23), we can now determine the error in Ptolemy’s
solar equation (g') as a function of his mean solar anomaly (@'). Letting
@ — a' = B(T), we obtain

P2
g—¢ =—2esin(@ + B) + ¢'sind + gez sin(2a’ + 2B) - % sin 2a’,
5 e'?
=—(2ecos B —¢'}sina’ + (ae2 cos 2B — 3 }ysin 2a' {24)

5
—2esin Beosa' + :1‘82 sin2B cos 2a".

32 For the years £ 140, the errors in Ptolemy’s apogee are:

+140 A =71:5 A — A’ = +4535°
—140 A =66;19° 4 — 4 = +0:49°

Ptolemy’s apogee s correct for —188,

Note that the error in Ptolemy’s mean anomaly differs from that in his apogee
due to the error in his mean longitude. The date at which Ptolemy’s mean anom-
aly is accurate, which is the date at which the errors in his inequality are due
solely Lo the error in his eccentricily, is —210 [¢f. Aaboe and Price 1964, 14].
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Introducing numerical values for e, €', and B(T),** we find for the time

of Ptoleiny’s own observations (ca. +135)

g—g =40;23.4°sina’ — 0;1.2°sin 2&@" + 0;9.2° cos @ .... (25)
1520 o S S BN L S N HL A S S S B B S B

1 - =600 1
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s 40 48 ﬂ\&\ e +135 2
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Figure 2.7. Error in Ptolemy's Solar Equation

180 210 240 270 300 330 360

This error 15 shown in Figure 2.7. Its amplitude 1s roughly +0;25° (at
a' = T0° and 245°and it is zero at @' = 160° and 337° (ff = 225° and
32%). Such an error could produce discrepancies of nearly an hour between
computed and observed times of lunar eclipses. This error i1s substantially

33 For +135, these are:

2e = 42; 0°  acc. = 1;59,58° [Newcomb 1898, 1]

el = +0; 1.3

el = +2;23 ace, = 22245 for ¢ = 0; 2,29,30F
ace. = 223,13 for ¢ =0; 2,30

€= 4+0; 5,57

B = —47.
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offset at syzygy, however, by the Moon’s annual equation,®! so that the
apparent error in Ptolemy's computed times of eclipses due to his solar
modcl would be considerably smaller.

Since B changes with time, the cocfficient of each term in (25) also
changes. Table 2.9 shows the cocfficients of cach term for different dates.
The amplitude of the error remains nearly constant throughout the period
for which Ptolemy reports observations {—720 to +141). The phase of the
error, however, shifts about 50° in the interval from —600 to 4135, and
at the time of Hipparchus the error is very nearly in phase with the Moon's
anmual equation.

Date sin @’ sin 2a’ cosa' cos 2a’
—600 +0;22.5° —0; 1.3° —0;11.5° +0; 0.2°
210 | 40230 | —0; 1.2 0: 0 0; 0
—140 +0;23.0 -0 1.2 +0; 1.1 o0
+135 | 40234 | —0,13 | 40,93 | -0, 02
+1500 | 40300 | —0; 1.5 | 40396 | —0: 1.1

Table 2.9. Cocfficients of the Terms in the Frror in Ptolemy's
Solar Equation

For later dates, and particularly in the medieval period, the error is sig-
nificantly out of phase with the Moon’s anmial equation and is considerably
larger than at Ptolemy’s time. Thus, the error i the times of eclipses com-
puted from Ptolemy’s tables in 41000 could amount to nearly 112" from
the error in his solar inequality alone,38

In summary, for the period of Ptolemy’s own observations (+125 to
+140) the correction to his tabular longitudes of the Sun is (£0;3%)

L=L' =415 + (g = ¢')+13s, (26)
while for the time of Hipparchus (ca. —140), the error is

L—L'=-04° + (g — ¢')-140- (27)

Either directly or indirectly, Ptolemy determines the longitudes of all
other celestial bodies with reference to the Sun. Consequently, we would

34 The correction for the Moon’s annual equation al syzygy is +0;14,1%sin a.
Thus, it will be very nearly in phase with the error in Ptolemy’s solar inequality,
when B(T) = 0 in roughly —210.

35 (Cf. al-BattanT [Nallino 1903-1907, i 56-57).
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expect to find at least the secular component of the error in his solar model
in all of his observed longitudes and, thus, in all of his other models. We
should alse expect his star positions to reflect this same crror, since he tells
us [Alm. vii 2: Toomer, 328] that he found the longitudes of the bright
stars along the ecliptic by measurements with reference to the Moon and,
hence, indirectly to the Sun.



Lunar Observations in the Almagest:

Errors in the Observations and Derived Data

The Almagest reports thirty-seven dated observations of the Moon in de-
tail. Twenty-six of themn (19 eclipses and 7 occultations) involve only de-
termining the time at which some phase of an event occurred (together
with the magnitude in the case of partial eclipses). All the others, ex-
cept for Ptolemy’s determination [Alm. v 13] of the Moon’s parallax,!
entall measuring the distance from the Moon to another body at a specific
time. Ptolemy [Alm. v 12: Toomer 247] also desctibes his determination of
the Moon's greatest northern latitude without mentioning the date of the
observations,? and he refers [Alm. iii 1: Toomer, 135] to two lunar eclipses

! The observation was made on +135 Nov 1. Ptolemy finds the Moon’s parallax
on the meridian at Alexandria to be 1;7° and the Moon's distance from ihe
center of the Farth to be 39;45 Earth radii. Since the Moon was actually near
its mean distance, Ptolemy should have found its parallax to be 22 0;45% so that
his cbservation was in error by roughly 0:20° It iz interesting that from this
observation Ptolemy deduces a mean distanece of the Moon at syzygy, 59 Earth
radii, which agrees very well with the modern value, 60.3 Earth radii.

2 A dale for this observation can be inferred from Ptolemy’s statcment [Alm.
v 12] that the Moon was simultaneously near the summer salstice {90°) and also
near the northern limit of its orbit. To satisfy these conditions, the Moon's
ascending node must have been near Aries 0%

For Ptolemy's time the condition is satisfied in +126 and in +145, the best date
for the observation being 4126 Aug 3. On this day the Moon culminated about 2
hours before noon with a longitude of 88% while the position of its ascending node
was Arties 0;1° The observation could have been made a month or so on either
side of this date, bul the longitude of the Moon at culmination would have been

48
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observed by Hipparchus without reporting any details of the observations
except the longitudes of Spica which Hipparchus derived from them.?

I have limited the following discussion tc the dated observations of lunar
eclipses, occultations, and elongations, since these observations are com-
pletely described, and since Piolemy’s determination of the Moon’s paral-
lax is a unique observation which does not fit into any of the other groups. I
consider first the eclipses and occultations, which several astronomers have
already compared with modern theory and which enable us to evaluate the
accuracy of two groups of ancient time-determinations. Then, I discuss
the errors in the observations of elangations which involve measurements
of both time and arc. These errors have not been investigated previously.

In comparing the lunar observations with modern computations, my ob-
jective is to determine, first, the accuracy of the observations which Ptolemy
had available to him and, then, the errors in the data Ptalemy uses to de-
termine or demonstrate specific features of his models. The two problems
are not quite identical, partly because Ptolemy introduces additional errors
in reducing the observations, and partly because the reports themselves are
often sufficiently ambiguous to allow several interpretations; indeed, a few
of them contain inconsistencies which ralse considerable doubt as to their
praper interpretation. In general, these difficulties arise only in connection
with the observations made by Ptolemy's predecessors and, n particular,
the eclipses and occultations where {a) either the time of a specific phase
may be uncertain, or (b) the phase asscciated with a stated time may
be uncertain.

The first type of uncertainty can arise either from the vagueness of the
time-reference (e.g., “after rising’ in the case of the eclipse of =719 Sep
1 [Alm. iv 6: Toomer, 192]) or from an over-determined and inconsistent
time-designation (e.g., the occultation of Spica observed by Timocharis in
—282 Nov 9 [Alm. vii 3: Toomer, 336], where the designation “91/2 hours
[after Sunset]” and *just as the Moon was rising’ differ by more than an
hour). There is also some ambiguity in the meaning of the phrases dpas
dpyopévns and @pag dyovons, which are frequently applied to times des-
ignated in seasonal hours. The question is whether such times should be
understood as ‘near the beginning’ or ‘towards the end’ of the given hour,
or ‘at’ the beginning or end of the hour. Fotheringham [1915a, 280] has
discussed the alternatives and interprets the adjectives, dpxopévns and in
Yolons, as referring to the first and last thirds of the stated hour. He then

less satisfactory. This is the earlicsi dale of an obscrvation made by Ptolemy
[cf. Alm. iv 9: Foomer, 206n54].

? See Rome 1937-1938, 6; 1931-1943, iii 828, for discussion of lhese eclipses.
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uses the midpoints of these intervals as the observed time-data. Ptolemy,
on the other hand, understands such designations to mean the beginning
or end of the hour, and this interpretation was followed by Neweomb [1878,
33].

Another source of uncertainty in the reported times is the occasional am-
bignity of the units in which time-intervals are given and of the times of day
to which these intervals are referred. Three systems for measuring time are
used in describing the observations in the Almagest. The most convenient
of these, and the one Ptolemy always uses to deseribe the times of his own
observations, states the number of equinoctial hours (1* = 14 day) be-
tween noon or midnight and the time of the observation. Times given in this
system thus require no seasonal correction except for the equation of time.

A variation of this system (historically its predecessor) is encountered in
Babylonian astronomical Diaries.? Here the time of an event (e.g., Moon-
rise or the beginning of an eclipse) is given in terms of an interval measured
in cquinoctial units with respect to Sunset or Sunrise. The Babylonian
units of time were the US, equal to /s days, or 4 minutes, and the DANNA
(kAS.BU) or béru, equal to 30 US or 2 equinoctial hours.® Times given in
this system thus require a seasonal correction, equal to the variation in the
time from Sunrise or Sunsct to noon (or midnight}, as well as the equation
of time, in order to reduce them to a uniform system. One observation in
the Almagest [iv 91 Toomer, 208] which explicitly gives the time in this
system is the Babylonian eclipse of —501 Nov 19/20, which ‘took place
when 61/ equinoctial hours of the night had passed’. Here the umnit of mea-
surement is Ptolemy’s hour, /34 of a day, so that the original Babylonian
rcport has been partially modified at least.

The third system of time-measurement, local civil time, was used for
reporting nearly all the pre-Ptolemaic observations. In this system the
unit of time is the seasonal hour (s.h.}, defined as 112 of the interval from
Sunrise to Sunset {or Sunset to Sunrise) of the day on which an event
occurs.® In this system, the time of an event is the intervat between the

1 Cf. Sachs 1948, 285, for a definition and description of the Babylonian as-
tronomical Diaries. Kugler [ef., e.g., 1907-1924, i 76-77] calls these Becbach-
tungstafeln. Diaries from =651 to +165 have been published in Sachs and Hunger
1988-19849.

5 For discussions of these units, cf. Kugler 19071924, 1 25, 272; il 58-60, 6G8-71:
0. Neugebauer 1955, 1 39.

& Fotheringham [1932a, 338] and van der Waerden [1951, 20] have discussed evi-
dence of Babylanian computations which seem to use a ‘quarter-watch? equivalent
to 1*™, as a unit of time. Both conclude that seasonal hours were used in Baby-
lonian astronomy. This is a hazardous inference from very uncertain evidence.
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event and Sunset or Sunrise (expressed in seasonal hours). Times in this
systern, thercfore, require & twofold correction in addition to the equation
of time in order to reduce them to uniform time, onc in the variation in
the length of the seasonal hour and the other for the time of Sunset or
Sunrise. Ptolemy understands the times of all observations made by others
than himself as given in this system, except for the eclipse of +125: Apr
5" and the Babylonian eclipses of —522 Jul 16 and —501 Nov 19/20. He
generally describes such times in ordinal hours and fractions thereof, and
he always explicitly designates these units as seasonal hours in discussing
the reductions of these observations.

It is curions that most of the times of the Babylonian eclipses were re-
duced to this cutnbersome system. The reduction serves no astronomical
purpose, and it would have been far easier to convert the units given in the
Babylomian reports ot records directly into equinoctial hours. Since not
all of the eclipse-times were reduced to this system, we may ask whether
Ptolemy was mistaken in assuming that the times of some of the obser-
vations were given in scasonal hours. For this reason I have occasionally
included caleulations of the crrors of the observed times, based on the
assumption that the times given refer to equinoctial hours after Sunset,
although Ptolemy understands seasonal hours.

Still another uncertainty, which affects several eclipse-observations, arises
from Ptolemy's occasional assumption that the report he is citing refers fo
the rnidpoiﬁt of an eclipse when it says that an eclipse ‘took place’ at the
given time. Instances of this include four of the Babylonian eclipses (—719
Mar 8, —522 Jul 16, —501 Nov 19/20, and —490 Apr 25} and the eclipse
of +125 Apr 5. Nevill [1908, 2] and, following him, Cowell [906, 523] and
Fotheringham [{1920a, 578-579] have interpreted all times but that of —719
Mar 8 as specifying the beginning of the eclipse. Since there is at least
one case, —381 Dec 12, in which Ptolemy takes the same vague description
to refer to the beginning of the eclipse, and since the Babylonian diarics
generally state the time of the beginning, but not the midpoint, of eclipses,
I shall consider the possibility that Ptolemy may have been mistaken about
the phase in these instances.

T The earliest observalion in the Almagest which Ptolemy explicitly claims to
have made himself is his observation of an opposition of Saturn on +127 Mar 26.
Since his observation of the Moon’s extreme latitude probably antedates this [see
49n3 ubove], and since the time reported for this eclipse is given in equinoctial
hours relative to midnight, it is quite possible that he himself observed the eclipse
of +125 Apr 5 [Alm. iv 9: Toomer, 206]. He says only, however, that the eclipse
was obscrved in Alexandria.
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Finally, I should note that throughout this discussion the term ‘error’
(alternatively, A) denotes simply the difference between a datum calculated
from modern theory and that reported by Ptolemy, always in the sense of
a corrcction to Ptolemy’s datum. Thus, the term embraces all sources of
error in a given datum such as errors of measurement, recording, reduction,
transmission, interpretation, and so on, in addition to any error in the
modern theory on which the calculation is based.

ECLIPSE-OBSERVATIONS

In this section I consider Ptolemy's reported eclipse-observations individu-
ally in chroneclogical order. Table 3.1 contains the following computed data
used to determine the errors of these observations:

col.

col.

col.

col.

col.

col.

col.

1
2

Julian civil date when the midpoint of the eclipse occurred.

Lacal apparent time {midnight epoch) of eclipse-midpoint for:
Babylon (2;58%) E: 32;30° N
Alexandria (2;Uh) E: 31;12° N
Rhodes (1;53") E: 36;24° N.
For eclipses nos. 1 through 15, the times arc taken from P. V.
Neugebauer [1934, 13]; the times of eclipses nos. 16 through
19 are from Newcomb [1878, 42].

Half-duration of the eclipse, for eclipses 1 through 15 from
P. V. Neugebauer [1934]; for eclipses 16 through 19 from
Cowell [1906, 526]. Cowell’s computed durations are nearly
identical with Newcomb’s when the latter are corrected for
the error in Hansen's argument of latitude.

Correction to the mean tabular elongation at the time given
in col. 2 which is needed to reduce the tabular elongation
to my elements, For eclipses nos. 1-15 and 16-19, these are
from appendix 2, Table A2.1 and Table A2.3, respectively.

Velocity of the Moon’s elongation at the time of the eclipse
in seconds of arc per minute of time, as computed from New-

comb [1878, 41].

Correction to the tabular time in col. 2 obtained by divid-
ing col. 4 by col. 5. {The sign of the correction is positive,
since the negative corrcction to the clongation at tabular
eclipse-midpoint means the Moon must still travel AD to
reach eclipse-midpoint. )

Cotrected loeal apparent time (midnight epoch) of eclipse-
midpoint {col. 2 + col. 6).



Ne 1 2 | 3 4 5 6 7 8 9 10 11 12
Date and Place (M) Dur. | ap A2 AT M) T(B) TE) | =L, YN |Mag
1 | =720 Mar 19 Babylon | 21.3" | 1.9% | —555" 20.1"/m 10;19" | 21;49*  19;55" ' 351.5° 6; g |10.24
2 | —719 Mar 8 Hahylon 23.6 0.7 | =555 27.1 +0:20 1 23;56  23;14 . 340.7  6;20 1.5
3| —719Sep1 Babylon | 20.0 | 1.2 | =355 354 4013 - 2015 19; 3 159.8 530 | 6.1
4 | —620 Scp 22 Babylon 525 | 0.85 | =510 27.2 +0;18 © 534 4;43 24.4 535 21
5 | =522 Jul 16 Babylon 2363 | 1.35 | —465 27.6 +0:17 : 23;38 22;35 106.6 4;58 6.1
6 | —501 Nov 20 Babylon 0.1 0.8 | —460 27.0 +0;17 0;23 23;35 2319 6;51 21
7 | —490 Apr 25 Babylon 2275 | 065 | —455 314 +0;14 | 22;56 22:20 28,5 532 1.7
8 | —3%2 Dec 23 Babylon 0.0 09 | —410 348 +0;12 8:12 718 2670 7,6 3.0
G | —381 Jun 18 Babylon 21.15 | 1.35| —410 27.5 +0:15 | 21,24 20, 3 2245™ | 805 4557 2.9
10 | —381 Dec 12 Babylon 23.05 | 1.75 | —410 3b.5 40,12 | 23:15  21;30 2562 T; 5 |18.2
11 | —200 Sep 22 Alexandria | 18.9 1.5 | =340 28.7 +0;12 19:12 17,42 20,42 | 176.0 5:56 8.5
12 | —199 Mar 20 Alexandria | (.3 1.8 | =340 320 +0;11 ;59 2311 3554 6; 5 |16.0
13 | —199 Sep 12 Alexandria 235 1.85 | —340 32.3 +0:11 2;32 0;41 1650 545 |19.3
14 | —173 May 1 Alexandria 18 1.3 | -330 354 +0; 9 1;57 0;39 3:15 35.7 5;26 7.4
15 | —140 Jan 27 Rhodes 21.65 | 0.85 | =320 35.6 +0; 9 | 21,48  20;57 304.5 6;49 2.8
16 | +125 Apr5 Alexandria | 20.75 | 0.77 | =260 32.2 +0; 8 | 20;53 20, 7 14.3 552 1.8
17 | +133 May 8 Alexandria | 22,93 | 1.77 | —257 28.2 +0; 9 | 23: 5 21519 443 12.9
18 | +134 Oct 20 Alexandria | 22.83 | 1.57 | =256 26.0 40;9 | 23; 5 21;31 206.3 10.1
19 | +136 Mar 6 Alexandria | 3.37 | 1.35 | —254 34.6 +0; 7 329 2; 8 3446 | 5.5

Table 3.1, Data for Comparing Eclipses
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ecol. 8 Corrected local apparent time of the beginning of the eclipse,
Le., eol. T — col. 3.

col. 9 Corrected local apparent time of the end of the eclipse, for
those for which Ptolemy gives the time of the end, i.e., col. T+
col. 3.

col. 10 Approximate longitude of the Sun from Newcomb [1878, 41].

col. 11 Half the length of the night in equinoctial hours, computed
accurately from Ptolemy, Al 11 8 for the latitudes assumed
above in eol. 2. For the apparent half-length of the night,
subtract 2™ from these values to correct for refraction.®

col. 12 Magnitude of the eclipses: nos. 1 through 15 are from P. V,
Neugebauer [1934]; nos. 16, 18, 19 are from Fotheringham
[1909¢, 668]; and no. 17 is from Oppolzer [1962].

The precision of the times from P. V. Neugebauver is 20;3% excluding
the uncertainty of the secular aceelerations. If we assume an uncertainty
of £0.3"T? in the secular acceleration of the mean elongation used in the
comparisou, the corresponding errors in the eclipse-times would be & F0;6%
at —600 and 420;-'-1h at —100. Further, the uncertainty in the argument of
latitude can increase the error in the time of an initial or teriminal phase
by £0;2% Finally, the crror in the computed time of Sunrise or Sunset is
estimated to be £0;2" The probable error of a computed time, therefore,
will be roughly +0;6.5"

Eclipse 1. =720 Mar 19 Alm. iv 6: Toomer, 191

1 Mardokempados: 29/30 Thoth?

The eclipse began, [the report] says, well over an hour after Moon-
rise, and was total.

8 Fotheringham [1915a, 381] and Schoch [1926, 32] understand ‘Sunrise’ and
‘Sunset’ to mean the appearance or disappearance of the Sun’s upper rim, in
which case the half-length of the night should be further reduced by 0;1" I cannot
determine on what basis they make this assumption, and I have assumed rising
or setting to refer to the center of the body in question.

¥ To be read as ‘year 1 of the reign of Mardokempados, on the night between
Thoth 29 and Thath 31", Ptolemy uses a continuous Egyptian calendar, Lhe epoch
of which is Thoth 1, Nabonassar t (= —746 Feb 26, JDN 1488638). The number
of days between an cvent and this cpoch can be obtained by first finding the
number of intervening Egyptian years (each of 365 days) from Ptolemy’s List of
Relgns [Ginzel 1906-1914, 1 139] and then adding the number of days between



Lunar Observations in the Almagest

Lunar Eclipse-Data Computed® Ptolemy A
Sunset (Babylon) 17;53h 18; ob § —0; 7"
Moonrise (Bab‘ylon)b 1740
Beginning (Bahylon) 19;55 19:30 +0;25
Midpoint atl Babylon 21;49 21;30 +0;19

Alexandria 20551 20:40 +0;11
Magnitude 18.29 (21.6)* (—3.4}d

35

* All computed times are given in the local appar-
ent time (midnight epoch) of the place indicated. The
times of risings and settings refer to the center of the
hady indicated and are corrected for refraction.

b Newcomb, following Zech [1851, 13], puts Moonrise
at 17;53h mean time. This is consistent with 17;401‘
local apparent time when refraction is taken into ac-
count,

Eclipse No. 1: =720 Mar 19

Ptolemy assumes the night at Babylon was 12" long and that the eclipse
began 112" after Sunset 1;45" after Moonrise. He also assumes the eclipse
was central and computes the duration as 4" 10

The time given for this eclipse has caused substantial diffculties for mod-
ern investigators. Nevertheless, there is general agreement that Ptolemy's

Thoth 1 and the date of the event. The order of the months 1s:

I Thoth VII Phamenoth
II Phaophi V111 Pharmuthi
IIT Athyr IX Pachon
IV Choiak X Payni
V. Tybi XI Epiphi
VI Mechir XII Mesore.

Each has 30 days and Mesore is followed by 5 epagemenal days. In computing the
number of days since Thoth 1, it must be remembered that Thoth 1 counts as day
zero. Furthermore although Ptolemy’s calendar assumes a midnight epach, he
uses noon on Thoth 1, Nabonassar 1 as the epoch of his mean motion tables. This
has the advantage that all observations made at night can be reduced on a uniform
basis without considering whether they were mude before or alter midnight.

U Indeed, according to Manitius [1912-1913, i 433n28], the duration computed

from P’tolemy’s lables, assuming a central eclipse, is 3;59,*15'3 See also Toomer,
191n30.
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estimate of the elapsed time since Moonrise, 11/; hours, is the maximum
time consistent with the description well over one hour, although Ptolemy
applies this interval to Sunset rather than Moonrise. Newcomb [1878, 35-
36] assumes that the report indicates an interval of between 11/s and 11/
hours after Moonrise, and finds the difference between the observed and
computed time to be:

Lunar Datum Computed Observed A

Time since Moonrise 2;15%  1;22h | 40;53"

On the other hand, if we follow Ptolemy’s interpretation applied to accurate
Sunrise, the error (A) is +0;32%

Kugler [1907-1924, ii 68] has suggested that the time accepted by Ptolemy
can be explained by assuming that the original report said only that the
eclipse occurred in the first watch and that its total phase ended before the
end of the first watch; this would require the eclipse to have begun less
than 1;40" after Sunset. Although Kugler correctly remarks that the unit,
1% = 1/, day, is not a Babylonian unit [see 50n6, above], his explanation
still does not account for the description Ptolemy quotes. An alternative
explanation is that whoever transmitted this report mistakenly translated
1 KAS.BU (DANNA = double hour) into ‘well over one hour’. If so, the time,
1 double hour after Moonrise, would agree very closely with the computed
time. If Ptolemy’s report more or less accurately represents the Babylon
account, however, the error is nearly an hour.

Eclipse 2. —719 Mar 8 Alm. iv 6: Toomer 192

2 Mardokempados: 18/19 Thoth

The [maximum]| obscuration, [the report] says, was 3 digits from the
south exactly at midnight.

Kugler [1907-1924, ii 69] assumes that the original report may have indi-
cated that the greatest phase occurred when the Moon was on the meridian,
and notes examples from other texts to demonstrate this possibility. Since
the eclipse was of short duration (1;24"), determining the time by reference
to the meridian would make the observation’s probable error much less than
we might otherwise expect from the somewhat vague description.!! In any

11 Newcomb [1878, 36] assumes a probable error of £40™ equal to half the
duration of the eclipse. As a result, he gave the eclipse very little weight in his
subsequent analysis.
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case, the stated time agrees very well with the computed tirne if we assume
that the ohserved time referred to mid-eclipse.

Lunar Eclipse-Dala Computed Ptolemy A

Midpoini at Babylon 23;56"  24; Oh | —0; 4b
Alexandria 22,58 23;10 | —0;12
Magnitude 159 3.04 | —1.59

Eelipse No. 2: =719 Mar

Eclipse 3. —719 Sep 1 Alm. iv 6; Toomer, 192

2 Mardokempados: 15/16 Phamenoth

The eclipse began, [the report] says, after Moonrise, and the [maxi-
mum| obscuration was more than half from the north.

Ptolemy concludes that the eclipse began at least half but less than onc
(equinoctial) hour after Moonrise, implying that a smaller or greater in-
terval would have been specifically mentioned. He then adopts half an
(equinoctial) hour after Sunset (= 0;40" after Moonrise) as his beginning
time. Newcomb {1878, 36] assumes 0;25" after Moonrisc as most probable.
Ptolemy computes the duration to be 3 hours, equivalent to an assumed
magnitude of 8¢ by his tables. Ptolemy’s assumption that the eclipse began
half an hour after Sunset is in excellent agreeinent with the computed time.

Lunar Eclipse-Data. | Computed Ptolemy A

Moonrise (Babylon) 18,241

Sunset {Babylon) 18:23 18;30

Beginning (Babylon) 19; 3 19; 0 { +0; 3t

Time since Moonrise 0,39 0;30%] +0; 9°
Sunsct (.31 0:30 +0: 1

Midpoint at Babylon 20:15 20030 | —0;15
Alexandria 1917 19,40 | —0:25

Magpnitude .14 (8.09} | [-1.84]

* With Newcomb's estimate of 0;25}: the error is +l];14}f

Eclipse No. 3: =719 Sep 1
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Eclipse 4. —620 Apr 22 Alm. v 14; Toomer, 253

5 Nabopolassar: 27/28 Athyr

at the end of the cleventh hour in Babylon, the Moon began to be
eclipsed; the maximutn obscuration was onc quarter of its diameter
from the south.

This report is notably more precise than those preceding it. Ptolemy takes
5*R after midnight as the time of beginning and 6" after midnight {i.e.,
5;50") as the time of mid-eclipse [cf. Manitius 1912-1913, 307na; Toomer,
253n56).

Lunar Eclipse-Data Computed Ptolemy A
Sunset (Babylon) 18:27 1810k
Beginning at Babylon 4:43 (4;522“ (—0; Hh
550 yfter midnight 4;38 +0; 5
;501 after midnight 4;27° | +0;14
Midpoint at Babylon 5;34 5;504 —0;16
Alexandria 438 9; 0 —0;24
Magnitude 2.14 3.0¢ —0.9¢

? As Ptolemy’s reduction implies. E'Ccn'nputed.

® According to Fotheringham’s assum ption.

? Given 6% accurately computed, mid-eclipse (Babylon)

is al 5;33h and the error is +U;1h.

Eclipse No. 4: —620 Apr 22

Eclipse 5. —522 Jul 16 Aim. v 14: Toomer, 253

7 Cambyses: 17/18 Phamenoth

one hour before midnight in Babylon, the Moon was eclipsed from
the north half of its diameter.

This is the only eclipse Ptolemy reports which is also mentioned in an
extant cuneiform text [Strm. Kambys. 400 rev.]. This text, which was
published by Kugler [1907-1924, i 71|, differs from the general form of
Babylonian astronomical Diaries [cf. Sachs 1948, 271 ff.] and, as Kugler
remarks [19G0, 65}, seems to contain both computed and observed data
concerning the Moon and planets. Kugler translates the description of the
eclipse as follows:
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Year 7, month IV, night of the 14th, 124 double hours after the
beginning of the night a lunar eclipse; the whole course is visible;
it was eclipsed from the north more than one half.

According to Professor A. Sachs (private communication), a correct reading
of Kugler’s transcription is:

Year 7, month IV, night of the 14th, 12/3 double hours in the night
a ‘total’ lunar eclipse took place [with only| a little remaining [un-
eclipsed]. The north wind blew.

Lunar Eclipse-Data Computed Ptolemy Babylonian A

Sunset {Babylon) 19; 4"

Beginning at Babylen 22:35 22;24'" +0;11h
1" before midnight 23; ot —(:25
150 before miduight 23;11 —0;36

Midpoint at Babylon 23;56
1% hefore midnight, 23, 0 +();66
151 before midnight 2311 +0;45

Midpoint at Alexandria 2258 22;10 +0;48

Magnitude 6.14 6.0¢ (=11.09) | +0.14

Edipse No. 5: =522 Jul 16

Ptolemy assumes that the time which he quotes refers to mid-eclipse,
and n subsequent calculations he takes ‘hour’ to mean an equinoctial hour.,
Fotheringham [1932a, 338] and van der Waerden [1951, 23] draw attention
to the discrepancy between the time stated by Ptolemy and that given
in the Babylonian text, and both offer the explanation that the time was
converted to seasonal hours in Babylon in accordance with a crude scheme
for the length of daylight {or night} based on the ratio 2:1 for the lengths of
the longest and shortest day. By this explanation the time, the unit of time,
and the phase described by Ptolemy are all incorrect. However, the dis-
crepancy between the observed magnitude in the Babylonian text and that
given by Ptolemy (which agrces very well with the comnputed magnitude)
makes it difficult to draw any secure conclusions from this text alone,

The phase assumed by Ptolemy and the magnitude reported in the Bahy-
lonian text are clearly incorrect, while the Babylonian and computed times
for the beginning of the eclipse are in good agreement. Such close agree-

ment may well be fortuitous, since the same text describes another eclipse
(—521 Jan 10) as follows (translated by A. Sachs):
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Month X, night of the 14th, 21/; double hours of the night remaining
to dawn, a total lunar eclipse took place. Duriug it the south and
the north wind blew.

From P. V. Neugebauer [1934] we find, with the corrections from appendix
2 (below):

Lunar Eclipse-Data | Computed Babylonian A

Sunrise {(Babylon) 7; 1
Beginning {Babylon) 3 2 2; 1b +1; 1t
Magnitude 22,14 Total

All in all the Babylonian text raises more problems than it solves. We
may conclude only that Ptolemy's description of the magnitude and the
Babylonian time of beginning agree with modern theory, and that the time
Ptolemy uses in his computation is badly in error.

Eclipse 6. —801 Nov 19/20 Alm. iv 9: Toomer, 208

20 Darius I; 28/29 Epipki

The eclipse, which Hipparchus also used, occurred... when 614
equinoctial hours of the night had passed. At this [time] the Moon
was obscured from the south one quarter of its diameter.

As in eclipse no. 5, Ptolemy assumes that the time refers to mid-eclipse.
Here too the errors strongly favor the assumption of a mistaken phase.

Lunar Eclipse-Data Computed Ptolemy A
Sunset (Babylon) 17;11" (17180 | (=0; ™)
Beginning (Babylon) 23;35 23;31° +0; 4
Midpoeint at Babylon 24;23  23;35% | +0;48°

Alexandria 23:25 22:45 -+0;40
Magnitude 2.14 3.04 —0.9d

* Assuming a mistake in Ptolemy's interpretation of
the phase, and 6;20" after actual.

* The time given is Ptolemy’s datum: G;QUh from ac-
tual sunset equals 23;31% The error is thus 0;52h

Eclipse No. 6: —501 Nov 19/20
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Eclipse 7. —490 Apr 25 Alm. iv 9: Toomer, 206

31 Darius I 3/4 Tybi

at the middle of the sixth hour. I is reported that at this eclipsc
the Moon was cbscured 2 digits from the south.

Ptolemy again assumes that mid-eclipse is meant, and takes half an hour
before midnight as his datum. The only assumption that would reconcile
this report with the computed times is the unlikely one that the times
refer to the end of the eclipse, in which case the error would be +0;8"
In deseribing this eclipse (but not cclipse nos. 5 or 6) Ptolemy seems to
indicate that the report explicitly gives the time of maximum phase, so we
should probably accept this phase.

Lunar Eclipse-Data Computed Ptolemy A
Sunset [Babylon) 18;30%
Length of seasonal hour 0,55
Beginning {Babylon) 22:20
Midpoint at Babylon 22:59 23:30h ¢ | —0;31k @
Alexandria | 22; 1 22340 —0:30"
Magnitude 1.74 2.04 —-0.3¢
“ 23;32h using 5;305']1' accurately computed; the error
is —0;33%
Eclipse No. 7: —490 Apr 25
Eelipse 8. —382 Dec 23 Alm. iv 11; Toomer, 211-212

Archonship of Phanostratos: Month of Poscidon

a small section of the disk of the Moon was eclipsed from the [north-
east], when half an hour of night was remaining. He (Hipparchus)
adds that it was still eclipsed when it set.

This is the first of three eclipses which Ptolemy notes that Hipparchus
selected from those ‘brought over from Babylon and [which] were observed
there. The fact that these eclipses are dated according to the Athenian
calendar [cf. Toomer, 211n63], and the further difficulty that this eclipse
would have been difficult if not impossible to observe in Babylon, led Op-
polzer [1881, 32| to assume that all three were ohserved in Athens and the
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times erroneously reduced to Babylon. Van der Waerden {1958] discusses
this question and shows that there is no cvidence to support Oppolzer’s
improbable assumption. Nevill [1906, 2] assumes that only the first was
obscrved in Athens, which makes cven less sense. It seems reasonable to
conclude that the eclipses were known to astronomers in Athens, which
suggests that at least these three eclipses were known in Greece before
Alexander the Great.

Ptolemy assumes that the eclipse began 514%" after midnight and that

the duration could have been no greater than 1;30"

? considered this eclipse ta be the most critical

Several early invest iga,torsl
of those reported by Ptolemy for determining the secular acceleration of
the Moon, sinee a substantially larger acceleration is required to make 1t at

all visible at Babylon.1?

Newcomb [1878,43], in discussing a correction to Hansen's acceleration
sirnilar to that deduced above, comments that

The question whether eclipse no. (8) was really seen is a very serious
one. ... the serious point is not simply that no. {8) gives a negative
result, for this might arise from accidental errors of observation, but
that a positive correction to the time will render the eclipse abso-
lutely invisible at Babylon. In fact, the account says that there was a
small eclipse (not simply that the eclipse was beginning) half an hour
before Sunrise. At this time however, the twilight would have been
so bright, and the altitude of the Moon so low, that the eclipse could
not be seen for a number of minutes after its commencement. . ..

We have therefore this dilemmma: either there is a mistake about
the eclipse of —382, December 23, having really been observed at
Babylon, or the seventeen good observations of phases cited by
Ptolemy arc systematically in error by nearly half an hour. I can-
not hesitate to accept the former as the most probable alternative,
The occurrence of the eclipse being expected, it is quite possible
that observers may have thought they saw the Moon eclipsed in
the Inereasing daylight when there was really no eclipse; or, under

2 E.g., Dunthorne [1749, 169] and Lalande [1757, 420]. The year of this cclipse
according Lo Dunthoroe is misprinted as 313 BC. Lalande fails to notice this error.
Bernoulli [1773, 183] and Lagrange {1773, 50] give the correct date. Dunthorne’s
error is merely a misprint, as may be seen {rom his computations.

13 P, V. Neugebauer [1934] also makes it questionable whether this eclipse was
visible at Babylon. For it to have begun half an hour before sunrise at Babylon

would require a correction to Schoch’s acceleration of the Moon's mean elongation
{1900) of ~ 43772
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the unfavorable circumstances they may have been deccived by a
dark region of the lunar disk being near the Moon’s limb. ... On the
whole, I think that this eclipse should be rejected, since, if we regard
it as a real observation, the results from the other cclipses must be
regarded as all wrong,

Lunar Eclipse-Data Computed Piolemy A
Sunrise {Babylon) 7; 48 ¢ 7122 | —D; 8h
Beginning {Babylon) 7;18 6;36 | +0;42
Beginning assuming

0;30%" from computed Sunrise 6;28 | +0;50
_[I';S[)]l from computed Sunrise 6,34 +0;44
Midpoint at Babylon 8;12 6:30 | +0:562
Alexandria 7;14 6:;30 +0:44

Magnitude 3.64 ~ 2.0d

* Apparenl Moonsel at 7;5‘&

Eclipse No. 8: —382 Dec 23

Newcomb’s argumnent fairly states the difficulties with this eclipse. It 1s
also possible that all three anomalous observations were in fact computa-
tions by the Babylonians, perhaps misinterpreted in transmission.'?

Eclipse 9. —381 Jul 8 Alm. iv 11: Toomer, 212

Archonship of Phanostratos: Month of Skiraphorion

[the Moon] was eclipsed from the [northeast] when the first hour was
well advanced. ... And since the duration of the whole eclipse was
reported as three hours, . ..

Ptolemy assumes that the eclipse began half a seasonal hour {0;24") after
Sunset. There is some uncertainty among traunslators as to the meaning
of wpochnivbuias. Newcomb [1878, 38], apparcntly relying upon Halma’s
translation [1813-1816, i 277}, ddja passée, gives ‘the first hour having

1 See Aaboe and Sachs [1969, 19-20] for examples of calculated times of so-
lar eclipses for —474 to —456, none of which were observed. These calculations
apparently antedate (and in any case do not reflect) the pracedures of the fully
developed Babylomian lunar theory, and are subject to errors of several hours.
Nevertheless, they suggest the opportunities for misinterpreiation of ‘cbserva-
tional® reports,
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passed) Toomer, Manitius [1912-1913, 248], and Ptolemy, however, take
the report to mean that the first hour had not passed, T shall assume
0;505" as the time indicated by the report. Since the actual time from
Sunrisc to beginning was a2 ;58 or 1;12%, better agreernent would result
from assuming either that the time should have been understood to mean
equinoctial hours or that Halma’s interpretation is correct.

Lunar Eclipse-Data Computed Ptolemy A
Sunset (Babylon) 19; 5% (19;12%) | (—0; )
Beginning (Babylon) 22: 3 19;36 +0,27
Beginning assuming

O;SOS‘h' from computed Sunset 19;46 +0;17
Duration 2:42 3; 0 —{;18
Midpoint {Alexandria) 20;26 20015 +0;11
Magnitude 5.9¢

Eclipse No. & —381 Jun 18

Eclipse 10. —381 Dec 12 Alm. iv 11; Toomer, 213

Archonship of Euandros, Month of Poseidon

[the Moon] was totally eclipsed, beginning from the [northeast], after
four hours had past.

[t should be noted that Piolemy here speaks of cardinal rather than ordinal
hours, which he generally uses when he mentions seasonal hours. Manitius
again translates the time as ‘late in the fourth hour’, as in the case of eclipse
no. 9, but {as noted by Toomer, 213n68), wapehnpvduldl seems to indicate
that 4 hours had gone by, Ptolemy understands 31/'25'h' after Sunset as
the time of beginning, which is consistent with his 4;12 equinoctial hours
(accurately, 4;7"). Thus, we are invited to assume that in this case the time
is given in equinoctial hours. Alternatively, if we assume that 450 were
meant, the time should be closer to 4;42P after Sunset. Ptolemy estimates
the duration to have been 4 hours.

The errors offer no basis for choosing between the alternative systems
for reckoning time. The extreme alternatives, i-c., ‘4 equinoctial hours
having passed’ (A = 0;33") and ‘the fourth seasonal hour having past’
(A = —0;9"), both give results within the plausible limits of error. At best,
all we can say of celipses nos. 9 and 10 is that the underlying observation
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(or computation) could have been quite accurate, but the ambiguity of the
reported time imparts an uncertainty of roughly £20™ to the report.

Lunpar Eclipse-Daila Computed Ptolemy Fay

Sunset {Babylon) 16;57"h 16;48h —0; gh
Beginning (Babylon) 21;30 21; 0 | +0:30
Beginning assuming

1; 0 after computed Sunset 20;57 § 4+0:33

3;303‘h' after computed Sunset (Ptolemy) 21; 4 -}-[];26

4; 051 after computed Sunset 21:;39 1 —0; 9
Duration 3;30 4; 0 | —0;30
Midpoint {Alexandria) 2217 22;10 | 4+0; T
Magnitude 18.2¢  Total

Eclipse No. 10: —381 Dec 12

Eclipse 11. —200Q Sep 22 Alm. iv 11: Toomer, 214

54 Callipic Period 1I: 16 Mesore

the Moon began to be obscured half an hour before it rose and its
full light was restored in the middle of the third hour.

Both the time reported for the observed phase {end) and the estimated {or
computed?) duration agree extremely well with the computation.

Lunar Felipse-Data Computed Ptolemy A
Sunset (Alexandria) 18; 6 18 0" (-+0; 6"
Moonrise 18; 2
Beginning (Alexandria) 17;42 17,307 | +0;12

from computed Moonrise 17,328 +0;10
Midpoint (Alexandria) 19;12 1%; 0 +0;12
End (Alexandria) 20;42 20;36 +0; 6
Duration 30 3; 4 —0; 4
Magnitude l 8.54

* Estimated value.

Eclipse No. 11: —200 Sep 22
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Eclipse 12, —199 Mar 19/20 Alm. iv 11: Toomer, 214

54 Callipic Period II: 9 Mechir

[the eclipsc} began when 514 hours of the night had passed, and
was total.

Ptolemy assumes the duration to be 4 equinoctial hours,and his subse-
quent computation confirms that here wpoed8ovody must mean ‘had passed’,
Again, the reported and computed times agree very closely.

Lunar Eclipse-Data Computed Ptolemy A
Sunset {Alexandria) 17570 18; O
Beginning (Alexandria)

Mar 19 23: 1 23:20 | —D; 9t

from computed Sunrise, Mar 20 2317 -0 6
Midpoint {Alexandria) Mar 20 0;59 1;20 | -0;21
Magnitude 16.0¢ Total

Eclipse No. 12: —199 Mar 19/20

Eclipse 13. —199 Scp 12 Alm. iv 11: Toomer, 215

55 Callipic Period II: 5 Mesore

the eclipse be ran when 62 3 hours of the I’llght had passed, a.nd
B
was total.

Ptolemy accepts 3;205" as the duration, a figure which he ascribes to Hip-
parchus. The prineipal error seems to have heen in the reported duration.

Lunar Eclipse-Data Computed Ptolemy A
Sunset (Alexandria) 1817 (18,150
Beginning (Alexandria) 0:41 0;40 +0; 1t
Beginning 6:40°" after

compiuted Sunset 0,38 +D, 3
Midpoint {Alexandria) 2:32 2;15 +0;17
Duration 3.42 3;12 +0:;30
Magnitude 19.39 Total

Eclipse No. 13: —199 Sep 12
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In his reductions of nos. 8-13, Ptolemny compares his time-intervals be-
tween successive pairs of eclipses with those used by Hipparchus. Ptolemy’s
and Hipparchus’ values for these intervals are taken without his correction
for the equation of time. If the latter is included, all four intervals differ,
and the amount of the difference is increased in each case. (Thus, it ap-
pears that Hipparchus did not apply a correction for the equation of time
in his reduction of these eclipses.) Sec Table 3.2 for the intervals found
by Ptolemny and Hipparchus.

I can find no consistent explanation of these differences. From the
agreement between Itolemy’s and Hipparchus’ values for the interval from
eclipses nos. 8 to 9, it seems that Hipparchus also assumed that no. 9 began
0;30°" after sunset, Ptolemy does not state what duration Hipparchus as-
sumed for eclipse no. 10. Thus, the discrepancy in the interval from no. 8 to
no. 10 could be due to Hipparchus’ having assumed 3;30" for the duration
of no. 10 instead of 4;0" as Ptolemy assumes.

Unfortunately, no such assumption will mitigate the discrepancies found
for the last two pairs. Not only are the times of these eclipses reported with
greater precision than times for the three earlier eclipses, but the duration
is stated for each except no. 12. Thus, if the discrepancy in the interval
between nos. 11 and 12 is atiributed to different estimates of the duration
of no. 12, the discrepancy in the time of eclipse no. 13 becomes 0;55% On
the whole, it seems most likely that, as Ptolemy suggests, the discrepancies
are due to errors in Hipparchus' reduction of the observations.

Whatever the case, these intervals offer no secure information beyond
that given in the reports themselves and in Ptolemy’s reduction of them,
for they evidently depend on eomputations by Hipparchus.

Between Plolemy Ptolemy Ptolemy — Hipparchus
Eclipse Days with without Hipparchus withont
Numbers Egquation of Time Fquation of Time Eguation of Time
8and 9 | 177 13;35" 13:45M 13:45h 0; ot

9 10| 177 2; 0 1:55 1;40 +0;15

11 12| 178 6;50 6;20 6,0 +0;20

12 13 | 176 0;24 [];5[5] 1;20 ~0;20

Tahle 3.2




68 MODELS AND PRECISION

Eclipse 14. —173 May 1 Alm. v1 5: Toomer, 283

7 Philometor: 27/28 Phamenoth

from the beginning of the cighth hour to the end of the tenth in
Alexandria, there was an eclipse of the Moon which reached a maxi-
mum obscuration of 7 digits from the north.

Ptolemy computes the midpoint of the eclipse as 2;20 equinoctial hours
after midnight (1°" = 0;54"). In the following comparison, I alternately
assume, (A) that the times refer to the beginning and cnd of the stated
hours (accurately computed), and (B) that the times refer to the middle of
the first and last third of these hours. Assumptions (A} and (B) lead to
durations respectively greater and less than the computed duration. Since
the mnean error of the two phases is the same in either case, the agreement
is not improved by assumption (B}.

Lunar Eclipse-Data Compuled FPtolemy A
Sunset (Alexandria) 18;36" (18;24%) | (+0;12")
Reginning [(Alexandria)

{A) 0;39 0;54 —0;15

{R) 1; 3 —2; 4
End {(Alexandria)

(&) 3;15 3;36 -0;21

{B) 3;27 —-0;12
Duration (Alexandria)

{A) 2:36 2:42 —0; 6

(B) 2;24 +0;12
Midpoint (Alexandria) 157 2;20 —0;23
Magnitude 7.44 7.04 +U.4d

Eclipse No. 14: —173 May 1

Eclipse 15. —140 May 1 Alm. vi 5: Toomer, 284

37 Callipic Period III: 2/3 Tybi
At the beginning of the fifth hour [of night] in Rhodes, the Moon

began to be eclipsed; the maximum obscuration was 3 digits from
the south.
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Ptolemy assumes that the eclipse began 25" (2;20") before midnight (half
the night at Rhodes = 7;0%), but in computing the cclipse-midpoint he
takes the duration to have been only 1:0% 18

Several previous investigators have remarked upon the substautial error
in the time reported for the beginning of this eclipse,'® and Zech [1851, 19]
has assumed that there is an error of one hour either in the time reported
or in the phase ascribed to the observed time. Ptolemy too probably had
difficulty with this eclipse, since he obtains exact agreement with his tables
ouly by assuming that the duration was half as great as his tables give. On
the assumption that the stated time should have referred to the eclipse-
midpoint, the error becomes only +0;1% If we assume that the hour stated
is incorrect, the resulting error is +0;200

Lunar Eclipse-Data { Computed Ptolemy A
Sunset (Rhodes) 17:13* (17; o) | (40;13%)
Beginning {Rhodes) 20;57 21;40 —0;43
Beginning 4:0°" after

computed Sunset 21;44 —0;47
Midpoint (Rhodes) 21;48 22:10 —0;22
Magnitude 2,81 3.04 —0.24

Eclipse No. 15: —140 May 1

Eclipse 16. 4125 Apr 5 Aim. iv 9: Toomer, 206

9 Hadrian: 17/18 Pachon

the sccond cclipse . .. [was] observed in Alexandria... 33/5 equinoc-
tial hours before midnight. At this eclipse too the Moon was ob-
scured 1fsth of its diameter from the south.

Ptolemy assumes that the time refers to the midpoint of the eclipse. The
comparison with the computed times gives somewhat better agreement, on
the assumption that the time refers to its beginning; but the difference is
insufficient to conclude that Ptolemy misinterpreted the report. There is
no direct evidence that Ptolemy himself observed this eclipse, and Toomer
[206n54] conjectures that it was observed by Theon who gave Ptolemy

5 Manitius [1912, i 450n44] finds the half-duration to be ;58" from Ptolemy’s
tables. See also Toomer, 284n23.

16 Cf. Fotheringham's summary in 1920, 379.
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some planetary observations. In view of the frequency of errors in reducing
observed times to eclipse-midpeint, it is possible that as much as half of
this error arose from this source,

Lunar Eclipse-Data Computed  Ptolemy A
Beginning (Alexandria) 20; " 20;24" @ | —Q;17"

Midpoint {Alexandria) 20;53 20,24 +0;29
Magnitude 1.84 2.04 —p.2d

? Assuming that the time stated is for the beginning
of the phase,

Eclipse No. 16: +125 Apr &

Eclipse 17. +133 May 6 Alm. iv 6; Toomer, 198

17 Hadrian: 20/2]1 Payni

from those very carefully observed by us in Alexandria.... We com-
puted the exact time of mid-eclipse as 3/; of an equinoctial hour
before midnight. It was total.

Lunar Eclipse-Data Computed Ptolemy A

Beginning {Alexandria) 21;19h
Midpoint (Alexandria) 20; 5 23;150 | —~0:10"
Magnitude 12,99 Total

Eclipse No. 17: 4133 May 6

Eclipse 18. 4134 Oct 20 Alm. iv 6; Toomer, 198

19 Hadrian; 2/3 Choiak

We cornputed that mid-eclipse occurred 1 equinoctial hour before
midnight. [The Moon] was eclipsed 5/ of its diamcter from the
north.!?

17 Newcomb [1878, 40] misreading Halma's somewhat obscure translation .[1813—

1816, i 255] gives the magnitude ‘one third of its diameter’ Cowell [1906, 527]
repeated Newcomb’s error; Fotheringham [1909, 666) noticed and corrected it.
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Lunar Eclipse-Data Computed Ptolemy A

Beginning { Alexandria) 21;31P
Midpoint (Alexandria) 23, 5 23; 0" 4-0; 5"
Magnitude 10.19 10.0¢ | 40.19

Eclipse No. 18: 4+134 Oct 20

Eclipse 19. +136 Mar 6 Alm. 1v 6 Toomer, 198

20 Hadrian: 19/20 Pharmuthi

We computed that mid-eclipse occurred 4 equinoctial hours after
midnight. {The Moon] was eclipsed half its diameter from the north,

Lunar Eelipse-Data, Computed Ptolemy A

Beginning (Alexandria) 2 gb
Midpeint {Alexandria) 3:29 4; ob | —0;31h
Magnitude 5.54 6.04 | —0.59

Eclipse No. 19: 4+136 Mar 6

The errar of half an hour in Ptolemy’s time is the largest found among the
Alexandrian eclipses.

Errors in the eclipse-observations and data

Errors in observed celipse-times and phases. The ambiguity of some of the
times reported for the earlier eclipses, the probability that some of the
timmes and phases are mis-stated, and the opportunities for misinterpreting
some of Ptolemy’s reports of these eclipses make any estimate of the general
accuracy of these observations sornewhat uncertain. Nevertheless, since the
times of fourteen of the twenty-one recorded phases are rcasonably secure,
an estimate of their general accuracy 1s possible.

In comparing the errors of different groups of observations, I have as-
sumed that times reported in secasonal hours were appropriately reduced
from the original data of the observations, and thus that these were not
merely mistaken for equinoctial hours. This is clearly the case for the early
Alexandrian observations, for otherwise the errors in eclipses nos. 12, 13,
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and 14 are significantly increased. For the Babylonian observations the
evidence is less conclusive. The errors of eclipses nos. 1, 3, and 9 are not
significantly different under either assumption, while the errors of nos. 4,
7, and 10 are increased by assuming that equinoctial hours were meant.
Thus, it scems best to assumce that the observed data were converted to
scasonal hours at some point in their transmission to Ptolemy.

In the few cascs (eclipses nos. 4, 14, and 15) where a phase is said to have
been observed at the beginning or end of an hour, I have assumed that the
exact beginning or end of the hour was meant. Fotheringham’s assumption
that such times refer to the middle of the first or last third of the hour re-
sults in generally larger errors, and unneccssarily add another uncertainty.

To estimate the general accuracy of the observations it is convenient to
divide them into two groups: {A) those for which the reported times are
unambiguously stated and where an error in the phase or in the reported
hour seems precluded, and (B) the remaining observations. I have included
eclipse no. 5 in the first group on the evidence of the Babylonian report.

Table 3.3 shows the errors of both groups. Column 1 contains the errors
of the unambiguous observations in group A. For the uncertain eclipse-
observations in group B, column 2 gives the errors from what seems the
most plausible interpretation of the report, and column 3 records the er-
rors derived from Ptolemy's interpretations of the reported times. Finally,
column 4 shows the errors which arise from less likely but still possible
interpretations of the reports.

Using the average of the errors of the two phases reported for eclipses
nos. 11 and 14, the times reported for the more certain observations (A)
show a mean error of —0;3.4" + 0;3.5% (epoch = —285), which may be
considered negligible. This error could be eliminated by a further small
reduction in the secular acceleration of the Mooen’s mean elongation,!® but
it also virtually disappears (—0;0.9) if the data from column 2 are included
in the average. Furthermore, the positive and negative errors in the twelve
relatively secure times (A) are evenly distributed (6-6), and the apparent
systematic error arises almost entirely from eclipses nos. 7, 14, and 19. On
the average, therefore, the secure Ptolemaic eclipse-times agree well with
the accelerations which I have adopted; and only eclipse no. 8 is clearly
incompatible with these accclerations.

Excluding no. 8, the errors in the remaining uncertain observations nos.
1, 3, 6, 19, 10, and 15 can all be brought to within +0;20% by different
assumptions of varying plausibility. In nos. 1 and 3, the time is specified
only by noting that the eclipse began after some event (the passage of an

' The correction would be —0.23*T? Cf. Newcomb 1912, 205-208.
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A B
No. Date Place T
1 2 3 4
1 | —720 Mar 19 Babylon +0:45"% ¢ | 40;150 8
2 { —T19 Mar 8 Babylon —0; ¢b
3 | -7198ep 1 Bahylon +0; 9" —0; 9
4 | -620 Apr 22 Babylon +0; 5
o { =522 Jul 16 Babylon +0:11° +0:45
6 | —501 Nov 19/20 Babylon +0; 44 | +0;52
T 1 —490 Apr 25 Babylon —0:33 +0; 81
8 | —382 Dec 23 Babylon +0:50
9 | -381 Jun 18 Babylon +0;17 | +0;34
10 | —381 Dec 12 Babylon —-0:9 | +0:26

lla | —200 Sep 22 Alexandria | +0;10
11b | =200 Sep 22 Alexandria { +0; 6
12 | —199 Mar 20 Alexandria | —0; 6
13 | —199 Sep 12 Alexandria | +0; 3

ld4a | —173 May 1 Alexandria | —0;15

14b | —173 May 1 Alexandra | —0;21

15 | —140 Jan27  Rhodes —0;48 {+0? 1
. ' +0;20¢

16 | +125 Apr5 Alexandria | +0;29

17 +133 May 6 Alexandria | —0;10

18 | +134 Oct 20 Alexandria | —0; J
19 | +136 Mar 6 Alexandna | —(;31

A. Observations Secure in Reported Time and Phase
1 Errorsin Times

B. Uncertain Observations
2 Errors in Most Plausible Times
3 Errors in Ptolemy’s Interpretation of Times
4 Errors in Possible Alternative Interpretations of Report

® 0;32" from Sunset: 0;45" from Moonrise, assuming l‘/zh.
b Assuming report meant 1 double hour.
 From Babylonian report. ¢ Assuming error in phase.

€ . .
Assuming error in stated hour.

Table 3.3. Errors in Observed Eclipse-Times
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hour or Moonrise). Ptolemny and most modern investigators have assumed
half an hour to be the upper limit to the time which could have passed
without being specified. In eclipse no. 3, the estimate of half an hour after
Sunsct agrees very well with the compnted time of the phase. In eclipse
no. 1, however, more than an hour appears to have elapsed after the passing
of the first hour, so that here we must either loosen this assumption or
postulate a significant error in the reported time. As noted, this error could
Lave arisen from a misinterpretation of the Babylonian unit corresponding
to two equinoctial hours. The time of eclipse no. 6 seems almost certainly
to be referred to the wrong phase, an assumption strengthened by the
evident error in the reported phase of no. 5. Eclipses nos. 8-10 have been
discussed at length. Within the limit of the uncertain desiguation of the
times, the most probable errors for nos. 9 and 10 scem to be +0:17" and
~0:9" respectively. Finally, an error in either the phase or the time of no.
15 would bring the reported time into reasonably good agreement with the
computed time; since both are explicitly stated, however, we must consider
this eclipse an anomaly aloug with no. 8.

Omitting nos. 8 and 15, and taking the most probable interpretations
of the remaining uncertain eclipses, we find the following probable errors
(1.e., average deviations) for individual observations:

Number of Prohable
Observations Error

Dabylonian Eclipses o° +0;12"
Early Alexandrian Eclipses 6 +0; 8
Late Alexandrian Eclipses 4 +0;17

Total 19 +0;10.6

® The average deviation of the four secure Babylonian
observations is :1:0;13]‘.

The late Alexandrian observations, at least three of which Ptolemy made
himself, exhibit a slightly larger average error than the Babylonian abser-
vations and nearly twice the error of the early Alexandrian observations.
Taking into account the small number of these obscrvations, the even dis-
tribution of the signs of their errors, and the fact that two of Ptolemy’s
observations agree very closely with the computed times, this difference
does not seem significant. In general, we may assume that the probable
error of an observed time of an eclipse-phase was on the order of £0;11%

Errors in Ptolemy's data. Numerous errors occur in Ptolemy's reductions
of these eclipse-times and also in his use of the observations. These in-
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clude apparent errors in Ptolemy's interpretation of same eclipse-reports,
errors in converting from seasonal to equinoctial hours, and errors in his
reductions to the meridian of Alexandria.

In Table 3.4, column 1 shows the errors of Ptolemy’s interpretations
of the observed times of these eclipses, and column 2 gives the errors in
the times which he finally adopts for eclipse-midpoint on the meridian of
Alexandria. For comparison, column 3 gives my estimates of the errors in
the observations from Ptolemy’s reports.

Correction te Ptolemy’s Value for
No.| Year
Observed Time | Time of Eclipse-Middle® | Estimated Error
1 2 3

1 | =720 +0;258 +0;11" +0;32h
2 [ -719 —0; 4 —0;12 —0; 4
3 | —T19 +0; 3 —0:25 +0; ¢
4 | —620 —0; 9 ~-0;24 +0; 5
a | =522 +0;56 +0;48 +0;11
6 | —501 +0;48 +0;40 +0; 4
T | —490 -0;31 —0;39 —0;33
8 | —382 +0;42 +0;44 +0;50
9 {-—3%1 +0;27 +0; 9 +0;17
10 | —-381 +0;30 +0; 7 -0; 9
1la | —200 +0;12 +0;12 +0;10
11b | 200 +0;12 +0; 6
12 | =199 -0 9 —0;21 —0; 6
13 | —199 +0; 1 _ +0;17 +0; 3
14a | —173 —0;17 —0;23 —0:15
14b | —173 —0;29 -0;21
15 | —140 —0;43 —0;22 ~—0;48
16 | +125 +0;29 +0;29 +0;29
17 | +133 —0;10 —-0;10 —0;10
18 | +134 +0; & +0; 5 +0; 5
19 | +136 —-;31 —0;31 -0;31

7 At Alexandria.

Table 3.4. Errors in Ptolemy’s Interpretations of Eclipse-
Observations and Final Data
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The mean systematic errors from columns 1 and 2 are:

Number of Observed Times Coneluded

Qbservations (Ptolemy) Data
Babylonian Eclipses 10 +0;18.7h +0; 5.9%
Early Alexandrian Eclipses 7 -0;10.4 -0; 7.4
Late Alexandrian Kclipses 4 —0; 1.8 —-0; 1.8
Total 21 +0; 5.1 +0; 0.3

Interestingly, Ptolemy's error in the difference in longitude between Alexan-
dria and Babylon!? served to reduce the systematic error in his Babylonian
data, and this error was further reduced by errors in his reductions of these
cbservations,

The probable non-systematic errors in a single datum in each group are:

Number of Observed Times Concluded
Obscrvations {Ptolemy) Data
Babylonian Eclipses 10 +0;18" +0;21h
Early Alexandrian Eclipses 7 10;11 +0;14
Late Alexandrian Eclipses 4 +0;17 +0;17
All Observations 21 +0;18.6 +0;17.9

As might be expected from the uncertainties and inconsistencies of the
reports, the Babylonian observations have the largest errors by Plolemy's
interpretation. The crrors of the early Alexandrian eclipses are again small-
est, although greater than those found for the cbservations themselves, In
general, we may conclude that the probable non-systematic error of an
eclipse-time used by Ptolemy is roughly +0;18h

Compariscn of eclipse-magnitudes. Table 3.5 shows the computed magni-
tudes of the partial eclipses in column 1, Ptolemy’s reported magnitudes in
column 2, and the error in Ptolemy’s magnitudes in column 3. In general,
the Babylonian reports overestimate the magnitudes. In these observations
the mean systematic error is nearly 3/ digit, and the average deviation
roughly 1/ digit. In contrast, the later observations show a neglhgible
systematic error (& =0.19), and an average deviation of /s digit. The
latter agrees well with what we would expect from accurate estimates of
cclipse-magnitudes to the nearest digit.

1% Ptolemy assumes a longitude differenee between Alexandria and Babylon of
0;5[].h According to P. V. Neugebauer [1929, ii 133] the differcnce is 0;58.41'!
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Argument of

No. | Computed | Chserved A Latitude®
2 1.54 3.0 | —1.5¢ 9°
3 6.1 > 6.0 NM 187
4 2.1 3.0 —-0.9 170
5 6.1 6.0 0.1 352
6 2.1 3.0 —0.9 170
T 1.7 2.0 —-0.3 168
8 3.0 SMALL 358

Average: —0.79 £ 0.4% (7 obs.)

14 7.4 7.0 +0.4 187
15 28 3.0 -0.2 9
16 1.8 2.0 -0.2 169
18 10.1 10.0 +0.1 185
19 5.5 6.0 —-0.5 350

Average: —0.1% 4 0.25¢ (5 obs.)

® Approximate value; of, Newcomb 1878, 41.

Table 3.5. Comparison of Eclipse-Magnitudes

OBSERVATIONS OF OCCULTATIONS

In Abm. vii 3, Ptolemy reports lunar occultations of the Pleiades, Spica, and
B Scorpionis, which were observed by Timocharis in Alexandria, Agrippa
in Bithynia, and Menelaus in Rome. For the observed times of the occulta-
tions Ptolemy computes the apparent positions of the Moon and, hence,
the positions of the occulted stars. From these positions he shows that the
latitude of each star remained constant, while the longitude increased at
a rate of 1° per century or 36" per year.

Although Ptolemy does not use these observations to establish his lunar
model,2® 1 have included a discussion of them for several reasons. One
is that they illustrate the quality of some of the older, non-Babylonian,

2% In Alm. iv 1 [Toomer, 173] Ptolemy remarks that such observations should
not be used ta establish a lunar model, since they require a prior knowledge of
the Moon’s parallax. In general, this can only be determined when the variation
of the Moon’s dislance from the Earth and, hence, the lunar model, is known.
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observational material at Ptolemy’s disposal,?! thus providing another in-
dication of the accuracy of time-measurements in antiquity. Furthermore,
the errors which they exhibit and the ambiguity of some of the reports
excinplify some of the problems which Ptolemy must have encountered in
attempting to use such material,

Sccondly, these observations illustrate a problem which also arises in
connection with Ptolemny's lunar model—namely, that the values of pre-
cession which Ptolemy finds from these observations are both better and
more consistent than we should expect from random observations of the
same general accuracy. From different pairs of occultations, Ptolemny finds:

From Qccultations of Tota.! Interval Annufl.l
‘Precession Precession
The Pleiades 3;45° 375¥ 36.07
Spica 3;55 391 36.056
Epica 3;45 379 35.6
B Sco 3:55 391 36.05

Not only do these agree among themselves, but the value of precession, 36"
per year, agrees alinost exactly with the value Ptolemy should have found
given the error in his mean motion of the Sun and, hence, of the Moon.??
This value is 34.8" per year or 0;68.0° per century, so that the systematic
error in Ptolemy’s determinations of each of the longitude-intervals shown
above is only 0;8% Furthermore, these intervals are mutually consistent to
within £0;2.5% or to within the nearest 5 minutes of time. Since the
errors of both the observations and Ptolemy’s lunar modcl are much larger
than this, it is evident that these are not random observations. Thus, we
may also ask how Ptolemy could have achieved such good agreement and
whether he must not have had a considerably larger number of observations
to choose from.

2l Except for the solstice observed by ‘the school of Meton and Euctemon® in
—431 [Alm. iil 1: Toomer, 143], for which no details of the ohservation are given,
the occultations observed by Timocharis (—294 to —282) are the earliest Greek
observations recorded in the Almagest.

%2 Despite the fact that Kepler [1627, 120), Lalande {1766, 467], Laplace [1756,
421], Ideler [1806, 107], Dreyer [1918, 346], and Fotheringham ({1915a, 378; 1918,
421] have observed thai the error in Ptolemy’s star positions and, hence, the
error in his value of precession, is due to the error in his mean motion of the Sun,
it is still common to find references to Ptolemy’s ‘erronecus value of precession’
which im ply that this arose from an independent error in his determinations of the
positions of the stars. See, e.g., Newcomb 1878, 279 and Manitius 1912, it 399n3.
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Finally, these observations have significantly influenced modern determi-
nations of the Moon’s secular acceleration. All of the cccultations were
first discussed by Schjellerup [1881], who showed that several of the times
and phases Ptolemy describes disagree significantly with those computed
from Hansen’s tables. Later, Fotheringham [1915a, 1923] reinvestigated the
circumstances of cach occultation to determine the Moon’s sidereal acceler-
ation. After weighting the observations according to his estimates of the
likely sources of error in each, he concluded that the occultations were best
represented by a lunar acceleration of (10.3” +0.74")T% #* Finally, Schoch
[1926] derived his value for the Moon’s acceleration (11.09"7T%) from one of
these observations, —282 Nov 8, and from this recomputed the errors in
the times which Ptolemy reports.

Each of these previous studies points out large discrepancies between the
observed and computed circumstances of several of the aceultations, regard-
]CSS Qf tuh.C Va,lll[) ﬂSSllIIlCd for tl'l[f MOO‘H ’S accc:l(:ration. Tl'l(f diSC'llSSiU‘ﬂ Wllic]:l
follows, therefore, reiterates some of the findings of these previous investiga-
tions. It seemed desirable, however, to reduce the results of Fotheringham
and Schoch to a consistent basis and to show that the elements derived
in appeudix 1 produee a satisfactory distribution of errors,

In the following discussion I draw on Fotheringham’s investigation {1915a,
1923] for the positions of the stars at the times of the observations and for
provisional positions of the Moon [see Fotheringham 1915a, 384-385; 1923,
370-371]. I then corrrect Fotheringham’s computed apparent longitudes of
the Moon to bring these into agreement with my elements,?* and also to

% Fotheringham’s initial determination [1915a, 395) was 10.8"T2 Subsequently
[1923, 370], he discovered an error in his comparison of occultation no. 7, which
yielded a revised acceleration of 10,3772

24 To reduce Fotheringham’s computed longitudes to the adopted elements, 1
have applied the correclion, AL = 5.8” + 11.9"7 + 1.6"T'? {epoch 1900). For

each observation, the correction is:

Occultation | Correction to Mean
Number Lunar Longitude

1 +0; 6.6"
2 +0; 6.6
3 +0; 6.5
4 +0; 6.5
5 +0; 5.3
6 +0; 5.3
7 +0; 5.3
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compensate for Fotheringham’s assumption that dpas dpxopéims and dpag
Anyotons refer to the middle of the first and last thirds of the designated
hour.?> The results shown, therefore, are the apparent positions of the
Moon at the exact beginning or end of the hours reported by Ptolemy (ex-
cept in the case of —282 Nov 8 where the time is reported more precisely).
Since in computing the positions of the Moon Fotheringham includes only
terms with coeflicients greater than ;3% the resulting longitudes are un-
certain by roughly this amount. Finally, for each observation I include a
diagram showing the computed apparent position of the Moon and the di-
rection of its motion at the indicated time and also the position of the Moon
relative to the star(s) which Ptolemy assumes in reducing the observation.

Occultation 1. —294 Dec 21 Alexandria Alm. vii 3; Toomer, 337

36 Callipic Period I: 25 Poseidon

Timocharis, who observed at Alexandria, says that... at the [very]
beginning of the tenth hour, the Moon appeared to occult [reach]
the northernmost () of the stars in the forehead of Scorpius very
precisely with its northerm rim.

25 The corrections to Fotheringham’s interpretations of the observed times and

the corresponding corrections to his computed longitudes are:

Occultation Correction to Correction to
Number | Observed Times Computed Longitude

1 0! g; 0°
9 ~11 —0; 4.7
3 +11 +0; 4.5
4 0 0; 0

5 -15 —0; 6.7
Ba 0 0; 0

13 +13 +0; 5.4
7 +13 0: 6.2

Except for no. 5, where a small additional correction is made for the longitude of
Bithynia, these are corrections to the beginning or end of a seasonal hour, where
Fotheringham has used the first or last third of the hour. The differences between
the times given by Schiellerup [1881] and Fotheringham [1915a) are due mainly
to this assumption by Fotheringham, and to the fact that Schjellerup’s times are
computed from true rather than apparent sunset.
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Occultation-Data Computed Ptolemy
Apparent Time (Alexandria) 3;30 3;244
Longitude of 3 Sco 211; 9.2° 212; 0°
Apparent Lunar Longitude 210;32.6  212; 0
Difference in Longitude 0;46.6 0; 0
Latitude of 8 Sca +1;17.9  +1;20
Apparent Lunar Latitude +0:53.8  +1; 5
Moon’s Semi-Diameter® t;14.9
Apparent Lu nap Velocity

in Longitude 0.425¢
Correction to Observed Time +1;50b

? Fotheringham 1915a, 383.
b Schiellerup 1881, 225. € (;1° per min.

+1;30° I~
gSco
+1;15° |~
+1; 0° -
B +0:45° |-
+H30° -
| i | ] } |
211;30° 21100 210;30° 210;0°
X

Occultation No. 1: —294 Dec 21
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The report does not state that 8 Scorpionis was actuzally occulted, and the
computation indicates that the upper rim of the Moon passed 8 Sco 0;10°
to the south., The longitude of the Moon’s center (or cusp) was 3/4" less
than that of the star at the stated time. An error in the reported hour
seems likely.26

Occultation 2,—293 Mar 9 Alexandria Alm. vi1 3: Toomer, 335

36 Callipic Period I: 15 Elaphebolion

Timocharis, who observed at Alexandria, records that ... at the be-
ginning of the third hour, the Moon covered Spica with the middle of
the [eastern] edge of its disk,... and that Spica in passing through,
cut off exactly the northern third of its diameter.

Fotheringham allows 0;3° for the distance from the Moon's illuminated
disk at which a star of the first magnitude would still be visible. I accept
this value. :

The accultation occurred just at the middle of the Moon’s eastern rim, as
reported, but Spica passed alinost through the center of the Moon, rather
than two digits to the north. Asin occultation no. 1, the Moon had not yet
reached the star at the reported time, the error being very nearly one hour.

Qccultation 3. —282 Jan 29 Alexandria Alm. vii 3; Toomer, 334

47 Callipic Period I: 8 Anthesterion

Timocharis, who observed at Alexandria, records the following. . .. to-
wards the end of the third hour, the southern half of the Moon was

seen to cover exactly either the rearmost [eastern] third or half of

the Pleiades,

There is considerable uncertainty about Ptolemy’s account of the Pleiades
and complete disagreement between the identifications by Manitius [1912, 1

26 Ptolemy gives the time as dpas 1 dpxetons dxpufds and computes the position of
the Moon for this time. Thus, any error in the reporied time of the observation
must have anledated Ptolemy. The simplest explanation is that the eriginal
report gave Gpas o’ or dpas f' indicating the beginning of the 11th or 12th
seasenal hour, and that the @ or B was lost through a seribal error during the four
centuries between Timocharis and Ptolemy. At the beginning of Lthe 121h seasonal
hour, the apparent center of the Moon was 0;11° beyond 3 Sco, equivalent to an
errar of & 26 minutes.



Lunar Observations in the Almagest

Occultation-Daia Computed Ptolemy
Apparent Time {Alexandria) 19;52R 20; 0P
Latitude of Spica —1:54.2° —2; 0°
Apparent Lunar Latitude —1;548 —-2;0
Longitude of Spica 172; 0.5 172;20
Apparent Lunar Longitude 171;19.1  172; &
Maon’s Semi-Diameter® 0;15.0
Arcus visionis 0; 3
Difference in Longitude

from Spica to Moon’s Rim 0:23.4
Apparent Luna.E Velacity

in Longitude 0.408¢
Correction to Observed Time —+—0';.':')'i’1h

—I;1§°
-1;30°
—1:45°
-2; O°

-2:15°

* Fotheringham 1915a, 384.

b Schjellerup 1881, 227. ©0;1® per min.

Frolemy II

Prolemy 1

83

Modern

172;30° 172:0°

171;30°

IE— Y

QOccultation No. 2: —293 Mar 9

171;0°
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Qccultation-Data Computed Ptolemy
Apparent Time (Alexandria) 20;38" 20;40"
Apparent Lunar Longitude 28;37.4° 29;,20°

Latitude +31;54.5 +3;35
Moon’s Semi-Diameter® 0;15.8
Apparent Lunar Velocity
in Longitude® 0.410°
23 Tauri Longitude 27,59.6°
Latitude +3;43.9
n Tauri Lengitude 28:;17.1
Latitude +3;49.3
27 Tauri Longitude 28:38.9  29;30
Latitude +3:41.3 3;40
28 Tauri Leongitude 28;40.3
Latitude +3;46.1

® Fotheringham 1915a, 384. * 0;1° per min

el?
+4;15° .20 .16
+4; 0° °
+3,45° - o3
B +330°1
+3;,15°
] | ! 1
29;0° 28;30° 28,0° 27;30°

Occultation No. 3: —-282 Jan 29
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45] and by Peters and Knobel {1915, 36] of the three stars in the Pleiades
contained in Ptolemy’s star catalogue.?” Manitius identifies ‘the closest fol-
lowing end of the Pleiades’ (the 32ud star in Taurus according to Ptolemy)
with n Tauri, as does Schjellerup [1881, 229]. Peters and Knobel identify
this star with 27 Tauri, and Toomer follows Peters and Knobel in all three
identifications. To complicate matters further, in discussing this occulta-
tion and no. 5 [Alm. vii 3: Toomer, 334-335], Ptolemy assigns a latitude
of +3;40" to ‘the rearmost end of the Pleiades’ but gives +3;20° as the lat-
itude in his star-catalogue [Alm. vii 5; Toomer, 45], Although preserved in
all mss, [cf. Peters and Knobel 1915, 190], the catalogue’s value is probably

an error.

In reducing this occultation, Ptolemny assumes the rearmost end of the
Pleiades to be 0;10° east and (;5° north of the center of the Moon, despite
Timocharis’ statement that the oceulted stars were covered by the south-
ern half of the Moon. Fotheringham [1915a, 388] identifics the following
third or half part’ with 28, 27, and n Tauri, and assumes that these three
stars were covered at the time of the observation. This interpretation is
consistent with Ptolemy’s, if ‘the rearmost end of the Pleiades’ is identified
with 27 Tauri.

At the stated time, 28 and 27 Tauri were covered by the Moon, while
n Tauri was just ;5° west of the Moon’s illuminated rim. Since a star of
magnitude 3 would barcly be visible at this distance [cf. Schoch 1926, 2]
the reported time very ncarly coincides with the apparent emersion of 5
Tauri. Since the immersion of 27 Tauri occurred nearly 17 minutes earlier,
the limits of the correction to the observed time are 0:0" to —0;17"

A possible but less likely interpretation of the report, which Schjellerup
asstimes [1881, 229, is that ‘the following third or half part of the Pleiades’
refers to w and 23 Tauri, rather than 27, 28, and » Tauri. For 23 Tauri
to have been covered, a correction to the observed time of at least —53
minutes is required.

On either assumption the stars are covered by the southern half of the
Moon as reported.

27T In addition to identifying Ptolemy’s star 32 Taurl with the medern star %
Tauri, Manitius identifies Ptolemy’s stars 30 and 31 Tauri with modern 16 and
17 Tauri, respeclively. Peters and Knobel (followed by Toomer) identify the last
two stars with madern 19 and 23 Tauri. In all cases, the identifications propased
by Peters and Knolel seem more plausible than those proposed by Manitius.
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Occultation 4. —282 Nov 8 Alexandria Alm. ¥ii 3: Toomer, 336

48 Callipic Period I: 25 Pyanepsion

[Timocharis] says that ... when as much as half an hour of the tenth
hour had gone by, and the Moon had risen above the horizon, Spica
appeared exactly touching the northern point on {the Moon].

The computation shows that the Moon’s cusp passed 0;3° to the south of
Spica, which agrees very closely with Timocharis’ description. The time
of the obscrvation has been debated because of the difference between
the time of Moonrise and the time reported for conjunction. In reiter-
ating Timocharis' description, Ptolemy says only that the Moon had risen
(dvateTahwlas) above the horizon. In reducing the observation, however,
Ptolemy notes that the stated titne must be corrected, since the Moon ‘was
rising’ (déTedke). He then assumes that conjunction occurred at Moonrise,
or at 2;30" by his computation. The discrepancy between the two times
was noted by Schoch, who assumes that conjunction eccurred half an hour
after Moonrise. Schoch’s value for the secular acceleration of the Moon
rests entirely on this assumption.

My computation places conjunction at 3;35" local apparent time { Alexan-
dria), or 55 minutes after Moonrise. At this time the Moon’s apparent alti-
tude was 11;50°;, whereas half an hour after Moonrise, it was 6;33° Either
altitude scems sufficiently small to satisfy the description that the Moon
‘was rising’, while neither adequately satisfies Ptolemy’s assumption (and
Manitius’ interpretation) that the Moon was ‘just rising’ 2® The reference
to Moonrise, therefore, seems to have been less precise than the observed

28 Manitius’ translations [1912, vii 3, 23] of dvateraiuias (having risen) and
dvéTelke (was rising) by ‘eben aufgegagen® (having just risen) and ‘eben aufging’
{was just rising) seem to be derived [rom Ptolemy's use of exact Moonrige in his
computation, for there is no textual basis for the qualifying adverb. Furihermaore,
even if we assume an ambiguity in the text, the alternatives are either to assume
with Ptolemy that conjunction occurred within a few minutes of Moonrise, or
to take the phrase as merely indicating that conjunction occurred sometime after
Moonrise. The first possibility is excluded, because it would require an implausi-
bly high value for the Moon’s sidereal acceleration (=2 13.0"T2). Thus, we must
conclude that the phrase meant only that the Moon had risen and was not yet
high in the sky. This qualification places only broad limits on the possible time of
the event, since even at the reported time the Moon’s altitude was only 15;20°
Thus, Schoch’s assumptions that conjunction must have occurred exacily half an
hour after Moonrise, and that this datum is more certain than those from any
other ancient lunar observations, are wholly gratuitous.
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Occultation-Data Computed Ptolemy
Apparent Time {Alexandria) (1) 3;52h 3;7.30" @
Approximaie Time of Moonrise 2;40b 2;30
Time of Spica’s Rising® 2,42
Spica’s Longitude 172; 9.6° 172;30°

Latitude —-1:042 -2; 0
Apparent Lunar Longitude at (1) 172;18.4 172,30
Latitude —2:13.8 —2;15
Apparent Lunar Velocity
in Lengitude 0.530¢
Correction to Observed Time —Q;17"

—1;45°

_2; 0° o

—2:15° -

-2;30° |-

® The text gives 31/s hours, which is probably erroneous,
since at this time 31/2“‘h‘ = 3;521'l = 37/a|3 As Toomer
[337n75] notes, this conld have resulted from calculating
the length of daytime instead of the nighttime seasonal

hours.

® ¥rom Schach 1926, 2, corrected to apparent time.

¢ Schjellerup 1881, 230.

d Fotheringham 1915a, 384. € 0;1° per min.

—2;45°

| i | !

173;,0° 172;30°

172;0° 171;30°
A

Occultation No. 4: —282 Nov 8
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time, which agrees reasonably well with the computed time of conjunction.
The time which Ptolemy assumes for conjunction is badly in error.

Occultation 5. +92 Nov 29 Bithynia Alm. vii 3: Toomer, 334

12 Domitian: 7 Metroos

Agrippa, who cbserved in Bithynia, rccords that, .. at the begin-
ning of the third hour of the mght, the Moon occulted the rearmaost
feastern], southern part of the Pleiades’ with its southern horn.

Noue of the southeastern stars in the Pleiades (27, 28, #) were occulted
and the Moon’s rim passed more than (; 20° north of 5 Tauri, the closest
of these stars. Even Ptolemy finds that no occultation occurred, and he
places the ‘rearmost cud of the Pleiades’ §; 5° south of the Moor’s southern
rim. Since the Moon did accult 19 and 20 Tauri, Fotheringham [915a, 388]
assumcs that Agrippa meant the northwest instead of the southeast part of
the Pleiades. Although this is the simplest explanation, Ptolemy’s explicit
statement to the contrary should disqualify the observation from being
considered in determining the Moon's acceleration.

The computed place of the Moon is uncertain by = £0;2° due to the
uncertain location of Bithynia. Ptolemy assumes that Bithynia is 20 min-
utes east of Alexandria, but this 15 impossible, since the entire province of
Bithynia does not extend this far east {ef. Shepherd 1921, 20, 43]. Fother-
ingham [1915a, 381] seems to identify Bithynia with Nicea (1;59" E; 40;30°
N), while Schjellerup [1881, 231] assumes that the observation was made
at Nicomedia (2;0]1 E; 40;48° N). Another possible location is the city of
Bithynium, later called Claudiopolis [Shepherd 1921, 20], whose longitude
is 2;7" east of Greenwich and whose latitude is 40;42° N {P. V. Neugebauer
1929, ii 133]. 1 have assumed a longitude half way between Nicea and
Bithynium, with a probable error of +4 minutes.

At the time shown 19 and 20 Tauri were respectively (;5° and 0;6° from
the Moon’s illuminated rim, and thus were just becoming visible [ef. Schoch
1926, 2]. In contrast, the immersion of 20 Tauri occurred at = 18;14h or 51
minmutes earlier, Thus, if we assume that the report should have indicated
that the northwest part of the Pleiades (19 and 20 Tau) was covered, the
limits of the error in the stated time are:

Correction to
Observed Time

Apparent emersion {19, 20 Tau) 0; 0" £0; 4b
Immersion (20 Tau) —0;518 4 0; 4b




+4;45°

+4,30°

+4:15°

B +4;

+3;45°

Lunar Observations in the Almagest

Occultation-Data Computed Ptolemny
Apparent Time (Bithynia) 19; b 19; Oh
{Alexandria) 19; 3* 18:40
Apparent Lunar Longitude 33;19.9° 33;15°
Latitude +4;29.6 +4; 0
Moon's Semi-Diameter® 0;14.95
Apparent Lunar Velocity
in Longitude® 0.375°
Star Positions® Longitude  Latitude
17 Tauri 32:53.8° +4; 0.0°
19 Tauri 33; 3.2 +4:;19.5
20 Tauri 33; 9.6 +4;11.5
23 Tauri 33;10.9 +3;46.0
7 Tauri 33:28.6 +3;51.5
27 Tauri 33;50.4 +3;43.5
27 Tanri {Ptolemy) 33;15 +3;40

® Fotheringham 1915a, 384-385, * +0;4"

€ 0;1° per min.

&9

34,30° 34;0°

33;30°

—A

3300

Qccultation No. 5: +92 Nov 29
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—1;30°

—1;45°

-2, 0°

-2;15°

-2,30°

-1;30"

—1;45°

=2; 0°

-2;15¢

-2;30°
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Modern

Occultation No, 6b: +98 Jan 11

Ptolemy
| ] | | | 1
178:0° 177;30° 17700 176;30°
-—A
Occultation No. 6a: +98 Jan 11
Modern
Spica
Ptolemy
| | i | | L
178;30° 178,0° 177;30° 177.0°
A
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Occultation 6. +98 Jan 11 Rome Alm. vil 3: Toamer, 336-337

1 Trajan: 15/16 Mechir

the geometer, Menelaus, says that the following observation was
inade [by him] at Rome.... when the tenth hour was completed,
Spica had been occulted by the Moon (for it could not be seen), but
towards the end of the eleventh hour it was seen in advance of the
Moon’s center, equidistant from the [two] horns by an amount less
than the Moon’s diameter.

At the earlier of the two reported times Spica was Just covered by the Moon,
so that the computed circumstances agree with those reported. Spica
emerged from behind the Moon at 6;13" or 4 minutes after the end of the
11th seasonal hour, and was, as the report says, just equidistant from the
two cusps. Menelaus says only that Spica was visible and less than a lunar
diameter from the Moon’s center at this time. If we assume 0;24° £0; 45 or
three quarters of the Moon's diameter, as the probable distance from Spica
to the Moon’s center, the error in the second observed time is +0;25% +0:10"
A similar error in the first reported time would leave Spica covered and very
nearly in conjunction with the Moon’s center, as Ptolemy assumes.

Phase 1 Data Computed  Ptolemy
Apparent Time (Rome) 4;55" 5; OF
{ Alexandria) 6; 5 6:20
Spica’s Longitude 177;24.6° 176;15°
Latitude —1;55.86 =2, 0
Apparent Lunar Longitude 177, 9.0 176;15
Latitude —1;534 -2; 0

Moon’s Semi-Diameter?® 0;15.9

Phase 2 Data

Appareni Time (Rome) g; ob
Apparent Lunar Longitude 177;38.4"
Latitude —1;55.2
Appaurenl Lunar Velocity
in Longitude® 0.403%

* Fotheringham 1915a, 384. ® 0;1° per min.

Qeccultation No. 6; 498 Jun 11
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Occultation 7. +98 Jan 14 Rome Alm. vih 3: Toomer, 338

1 Trajan: 18/19 Mechir

Similarly, Menelaus, who observed in Rome, says that... towards
the end of the eleventh hour, the southern horn of the Moon ap-
pecared on a straight line with the middle and southernmost of the
stars in the forehead of Scorpius (w, §), and its center was to the
rear [east] of that straight line, and was the same distance from the
middle star () as the middle star was from the southernmost, {and]
it appeared to have occulted the northernmost of the stars in the
forehead (/3), since [it] was nowhcere to be seen.

At the stated time the Moon's southern cusp was 0;16° east of the line
between 7 and § Scorpionis, while its eastern rim was 0;23° west of 8 Sco.
Since Menelaus says only that he did not see Scorpio, while he describes
the alignment with 7 and § Sco in explicit detail, I have taken the latter as
the basis for comparison. The error in the time is, therefore, —0;45%

Ptolemy assumes that the Moon was in conjunction with Scorpio when
observed, and thus tacitly ignores the alignment reported by Menelaus.?®
According to my computation, conjunction occurred roughly 2 hours (1;511)
after the time reported. Menelaus' estimate {measurement?) that the
Moon and é Sco were equidistant from 7 Sco was in error by = 0;20°

Errors in the occultation-observations and data

Errors in the observed times of lunar occultations. Table 3.6 shows the
errors in the observed times as understood by (a) myself, (b) Fotheringham
[1915a), and (c) Schoch [1926]. All of the errors have been reduced to the
clements derived in appendix 1,%% so that the differences between the errors

28 According to Piolemy’s star catalogue, 7 and § Scorpionis are on the same
latitude-circle, while 8 Sco is 0;40° in longitude further west. Thus, he implicitly
rejects the alignment reported by Menelaus.

3¢ See 79n24 above, for corrections to Fotheringham’s initial results. ‘To correct
the errors in the observations found by Schoch [1926, 2], I have computed the
errar in his mean longitude from

AL = +0.13 —2.63"T— 1.46T? {epoch, 1900).
From this correction to his mean longitude of the Moon, [ have obtained cor-

rections to his errors in the observations, using the apparent lunar velociiy at
each occultation. The corrections to Schoch’s tabular longitudes and times for
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Occultation-Data Computed Ptolemy
Apparent Time {Rome) 6; &b 6:10M
(Alexandria) 18 ;30
Apparent Lunar Longitude 216; 5.8°  215:55°
Latilude +1;25.4 +1;20
Moon's Semi-Diameter® 0;15.2
Apparent Lunar Velocity
in Longitude® 0.346°
Star Positions T;ongitude Laiiiude
A Sco 216;44.0° +1:16.3°
# Sco (Ptolemy) 215:55 +1;20
7 Sco 216; 7.2 —1;43.0
4 Sco 216,208 —5;12.9
Distance (App. Moon~w Sco) 3;10
Distance (7 Seo—é Sco) 3:30
® Fotheringham 1915a, 384-385; 1923, 370-371.
b o '
0;1% per min.
+2; 0°
+1:45°
Modern
+1:30°
+1;15° -
Piolemy
+1; 0°
l I | !
217:0° 216;30° 216:0° 215;30°
——X

Qeccultation No. 7: 498 Jan 14
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N Dat A 5 h S < h
D, ate . lFotheringham choc
Britton 1915ga 1926

1 | ~294 Dec 21 | +1;50" +1;50h +1;50h
2 | —293 Mar 9 | +0;57 +0;46 +0:46
3 | —282Jan29 | —0; 8 —0;19¢ +0; 2
4 | —282 Nov& | -0;17 —0;17 —0;42

5 | 402 Nov29 | —025P —{0;40° e
6 | 498 Jan11 | 40:25¢ +0:43¢ +0;18
7 | +98 Jan 14 | —0:45 —0;32 —0; 4

.3

+0; 9 40200

 Schoch [1926, 2] does not give an error for occul-
tation no. 5, staling that the longitude of Bithynia

is
d

uncertain by D;Stf
+ 0;108

Table 3.6. Errers in Observed Times of Qccultations

found for the same obscrvation represent cither different interpretations
of the times and corresponding phases of the occultations, or differences
m the computed place of the Moon. Since Fotheringham’s computations
only include the lunar inequalities in longitude greater than 0;39 while
Schoch includes all inequalities greater than 4" of arc, discrepancies of up
to £10" can arise from differences in the computed positions of the Moon.
Unfortunately, Schoch publishes only the results of his analysis, so that it
1s inpossible either to use his more accurate computations or to check his

results,

each occultation are:

Occultation | Correction Correciion to
Number te Times Longitude
1 40;241 —0:10.8°
2 +0;26 —0;10.8
3 +0;26 -0:10.7
4 +0;20 -0:10.7
5 +0;19 —0; 7.3
6 +0;1% -0 7.2
7 +0;21 —0; 7.2
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As may be seen by comparing colurnns {A) and (B}, Fotheringham’s
assumption that dipas dpyopérns and dpag Anyovons refer to the middle of
the first and last thirds of the stated hour reduces the error in the times
of occultations nos. 2 and 7 and increases the error in nos. 3, 5, and 6.
Thus, as in the case of the eclipses, introducing this assumption makes no
material difference.

Schoch does not say how he interpreted these times. In occultation no. 2
he appears to have followed Fotheringham, while the errors of oceultations
nos. 3 and 6 suggest that he computed for the exact hour. Perhaps he ac-
cepted the interpretation vielding the smallest error in each case. In no. 6,
Schoch seems to have assumed a shorter distance from Spica to the Moon's
center than I have. I cannot explain the discrepancy between Schoch’s
error for no. 7 and mine or Fotheringham’s. As for the lunar eclipses, the
signs of the errors are evenly distributed; this may be faken to indicate
that the adopted elements are in reasonable accord with the observations.

The error of nearly two hours in the time of occultation no. 1 reported by
Timocharis strongly suggests that the reported time is wrong. If not, the
average clock-error for this observation amounts to 12 minutes per hour if
measured from Sunset, and 35 minutes per hour if measnred to Sunrise.
Similarly, the clock-error in Timocharis’ second observation is roughly 22
minutes per hour, measured from Sunset. In contrast, the clock-errors in
his two later observations are less than 3 minutes per hour. If the reports
of the carlier observations are not in error, then the intervening ten years
must have greatly improved Timocharis’ methad of determining time at
night. The clock-errors in Menelaus’ observations nearly 400 years later
arc & +4 minutes per hour by my computation, and are negligible by
Schoch’s computation.

If we exclude occultation no. 1 as an anomaly, the mean and probable
errars in the reported times are:

Investigator Mean Error Probable Error
{a} Britton (6 obs.) —0; 2.9b +0;25h
(b) Fotheringham {6 ohs.) —0; 3.2 +0;26
{c) Schoch (5 obs.) +0; 4.0 +0;22

The probable errors include the uncertainty in the phase of the occultation
described, and in nos. 1 and 2, the effects of the imprecision of Fother-
ingham’s computations of the Moon's longitudes. Since the probable error
from Schoch is heavily influenced by his anomalous error for no. 7, we may
assume that the probable error in an observed time of a phase of an occulta-
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tion was on the order of £23 minutes. Thus, the times appear significantly
less accurate than those reported for lunar eclipses.

Errors in Ptolemy’s data for lunar occultations. Ptolemy’s data contain
three types of errors. First, there are the errors discussed above in the
observed times of the indicated events. Second, there are errors in the re-
ductions of the reported times to apparent Alexandrian time. Finally, there
are what [ shall call ‘phase errors’, which are apparent errors in Ptolemy’s
interpretation of the configuration of the Moon aud reference body at the
reported times. These are most conveniently understood as errors in {lunar)
longitude, and are readily transformed into additional time-errors.

These errors are shown in Table 3.7. Column I gives the observational
errors from column A in Table 3.6; column Il shows the reduction errors;
and columns II1 and IV give the phase-errors in longitude and time, respec-
tively. Finally, column V gives the total error in Ptolemy's datum—i.e,,
the sum of columns I, Il,and IV—expressed in time for each event, while
column VI shows the corresponding errors in longitude. As before, these
errors are to be understood as corrections to Ptolemy’s data.

For all seven observations, the mean (systematic) and probable devia-
tions from cach source and collectively are:

Column in Source of Mean Probable

Table 3.7 Error Error Deviation
I Observalion 4+0;14"  +0;66"
II Reduction +0; 5 0;14
14" Phase +0;32 £0;35
Vv Total Error in Datum +0;51 +0;31

Clearly, these are far greater than the errors which are characteristic of
the observations themselves. Furthermore, there is a significant systematic
error in the data from all three sources, which is absent from the pure
observational errors. Finally, the three sources of crror do not seem to
be independent, since the probable deviation from the total error is only
60% of what one would expect from combining the deviations of the com-
ponent source errors {4+0;52"). Indeed, if we omit no. 1, the probable
deviation in Ptolemy’s data drops to (£0;27"), which is nearly identical to
the corresponding observational error.

The systematic error in Ptolemy’s data is puzzling. Since the value of
precession which follows from these occultations corresponds very nearly
to the correct sidereal motion of the Moon, one might expect similar errors
in Ptolemy’s data for occultations of the same star. There seems no reason,
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Star I I 111 v v VI
1] 8 Sca +1;50%  +0; 6" +1;56*  —0;51.5°
2 | Spica +0:57 —0; 8 +0:49  -D;20.8
3 | Pleiades | —0; 8 —0; 2 —0;10 405 4.1
4 | Spica 117 044 +0:17  —0; 9.0
5 | Pleiades | —0;25 +0;23 —0;41° 41;49t +1;47 —0;40.1
6 | Spica +0:25 —-0:15 +40; 5 +40;13 +0;23  -0; 2.3
7|8 5co 045 —-0;12 —0;38 4161 +0;54  —0;1.7
Table 3.7

however, why pairs of occultations of different stars should exhibit sinilar
errors. In general, one should expect errors with different signs in different
pairs of occultations, no matter how they were selected.

Furthermore, when we examine the data-errors in the intervals of lon-
gitude for the seven stars we find;

Star Late Early . Interval
Observation €55 Qbservation Y819  Eeror

A Sco —0;18.7° +0;51.5° +0:32.8°
Spica —0; 9.3 +0;14.9° +0; 5.6
Pleiades —0;40.1 —0; 4.1 —0:44.2
Average —0;22.7 —0:20.8 —0; 1.9

? Average value.

The mean interval-error vanishes for all three pairs, while individual pairs
show interval-errors substantially greater than the error of 0;8° in Ptolemny’s
computed intervals. Thus, the errors in Ptolemy's interval-data are largely
offset by the errors in his calculated lunar positions.

To have pairs of accultations show the same predetermined value of pre-
cession, Ptolemy would have had to find observations in which the errors
in the observations themselves, or his reductions of them, just balanced
the errors in his calculations and lunar equations. The probability of find-
ing such pairs at random is obviously very small, since both the errors in
Ptolemy’s lunar equation and the errors in the observations can take on
continuous values with either sign. Thus, no matter how Piolemy erred in
reducing his obscrvations, he must have had a large number of observations
to work with.
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This number need not have been enormons, however. Ptolemy obtains
agreement partially because some of the later reports can be broadly in-
terpreted, and also becatise he chose observations for which he introduced
additional crrors in reducing the times to the meridian of Alexandria. Thus,
he may have selected some observations because of the ambiguity in their
reports and the corresponding flexibility which this allowed him in reducing
them. Such a basis of selection would inerease the likelihood of obtaining a
‘fit’, although it would still require a considerable number of obscervations
to choose from.

Whatever the case, it 1s clear that these observations could not have
been selected at random, since the probability is negligible that four ran-
dom pairs, erroneously reduced, should yield the same ‘correct’, value for
precession. This does not necessarily mean that the observations misrepre-
sent the quality of those available to Ptolemy, for he achieves agreement
at least partially by assuming circumstances which seem at variance with
what was actually observed. Nevertheless, in view of the errors in Ptolemy's
lunar equation [see chapter 4], it seems likely that requiring the observa-
tions to yield accordant results would cause Ptolemy to choose observations
having somewhat larger average errors than a random selection of such ob-
servations would have. The difference between the probable error in the
observed times of the occultations (£25 minutes) and the probable error
for eclipses (£11 minutes) may he due to this causc.

While such errors should not be systematic oncs, the larger probable
errors for a single observation would increase the chance of having a signif-
icant systematic error in a small group of observations. Thus, although the
six ‘good’ occultation-observations agree reasonably well with the elements
I have adopted, they are much weaker evidence (mean probable error is
+0;11%) of the value of the Moon’s acceleration than are the sixteen ‘good’
eclipses reported hy Ptolemy (mean probable error is £0;3),

In sum, the observations of occultations recorded in the Almagest appear
to exhibit somewhat larger errors than do the observations of eclipses,
which may be related to a requirement that they vield accordant values
of precession. Further, the data Ptolemy accepts show much larger errors
than the observations themselves, which suggests that Ptolemy reported
the observations faithfully. Finally, Ptolemy’s use of these observations is
an cxcellent example of his obtaining both correct and consistent results
from very poor data.
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OBSERVATIONS OF THE MOON'S ELONGATIONS

Ptolemy reports eleven measurements of the elongation of the Moon from
other celestial bodies., Three of these are Hipparchus' observations of the
elongation of the Moon from the Sun, which are the latest of his known
ohservations. Ptolemy uscs thesc together with a similar observation of his
own (139 Feb 9) both to demonstrate the correctness of his lunar model
at quadrature and in the octants and also to illustrate his procedure for
determining the magnitude of the second lunar inequality.

The remaining eight observations were made by Ptolemy and used to
determine the longitudes of Regulus and of each of the planets. For each
planet, Ptolemy measures the Moon’s elongation and then determines the
longitude of the planet from this datum and his computed apparent lon-
gitude of the Moon. Each of these observations is accomnpanicd by a direct
measurement of the elongation of the planet from a star of known longi-
tude. Thus, three observed data are in effect given for each observation:
the distance®! of the Moon from the planet, the distance of the planet from
a star, and implicitly, the distance of the Moon from the star. In discussing
the errors in thesc observations, I shall consider the errors in each of these
data as if they were independent obhservations.

Ptolemy’s eight observations of the distance of the Moon from other celes-
tial bodics are distinet frorn all his other observations. First of all, he made
them during the seven months from 4138 Dec 16 to +139 Jul 11, and they
are the only observations he reported for this interval. More importantly,
unlike his other observations, each includes an observable datum from
which he could have aceurately determined the time of the observation.

For each observation PtDl(:my notes the (computed) longitude of the Sun
and states the time of the observation with the remark, ‘since [such and
such] a degree was culminating on the astrolabe’ This suggests a procedure
which he may have used generally to determine the time of the observations,
but which he does not mention elsewhere in the Almagest.

In describing how to use an armillary astrolabe [Alm. v 1; Toomer, 218
219], Ptolemy tells us that the ecliptic-ring on the astrolabe is aligned in the
plane of the ecliptic by setting one of the rings (the outer) perpendicular
to it at the known longitude of some celestial body, and then turning the
instrument about the poles of its equator until the reference-body is aligned
with this ring. With the ecliptic thus properly oriented, the longitude of

31 In what follows I shall use ‘distance) ‘elongation’| and ‘interval of longitude’
as synonyms, except where otherwise noted.
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the celestial body to be observed can be found directly by aligning it with
the other ring perpendicular to the ecliptic.

Ptolemy does not add that the time of the observation can then be readily
determined by observing the degree of the ecliptic which was culminating,
The culminating degree could easily be read from the intersection of the
meridian-ring and the ecliptic-ring, and the apparent time of the obser-
vation could then be determined from the difference in right ascension
between the culminating degree and the longitude of the Sun.

By following this procedure Ptolemy could have determined the time of
any observation to within at least +4 minutes, or even to within half this
amount. Moreover, the pracedure could be simplified for observations of
clongations such as those described below, where it is not neccssary to de-
termine the time of an event over which the ohserver has no control. Thus,
Ptolemy could compute in advance the culminating degrees for a group
of times, set his astrolabe so that a desired degree culminated, and then
wait until the reference body aligned itself on the ring set at its longitude.
At that moment he could then observe the longitude of any other celestial
bedy by adjusting only one ring on his instrument,

Ptolemy’s reference to the culminating degree in connection with the
time of each of his elongation-observations implies that he employed some
procedure of this sort. Further, the fact that he quotes all the times to
quarter, half, or integral hours suggests that he computed the culminating
degrees for convenient times before making the observations, and thus made
his measurements at predetermined times. Since he had to compute the
culminating degree for each observation in order to determine the Moon’s
parallax, this procedure wonld have invaolved no additienal labor while of-
fering the practical advantage of requiring minimum manipulation of the
astrolabe at the moment of observation.

If Ptolemy determined the times of his observations in this manner—and
it seems probable that he did—then his times, which are quoted to guarters
of an hour, may be regarded as the results of an orderly and rational
procedure for making observations, and not as rough approximations of
the times of his observations. As noted above, by such a method Ptolemy
should have been able to determine the time of an observation to within
at least +4 minutes.’? Hence, the crrors of these observations should be

32 1n general, this method can determine the time of an observation with consid-
erably more accuracy than can altitude-measurements of comparable precision.
The error in the time which would result from an error of £1°in either the culmi-
nating degree or in the computed position of the Sun would always be smaller
than 41.36 minutes. In contrast, the error in the time which would result fram
an error of 1% in a measurement of the altitude of a body whose declination was
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almaost entirely due to errors in his measurements of the distance between
the Moon and the reference bodies used in the observations,

The main objective of the following remarks is to determine the average
error of Ptolemy’s observations of elongation. In computing the Moon’s
positions, I have used P. V. Neugebauer's lunar tables [1912] corrected to
the elements adopted above, Although these give the longitude of the Moon
to 0.019 the resulting longitudes are certain only to within +0.1° = 40;6°
In general, this uncertainty will not significantly affect the results of the
COINPAaris0na.

Elongation 1. —127 Aug & Alm. v 3: Toomer, 224

51** Callipic Period 11: 16 Epiphi

when two thirds of the first hour had passed. ‘The speed (8pouos)
was [that of day] 241°3* he says, ‘and while the Sun was sighted
[at]*® Leo 8;35% the apparent position of the Moon was 12;20° Tau-
rus... .

accurately known, and at a place whose terrestrial latitude was also accurately
known, is:

4 minutes

Alt) = ————— .

cosy-sind
‘or Lthe latitude of Alexandria, therefore, the minimum error in a time determined
from an altitude-measurement in error by £1° is £4.68 minutes (Azimuth (A4) =
£90%), while a similar error in an obscrved altitude at £45° of azimuth would
produce an error in the time of more than 6 minutes.

33 0f, Manitius 1912, 1 266na: ‘All mss have “in the 30th year’’ but Ideler and
Ginzel (Chron. 1I: 410) have shown that one must read “517°

3% The meaning of ‘the 8pduos was 241, attested in all mss., has been the subject
of much uncertainty and confusion. Halma emends cua’ to jéoos and thus under-
stands the phrase to indicate that the Moon was at mean distance. Manitius
understands 8pépos to refer to the anomaly and changes opa’ to od' (258) in
order to make Hipparchus’® anomaly aprec nearly with thal found in Ptolemy
(257;17°). Toomer [244n14}, following Alexander Jones [1983], gives a convincing
explanation, which links this description to a table (of Babylonian origin) of the
true motion of the Moon over 248 days (9 anumalistic months). See A. Jones
1983, for a detailed discussion of such tables.

35 Observations nos. 1, 2, and 3 suggest that Hipparchus possessed an instrument
similar to Ptolemy’s, and that his procedure for the observation was the same
as Ptolemy’s. Thus, one ring would be set at the computed place of the Sun,
Leo 8:35° and the daily circle turned until the Sun was aligned on that ring, at



102 MODELS AND PRECISION

This cbservation, like several others, shows excellent agreement between
the equation which Ptolemy obiains and that derived from modern lu-
nar theory, but much poorer agreement between modern theory and the
ohserved data from which Ptolemy derives his result. This agreement 1s
partly because of the error in Ptolemy’s solar equation and partly because
he uses an erroneous value for the equation of time.

Elongation-Data Ptolemy Computed A

Apparent Time (Rhodes) 5:50M 5508 ¢
True Salar Longitude 128:20°  128:40° +0;20°
Refraction (Longitude) —0; &b
Apparent Solar Longitude [128;20] 128;34 +0;14
True Lunar Longitude 42: 5 42: 1
Lunar Parallax {Longitude) 0; 0 -0; 6
Apparent Lunar Longitude 42; 5° 41;55 -0;10
Lunar Equation +7:4064 741 +0, 14
Apparent Elongation of

Moon-Sun 27345 27321 —0;24
Measured Angular Distance 86;15° 86G;39 +0;24

? Computed using true Sunrise and ¢ {Rhodes) = 36;24°

P At the time of the observation the Sun’s true altitude was
8;36% and the angle between the ecliptic and the Sun’s altitude-
circle, 160°

® Observed.

! In computing the Moon’s mean longitnde Ptolemy uses
—0;51‘ for the eqnation of time instead of the correct —0;16]‘.
Thus, his observed lunar equation should be T;45°

Elongation No. 1: =127 Aug 5

which point the ecliptic would be properly positioned, and the elongation of the
Moon could be directly deterinined. Such a procedure is supported by Plolemy’s
suhsequent reduction of the observation, for he accepts the apparent measured
clongation, ~86;15° while at the same time correcting Hipparchus’ computed
position of the Sun to Lec, 8;20° (accurate, 8;22%). Toomer [227120] presents a
contrary view.
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Elongation 2. —126 May 2 Alm. v 5: Toomer, 227

197 Death of Alexander: 11 Pharmuthi

Hipparchus records that he observed the Sun and the Moon with
his instruments in Rhodes. .. at the beginning of the sccond hour
[of the day]. He says that while the Sun was sighted [at] Taurus
7;45° 36 the apparent position of the center of the Moon was Pisces
21:409 and its true position was Pisces 21;27,30% %7

Klongation-Nata Ptolemy  Computed A

Apparent Time (Rhodes) 6;20" 6230 «
True Solar Longitude 3745° 37:34° -0;11°
Refraction (Longitude) —-0; 2¢
Apparent Solar Longitude [37;45] 37:32 -0:13
True Lunar Longitude 351;27.30 35047 ;
Lunar Parallax {(Longitude) +0:12,30 +0;15 i
Apparent Lunar Longitude | 351;40° 351 2 —0;38
Lunar Equation —(;46 ~1;23 —0:37
Apparent Elongation of

Moon—-Sun 313;55° 313;30 —0;25
Measured Angular Distance 46G; o° 46;30 +0;25

* Computed using true Sunrise and ¢ (Rhodes) = 36;24°

® The Sun’s altitude at this time was 13;30°% so that the total
refraction was (;4% The angle between the ccliptic and the
Sun’s altitude-circle was =2128"

® Observed.

Elongation No. 2: —126 May 2

Elongation 3. —126 Jul 7 Alm. v 5: Toomer, 230

187 Death of Alexander: 17 Payni

observed by Hipparchus, as already mentioned, in Rhodes ... at 9/
hours, He says that while at this hour the Sun was sighted at Cancer

¥ This agrees with Ptolemy’s solar model.
%7 Ptolemy accepts Hipparchus' computation of the Moon’s parallax, although
elsewhere [Alm. v 19: Toomer, 268] he criticizes Hipparchus® procedure for deter-

mining the components of parallax in longitude and latitude.
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10;544% %% the apparent position of the Moon was Leo 29;0° And this
was its true position too; for at Rhodes, near the end of Leo, about
onc hour past the meridian, the Moon has no lengitudinal parallax.

Elongation-Data Ptolemy Computed A

Apparent Time (Rhodes) 16; ot 16; or @
True Solar Longitude 100;40° 100;53° +0;13°
True Lunar Longitude 148;46 149;40
Lunar Parallax (Longitude) 0; 0 -0 1
Apparent Lunar Longitude 148:46% 149:392 | 4+0;53
Lunar Equation +1;26¢ +2:24 +0;58¢
Apparent Elongation of

Moon-Sun +48; 6 +48:46 | +0:40

® Computed using true Sunrise and ¢ {Rhodes) = 36;24¢

¥ Observed.

® In computing the mean longitude and clongation of the
Moon, Ptolemy does not scem to have applied his correction
for the equation of iime (—G;?Uh), since his computed mean
longitude and anomaly are (;13° and 0;11° greater than those
which his tables give [¢f. Kempf 1878, 27}, Ptolemy should
thus have found the lunar equation (obs.) to be +1;39° instead
of +1;26° The error in the observed lunar equation, properly
computed, is, therefore, +0;45°

FElongation No. 3: —126 Jul 7

Elongation 4. +138 Dec 16 Alm. x 4; Toomer, 474

2 Antoninus: 29/30 Tybt

we observed the planet Venus after its greatest elongation as morn-
ing star, using the astrolabe and sighting it with respect to Spica:
its apparcut longitude was Scorpio 6;30° At that moment it was
also between and on a straight line with the northernmost of the
stars in the forehead of Scorpius [§ Sco] aud the apparent center of
the Mocn, and [Venus] was in advance [west] of the Moon's center
one and one half times the amount it was to the rear [cast] of [

3 Ptolemy finds Cancer 10;40° (modern value, 10;42%). As in elongation no. 1
he accepts Hipparchus’ observed elongation instecad of his lunar lengitude.



Elongation Nata Ptolemy  Computed A

Apparent Time {Alexandria) 4;45h 4;46h @
Longitude of Venus 216;30 217;18%
Latitude of Venus (+2:40) +3:1
Longitude of Spica 176;40° 177;58° ¢ | +1;18°
Elongation of Venus—Spica +39:50° 4 139;20° —0;30°
Longitude of 8 Sco 216;20 217;18¢ +0;58
Latitude of 5 Sco +1;20 +1;156
True Lunar Longitude 215:45f 215;47
Lunar Parallax (Longitude) +1; 0 +0;51 —-0; 9
Apparent Lunar Longitude 216;45 216,389 —0; 7
Tunar Latitude +5; 0 +5; 8
Lunar Parallax (Latitudc) —0;20 ~(16
Apparent Lunar Latitude +4;40 +4;52 +0D;12
Elongation of Maon—Venus +0;15 —0;40 —0;65

Venus-8 Sco +0;10 0; 0* —0;19

Moon-Line through

Venus and 8 Sco (Long.) 0; 1 —;40 —[]',40'Il

Elongation of Moon—Spica +40; 5 +38;40 —1;25

a

Computed for 152;30° culminating, » (Alexandria).
b Computed from Tuckerman [1962-1964], and reduced by 0;3% which is my correc-

tion to Lhe solar longitude.

© Peters and Knobel 1915, 62, corrected for precession to +139.0.
4 Observed.

* Teters and Knobel 1915, 63, corrected for precession. P. V. Neugebauer [1914,
£4] makes the longitude of 8 Sco 217;11° in +139.0.

f g compute the Moon's true longitude, Piolemy takes the lunar cquation to be
—5:39% but if accurately computed frem Plolemy’s table [Alm. v 8: Toomer, 286, it
is —0;9;52% Thus, Ptolemy’s computed longitude of the Moon should be reduced by
0;13% In contrast, the lunar equation [rom medern theory at the time of the observa-
tion was —6:39° So, the error in Ptolemy's theoretical equation at this observation
is =0;47°% while the error in the cquation he uses is —1;0° This accounts for the
agreement hetween Ptolemy’s lunar longitude and the modern value, which should
differ {on average) by 2 1;6°

# At the time reported for the obscrvation, the altitndes of Venus and the Moon
were respectively 18;34° and 19;99°% thus, the total refraction of cach was = 0;2.5%
Since the angle between the ecliptic and the altitude-circle through Venus was then
&2 160° Lhe refraction in longitude of each {not included in the computed longitudes)
was = —(;2°

" I0217;11° s the longitude of # Sco, Venus will be 0;7° ahead of 8 Sco at the time of
the obscrvation, and the Moon will be 0;47° behind the line through Venus and g Seo.

Elongation No. 4a: 138 Dee 16 {4:45")
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Sco]... the time was 4;45" after midnight since the Sun was about
Sagittarius 23° and the second degree of Virgo was culminating [onl
the astrolabe.

Elongation-Data Computed Ptolemy A

Longitude of Venus 217;23°
True Lunar Longitude 21648
Lunar Parallax (Longitude) +0;38
Apparent Lunar Longitude 217:25
E]ongation of Venus—Spica +39;25 439;50° | —-0;25°
Elongation of Venus—{ Sco +0; 5 +0;10 | =0: 5

Moon—Venus +0; 3 +0;15 | —0;12

Moon-Line through

Venus and [ Sco (Long.} —0; 4 0,0 | 40; 4

Elongation of Moon—Spica. +39;28  +40; 5 | —0;37

Elongation No, 4b: +138 Dec 16 (6;35")

All of the Moon-planet observations in this group involve two measure-
ments: the distance from the planet to the reference star (here Spica), and
distance between the Moon and the planet {in this case with reference to
an additional star). These yicld a distance between the Moon and the
reference star, which I shall treat as if it were an observation.

The difficulty with this observation is not only that all the errors are
large, but also that at the time given for the observation the Moon was not
even close to being co-lincar with Venus aud 8 Sco [¢f. Figure 3.1}, The
computed longitude of Venus should not be in error by more than +0;3° [cf.
Tuckerman 1962-1964, i 6, 12], while the longitude of the Moon is uncer-
tain by no more than +0;6% To achieve co-linearity, therefore, the Moon’s
acceleration would have to be increased by at least 4.0"T? a correction
which would leave the eclipses and occultations poorly represented.

The eireumstances Ptolemy describes could have been observed shortly
before Sunrisc, which occurred at Alexandria at 6;54% or 2:9% after the time
Ptolemy reports for the observation. The calculations for elongation no.
4h show the situation at 6:35% which corresponds to an error of exactly one
sign {30°) in the culminating degree.

Thus, if the observations were made either 2;01 (6;46h) or one culminat-
g zodiacal sign (i.e., at G;35h) after the time reported, Ptolemy’s deserip-
tion of the alignment of Scorpio, Venus, and the Moon would agree very
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well with the computed circumstances [ef. Figure 3.2], for both Venus and
the Moon would then be east of § Sco. Also the errors in the distances
between Venus and Spica and the Moon and Spica would be smaller.

+5:0° -
+4;0° -
Venus (o Zenth
(ModemZ//
+30° |- b
Venus ®
~ {Ptolemy)
p

+2;0° |-

.
+1;0° —~ B Seo

’ | | | | |
217:30° 217:,0° 216;30°

—X

Figure 3.1. Elongation No. 4a: +138 Dec 16 (4;45")
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+5;0° —
Prolemy
+4,0° -
Hn
Wl
+3;0° * Venus
{Modemn)
Venus ®
B (Ptolemy)
+2:0° -
.
00 — B Sco
+10 I ] | | I
217:30° 217,00 216;30°
A

Figure 3.2. Elongation No. 4b: 4138 Dec 16 (6;35")
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Elongation 3. 4138 Dec 22 Alm. xi 6: Toomer, 538

2 Antoninus: 6/7 Mechir

It was 4 equinoctial hours?? before midnight, for according to the
astrolabe the last degree of Aries [30°] was culminating, while the
longitude of the mean Sun was Sagittarius 28;41% At that moment
Saturn, sighted with respect to [Aldebaran] was seen to have a lon-
gitude of Aquarius 9;4°5 and was about 1/z° to the rear [east] of
the eenter of the Moon (for that was its distance from the Moon's
northern horn).

At the time reported for the observation Saturn was behind the Moon [see
Elongation No. 5a, Figure 3.3). Thus, like the previous observation, the
circumstances Ptolemy describes could not have been ohserved at the time
which he reports. Since the Moon set at 20;4% 4° it is possible that the time
(or rather the culininating degree) reported by Ptoleiny was that at which
he observed Moonset and thus the setting of Saturn.

The observed data Ptolemy reports for the distances between the Moon
and Saturn and (implicitly) the Moon and Aldebaran agree very closely
with the computed circumstances 1;0" earlier. See Elongation No. 5b for
the situation at 19;0" (apparent time, Alexandria).

Elongation 6. +139 Feb 9 Alm. v 3: Toomer, 223

2 Anteninus: 25 Phamenoth

We sighted the Sun and Moon . .. after Sunrise,*! and 5;15 equinoc-
tial hours before noon. The Sun was sighted in Aquarius 18;50°

3% Plolemy scems to have computed the time (20;0h) from the culmination of
30;30% using the position of the mean Sun as given, instead of the true Sun. The
latter gives 19;56" for the time, the solar equation being +0;58° In computing the
position of the Maoon, 1 have assumed that 30;30° was culminating on Ptolemy's
astralabe, and thus that the true time of the observation was 19;5613

40 At 19:56" the Moon's right ascension was 313;9°, its declination was —19;179
and its hour-angle was 76;14° For Saturn the corresponding quantities were right
ascension 313;1% declination —~19;15% and hour-angle 76;22% Both bodics sct at
t = 77;47° Thus, Moonset occurred at 2[];2,]‘2h plus 2 minutes {or relraction.
Saturn {behind the Moon] set at 20;1,4[]]' + 0;2}[

4! True Sunrise occurred at 6;38" and apparent Sunrise at 6;36]1. Cif. Ptolemy,
Alm. il 13: Sunrise = ;38"
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Elongation-Data Ptolemy Computed FaX

Apparent time (Alexandria) 20; oh 19;56h
Longiiude of Aldebaran 42;40° 43;52° +1;12°
Longitude of Saturn 309; 4 310; 7

Refraction (Longitude) +0;20°
Apparent Longitude of Saturn 309; 4 310;27 +1;23
Latitude of Saturn (-1;21)* —1;25¢
Flongation of Saturn-Aldebaran 266:244 26635 +0;11
Measured Angular Distance 93,36 93;25 —-0;11
True Lunar Longitude 309;40 311:11
Lunar Parallax {Longitude)} -1; 6 —0;57 +0; 9
Apparent Lunar Longitude 308;34 310;14
Refraction (Longitude) +0;19¢
Refracted Apparent Lunar Long,. (308 34) 310;33 +1;08
True Lunar Latitude )b —1;10
Lunar Parallax {Latitude) [ U 35)b —0;19

Appa,rent Lunar Iatltudo ( 1 35)b —1:29° +0; 7

Elongation of Moon—Sa,turn —U :304 +0; 6 +0;36
Elongation of Moon—Aldebaran 265,54 266;41 +0:47

® At 19;56" the altitude of Saturn was 1;7% and the altitude of the
Moon was 1;13°% The total refraction of each was, thus, +0;21° and
+0;20® respectively. At this time, the angle between the altitude
circle through Saturn and the ecliptic was 2219°

b Cf. Manitius 1912, ii 428-4299n22.

¢ The refraction in latitude of both Saturn and the Moon is +0;6°1
have not included it, since it does not affect the resuits.

¢ Observed.

Elongation No. 5a: +138 Dec 22 (19;56%)
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. 5a: +138 Dec 22 (19;56%)

Elongation Data Ptolemy Computed A

True Lunar Lengitude 310;35°

Parallax (Longitude) —0;54

Refraction (Longitude) +0; 47

Apparent Lunar Longitude 309;45

Apparent Longitude of Saturn 310;11°

Flongation of Saturn—Aldebaran | 266:24 266;19° —0; 5°
Flongation of Moon-Saturn —0:30 —0;26 +0; 4
Elongation of Maon- Aldebaran 265;54 265;53 -0; 1

® AL 19;0}l the Moon’s altitude was 12;40°% Saturn’s altitude was
12;15% and the total refraction was =2 +0;4° for both. The an-
gle between ihe ecliptic and the altitude-circle through Saturn
was =z 24% Salurn’s ‘apparent longitude’ incudes the correction

for refraclion.

Elongation No. 5b: +138 Dec 22 (19;09")
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and as Sagittarius 4° was culminating. The apparent position of
the Moon was Scorpio 9:40° . ..

The observation could not have been made more than 8 minutes earlier,
since the Sun would not have been completely above the horizon, Fur-
thermore, even if the observation were made just at Sunrise, the change
in refraction would increase the error. Thus, the error shown is very nearly
the minimum possible under any assumption.

Elongation-Data Ptolemy  Computed A
Apparent Time {Alexandria) 6:45" 6450 @
True Solar Longitude 318:50° ¢ 319;23° +0;33°
Refraction {Longitude) ~(;12°
Apparent Solar Longitude {318;50) 315;11 +0;21
Lunar Equation —T:404 =731 +0; 9
True Lunar Longitude 216;40 220:53
Parallax (Longitude) 0; 0 0, 4
Apparent Lunar Longitude 219;40 220:49 +1;19
Elongation of Moon-Sun (Long.) 260;50 261;38 +048
Measured Angular Distance 99;10¢ 98,22 —(k48

* Computed from 244:30° culminating, 3 (Alexandria) = 31;122

b Computed: 318;44°

© At 6:45" the Sun's altitude was 13405 the total refraction was 0;18°
and the angle between the ecliptic and the Sun's altitude-cirele was
1320

7 Observed.

Elongation No. 6: +139 Feb 9

Despite the large error in the observation, the lunar equation Ptolemy de-
rives is quite accurate. This is largely duc to the error in his solar equation,
which is near its maximum (—0;26°), and also to the cffect of refraction,

Elongations T and 8. 4139 Feb 23 Alm. vii 2: Toomer, 328

2 Antoninus: & Pharmuthi

when the Sun was just about to set in Alexandria,*? and the last
degree of Taurus was culminating, i.e., 5;30 equinoctial hours after

32 Apparent Sunsct at Alexandria (w = 31;12°) occurred at 17;37%
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Elongation-Daia Ptolemy Computed M

Apparent Time {Alexandria) 17;300 17;29% ¢

True Solar Longitude 333; 3° 333:44° +0;41°
Refraction (Longitude) —0;21°

Apparent Solar Longilude (333; 3) 334; & +1; 2
True Lunar Longitude 66;11

Parallax (Longitude) +0; 5

Apparent Lunar Longitude 65;10 66;16 +1; 6
Apparent Flongation of Meon-Sun 97, 7,30°¢ 9211 +0; 4

* Computed from 59:30° culminating, ¢ {Alexandria) = 31;12°

b At 17;3011 the Sun’s altitude was 1;10% the total refraction was 0;21.5°%
and the angle between the ecliptic and the altitude-circle through the
Sun was == 10°

¢ Observed.
Elongation No. 7: +139 Feb 23
Elongation-Data Ptolemy  Computed A
Apparent Time (Alexandria) 18; b 17;59" @
Longitude of Regulus 122;30° 124; 3° +1;33°
True Lunar Longitnde 66;27
Parallax {Longitude) —0; 28
Apparent Lunar Longitude 65;20 66;25 +1; 5

Elongation of Regulus -Moon 57;10° b7:38 +0;28

* Computed from 67;30° culminating, ¢ (Alexandria) = 31;12°

b B
Ptolemy estimates that the Moon’s parallax changes by —0;5°
between the two observations, In fact, it changes by —0;6°

® Observed.

Elongation No. 8: +139 Feb 23
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noon, ... we abserved the apparent distance of the Moon from the
Sun (which was sighted at about Pisces 3°) as 92;7,30% Half an
hour later, the Sun now having set and Gemini 7;30° culminating,
the Moon was sighted in the same position [with respect to the
astrolabe ring], and [Regulus] had an apparent distance from the
Moon, [as measured] by means of the other astrolabe [ring), of 57;10°
towards the rear [east] along the ecliptic.

In the first observation [sec clongation no. 7], the error duc to neglecting
refraction very nearly compensates for the error in tolemy's solar equation
(—0;22°). In the second observation [see elongation no. 8], the position
of the Moon is in good agreement with the modern position except for
the systematic error in Ptolemy's equinox (+1;6°). Thus, apart from this
systematie error, the crror in the longitude of Regulus ardses almost entirely
from the error in Ptolemy’s measurement of the distanee from Regulus to

the Moon [¢f. Kepler 1607, 383].

Elongation 9. +139 May 17 Alm. ix 10: Toomer, 461

2 Antoninus: 2/3 Ephiphi

We observed the planet Mercury... by means of the astrolabe in-
strument. [t had not yet reached its greatest elongation as evening
star. When sighted with respect to [Regulus], it was observed at
a longitude of Gemini 17;3°; and at that moment it was 1;10° to the
rear [east] of the Moon's center. The time at Alexandria was 4;30
equinoctial hours before midnight ... since according to the astro-
labe, the 12th degree of Virgo!? was culminating, while the Sun was
in about Taurus 23°

Ptolemy’s distance from the Moon to Regulus is in good agreement with the
computed distance, but his distance from Mercury to either body is in error
by about 1/:°% Mercury could not have been seen 1;10° ahead of the Meon,
since the Sun sct only /2" before the time reported for the observation.

43 Toomer and Halma [1813-1816, ii 183] understand ‘the twelfth degree of
Virgo, whereas Manitius reads ‘Virge 0:5°. The first reading is undoubtedly
correct since, according to Ptolemy, Virgo 0;5° would culminate at 18;47" instead
of 19;30% when Virgo 12;30° culminated.



Lunar Observations in the Almagest 115

Elongation-Data Ptolemy  Cownputed A
Apparent Time {Alexandria) 19;30" 19;30"
Longitude of Regulus 122;30° 124; 3° +41;33°
True Longitude of Mercury 77:30 78;28"
Refraction {Longitude) +0; 4°
Apparent Loungitude of Mercury " (77,30) 78;32 +1; 2
Elongation of Regulus—Mercury 45; 04 49;31 +0;31
True Lunar Loogitude 77:10 78:43
Parallax {Longitide) —0;30 —0;32 -0; 2
Apparent Lunar Longitude 76;20 77,51
Refraction (Longitude) +0; 4°
Apparent Refracted Lunar Longitude {76;20) 77:55 +1:35
Elongation of Moon-Mercury —1;10 —0;37 +0;33
Elongation of Moon-Regulus —46;10 —46; 8 +0; 2

¢ See 112042, ahove.

b Computed from Tuckerman [1962-1964, ii] and corrected by —0;3°

€ At 19;30" the altitude of Mercury was 13;12° and the altitude of the
Moon was 12;35% The total refraction was 0;4% and the angle between
the ecliptic and the altilude-circle through Mercury was 2223°

d Observed.

Elongation No. 9: +139 May 17

Flongation 10. 4139 May 30

2 Antoninus: 15/16 Ephiphi

Alm. x & Toomer, 499

three days after the third opposition,... 3 equinoctial hours before
midnight, The twentieth degree of Libra was culminating according
to the astrolabe, while the mean Sun was in Gemini 5;27° at that
moment. Now when [Spica] was sighted in its proper position [on
the instrument] (176;40°), Mars was seen to have a longitude of
Sagittarius 1;36° At the same time it was obscrved to be the same
distance (1;36°) to the rear [east] of the Moon’s center.

No error in the time of the observation will significantly alter the error of
nearly a degree in the observed distance from Mars to Spica. This datum is
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curious, since Ptolemy seldom reports measurements made with his astro-
labe to fractions cther than multiples of 0:10° If the distance between Mars
and the Moon was estimated, rather than measured, the error of 0;36° is

not unreasonable, since the distance in latitude between the two was more
than 6°¢

Elongation-Data Ptolemy Computed A
Apparent Time (Alexandria) 21; pb 121; 1h e
Longitude of Spica 176;40°  177;58° +1;18°
Longitude of Mars 241:36  242; 1®
Latitude of Mars -3;14
LElongation of Mars—Spica 64;56 64; 3 ~0:53
True Lunar Longiiude 239;20 240,22 +1; 2
Parallax (Longitude) +0;40 +0;39 —-0; 1
Apparent Lunar Longitnde 240; 0 241; 1 +1; 1
Apparent Lunar Latitude +3;21
Elongation of Moon—Mars —1;36 ~1; 0 +336
Elongation of Moon-Spica 63;20 63; 3 —0;17

* Computed from 200;30° culminating, ¢ {Alexandria) = 31;12°

* Computed from Tuckerman [1962-1964, ii] and corrected by
+0;6° to compensate for a correction of —U;3° in the Earth’s
heliocentric position.

Al 21;0" the altitude of Mars was 2227 and the altitude
of the Moon was = 31° The total refraction of both was less
than 0;2° and has been peglected here. The angle between the
ecliptic and the altitude-circle through Mars was = 136°

Elongation No. 10: +139 May 30

Elengation 11. 4139 Jul 11 Alm. xi 2: Toomer, 520

2 Antoninus: 26/27 Mesore

before Sunrise,* i.e., about § equinoctial hours after midnight (for
the mean longitude of the Sun was Cancer 16;11° and the second
degree of Aries was culminating according to the astrolabe). At that

41 Apparent Sunrise occurred at Alexandrda (i = 31;129) at 5;0", and true Sun-
rise at 5;2*!
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moment Jupiter, when sighted with respect to [Aldebaran), was seen
to have a longitude of Gernini 15;45% and also had the same apparent
longitude as the center of the Moon, which lay to the south of it.

Elongation-Data Ptolemy  Computed A
Apparent Time (Alexandria) 5 Qb 4:58h o
Longitude of Aldebaran 42;40° 43;52° +1;12°
Longitude of Jupiter 75:45 76;346
Latitude of Jupiter —=1;55
Elongation of Jupiter—Aldebaran 33; 5° 32:42 —0;23
True Lunar Longitude 74;50 75;38 +0;48
Parallax {Longitude) +0;35 +0;42 —0;13
Apparent Lunar Longitude 75,45 76;20

Latitude (—-2;10) -3;23
Elongation of Moon-Aldebaran 33; 5 32:28 —0:37

* Ptolemy takes 5;0b as his datum, but this must have been
computed using the mean Sun {106;11%) instead of the true Sun
{104;41°), With the Sun at 106;11% the culmination of 2;30° yields
a time of 4;59% while the same culminating degree with the Sun at
104;41° vields a time of 5;5" [cf. clongation no. 5). Since the Sun
rose at 5;0% the actual time of the observation must have been a
few minutes earlier. I have computed the position of the Moon
far 4;580

b At S;Uh the altitude of Jupiler was =2 25% while the altitude of
the Moon was = 23° The total refraction of each was = 0;1°% which
I have omilted in Lthe computations.

® Obscrved.

Elongation No. 11: 4139 Jul 11

At the time of the observation, the center of the Moon had not reached
the longitude of Jupiter, but the edge of the Moon’s disk was south of
the planet.

Errors in Ptolemy’s elongation-observations and data

The errors of the observations of elongation discussed above arc collected
in Table 3.8. Table 3.8a shows the errors of the observations which involve
only the Moon and some reference body, while Table 3.8b gives the errors
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of the observations which involve the Moon, a planet, and a reference star.
In Table 3.8a, column I gives the error in the ohserved distance (< 180°)
between the Moon and the reference body; column 11, the error in the
Moon's positive clongation from the Sun or star; and column 111, the error
in the datum which Ptolemy derives from the observation. Except for
elongations nos. T and 8, the errors in column I are the errors in the lunar
equations which Piolemy obtains from the eorresponding observations.

In Table 3.8b, the first three coluinns give the crrors in the observed
distances between {I} the planet and reference star, (II) the Moon and the
planet {or the Moon's position relative to the alignimnent with the planet
which Ptolemy describes in elongation no. 4}, and (III) the Moon and
the reference star. Colunns (II') and (IIT') give the errors in the Moon’s
sidereal elongation corresponding to the errors in columns II and I

For clongations nos. 4 and 5, the errors in brackets are those which result
if we assume that no. 4 was made at a time corresponding to an error of
one sign in the culminating degree {6;35"), ar 1;50" after the time Ptolemy
reports, and that no. 5 was made 1;0" earlier than the reported time. Al-
though there is no evidence that the observations were made at these times,
the circumstances Ptolemy describes could not have been observed at the
reported times, so these are not merely observational errors. Consequently,
[ have included only the error in Ptolemy's measurement of the distance
between the planet aud the reference star in nos. 4 and 3, in determining
the average errors.

Disregarding the signs of individual errors, I find the following average
errors for different groups of observations:

No. Elongation Observed Observer Average Number of
Frror Observations
1 Moon-Sun Hipparchus +0;29.6° 3
2 | Moon—Sun and Regulus Ptolemy +0:26.6 3
3 Planet-Reference Star Ptolemy +0;25.7 )
4 Moon-Planet Ptolemy +0:27.7 3
5 | Moon- Reference Star {Implicit) Ptolemy +0;18.7 3

The uniformity in the average crror for each group is striking. It is par-
ticularly noteworthy that the mean error in Hipparchus' three observations
is slightly larger than for Ptolemy's comnparable observations; thus, there 1s
no evidence that Ptolemy depended on Hipparchus’ *superior observations’
in determining the Moon's second inequality.

The relatively small average error in the Moon’s implicit elongation from
a reference star is something of an anomaly, since we should expect the av-
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A A A
No. Date Place Obs. Angle Lunatr Elong, Ptolemy’s Datum
I 1I ]
1 | —127 Aug5 Rhodes 10247 —0;24° 10; 1°
2 | =126 May 2 Rhodes +0:25 —0;25 +0;37
3 | =126 Jul 7 Rhodes +0;40 —0:40 +0;58
6 +139 Feb 0 Alexandria —0:48 +0:48 —0; 9
T | +139 Feb 23  Alcxandria +0; 4 +0; 4 +0; 4
8 4139 Feb 23 Alexandria +0;28 +0;28 —0;28
Table 3.8a. Errors in Single Observations of Lunar Elongation
from the Sun or a Star
A A
Observed Distance Flongation
No. Date Pluce
Star -FPlanet Moon-Planet Moon-Star | Moon-Planet Moon Siar
1 il 111 I L
4 | +138 Dec 16 Alexandria | —0;30° 40;40° —1;25° —0;40° —1:25°
[—0;25] [+0; 4] [-037]
9 | +138 Dec 22 Alexandria } —0;11 +0;36 —0:47 +0:36 +0:47
[0 5] 0,4 [0 1]
9 | +139 May 17 Alexandria +0;31 —0:33 —0; 2 +0;33 +0; 2
10 | +139 May 30  Alexandria —0;53 —0;36 —0;17 +0;36 —0:17
11 | +139 May 30 Alexandria | —0;23 +0;14 —0;37 —-0;14 —0;37

Table 3.8b. Errors in Multiple Observations of Lunar Elongation from

a Planet or Star
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erage crror i1 the result of two independent measurements to be larger than
the average error for only onc such measurement. Although the number
of observations in each group is too small to support a firm conclusion,
it seems likely that this distance was one of the observed data in at least
some of the observations. In particular, it seems probable that this was
the case in no. 10, where the distance between the Moon and Spica was
found to be 63;20% while distances between the Moon and Mars and Spica
and Mars were found to be 1;36° and 64;56°

Combining these results we find:

Mean and Number of
Probable Error Observations
All Lunar Elongation-Observations
excluding Nos. 4 and 5 +; 1.5° 4 0; 20° 12
All Observations excluding Lunar
Obszervations in Nos. 4 and 5 —0; 2.2 +0;20 17

Although the signs of the errors in the observed distances are not evenly
distributed, the signs of the corrections to the Moon's positive elongations
are so distributed (6-6). Thus, although Hipparchus’ observations all un-
derstate the distance observed, while Ptolemy’s tend to overstate it, these
systematic errors do not appear in the errors of the observed (positive)
clongations. Indeed, from the twelve secure lunar observations the mean
systematic error in the Moon's elongation iz only +0;1.5% which may be
regarded as negligible.*®* We may, therefore, take the probable error in an
observation of the Moon’s (positive) elongation from a star, a planet, or
the Sun to be +0;20°

Ptolemy’s reductions of the observations have normal errors of £0:5° in
his computed parallax, and 40;9° due to his neglecting refraction. More-
over, where the Sun is used as the reference body, as in Ptolemy's deter-
minations of the lunar equations from elongations nos. 1, 2, 3, and 6, we
should expect an additional average error of £0:15° because of the error in
Ptolemy’s solar equation. Assuming a random distribution of such errors,
we should thus expect the probable error in Ptolemy’s concluded data to
be £0;27° from observations involving the Sun and £0;22.5° otherwise.

The errors which we actually find are +0;23° from obsecrvations involv-
ing the Sun and +0;20° for all other observations excluding nos. 4 and 5.

45 Due to the relatively large errors in the observations the probable error of this
mean systematic errar is 4 0;5.8°% Thus, although the observations are in excellent
agreement with the adopted elements, they are of little value for determining the
Moon’s acceleration [see 122nd7, below].
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Ptolemy’s results from both types of observations are thus slightly better
than what we would expect from the errors of the cbservations and the
errors in his reductions. The difference, however, is small and possibly
accidental. I shall, therefore, assuinc that the probable error in the data
which Ptolemy derives from such observations is £0;25°

Since each of the elongation-observations discussed above yiclds results
which agree exactly with either those of another observation®® or (in the
case of the Moon—planct-star observations) with Ptolemy’s computed po-
sition of the Moon, these are probably neither random observations nor the
only ones of their sort which Ptolemy made. Although it is possible that
Ptolemy altered the reports of the observatious to yield these accordant
results, assuming that he did so fails to explain how he obtained his values
for the second lunar inequality and for precession, which agree closely with
what he should have found. Furthermore, in reducing observations nos.
1, 2, 3, 4, and 6, Ptolemy makes significant mistakes in computing the
positions of the Sun or Moon, which if corrected would destroy the exact
agreement which he appears to find and also reduce the quality of his re-
sults. These errors suggest, therefore, that the observations themselves are
honestly reported.

This is not to say that all of the observations are accurately reported. As
noted above, Ptolemy could not have observed 8 Sco, Venus, and the Moon
in a straight line at the tine he reports in clougation no. 4, and Saturn
was covered by the Moon at the time reported for no. 5. In view of the
other evidence, however, it is more plausible to assume that Ptolemy either
mistakenly recorded the culminating degree or used the time of a different
observation on the same night in working up these observations, than to
assuine that his reports were elaborate fabrications.

To explain the apparent agreement among Ptolemy’s results we need
only assume that he posscssed a considerable number of similar observa-
tions and that he selected those which illustrated the point he wanted to
demonstrate, Such agreement need not have been forced, since for a suffi-
cient number of observations the random errors in both the observations
and their reductions should yvield a certain number of accordant results.

We have no way of knowing whether the observations Ptolemy reports
reflect the general quality of the observatious available to him. The criteria
of selection discussed above, however, should not greatly affect the quality

1% 1n the case of the observation of Regulus the result yields exactly the value
of precession which Ptolemy should have found, and which he demonstrated with
observations of lunar oecultations and stellar declinations. Furthermore, he says
that he also found the same result from similar observations of the other bright
stars along the ecliptic [Alm. vii 2: Toomer, 15].



122 MODELS AND PRECISION

of observations chosen. If anything, the errors in these observations may be
slightly larger than the errors in a truly random sample, since the results
agree with Ptolemy’s solar and lunar models and so to some extent reflect
the errors in these models. On the other hand, if Ptolemy “fudged’ his
reductions to obtain this agreement, then we have no reason to assume
that the observations are not typical. In either case, it seems doubtful that
the errors found in the observations reported should differ significantly from
the errors of such observations in general.

SUMMATRY

Table 3.9 summarizes the average errors found for different types of observa-
tions together with the errors in the data which Ptolemy derives from these
observations.*” Where the errors are in the chserved time of an cvent, the
corresponding error in (correction to) the Moon’s observed mean longitudes
or elongations is also shown.

In general, these errors are consistent with what we should expect from
carcful, naked-eye observations given the precision of the reports of the
different types of observations. The lunar eclipse-reports seldom state the
times with a precision greater than half an hour. If these eclipses had
been accurately observed and their times correctly given to the nearest
half hour, we would cxpect an average error of £71/z minutes. Thus, the
average additional error due to ‘clock-errors’ and to errors in observing the
recorded phases 1s probably on the order of £8 minutes. In contrast, the
times of the occultations are, with one exception, reported in integral hours,
leading us to expect an error of +15 minutes from the mmprecision of the
reported times alone. This would leave an average errer from other sources
of about 120 minutes, or more than twice that which appears characteristic

4T The mean systematic errors and their probable errors for observations of
eclipse-times, occultations, and elougations are:

Type of Observation Meant Error  Weight

Eclipse-times {16) +0;0.6° £0;1.4° 17.2
Occultations { 6) +0;1.1 2052 1.2
Elongations {12} +0;1.3 +0;5.8 1.0

Average +0:0.68£0;1.9 194

This error {epach: —250) corresponds to a correction te the assumed acceleration
in elongation of —0.09"T? +0.17"T? or to §p' = 2.53+£0.17%
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Type of Observation No. Errars inlthe Errors in
Observations Ptolemy’s Data
Lunar Fclipse-Times® 16 —~0;1.3" 4 0;10.6" +0;18"
{Elongations) (+0;0.6° 7 0; 3.6° F0; 9.1%)
Lunar Eclipse-Magnitudes
Babylonian 7| +0.74 +04¢ +0.7¢ £0.49
Alexandrian 5| —01d+to.25¢ —0.19 +0.254
Oceultations: Times® 6 | —0;2.2" £0;25" +11; 1* 4 0; 29"
{ Longitudes) (+0;1.1° F 0; 12.7° —0;25° 1 0;12°)
Measurements of Elongation® 12 +0;1.5° £ 0,20° +0;25°

* Mean epoch = —285. b Mean epoch = =123, © Mean epoch = 464,

Table 3.9

of eclipses. This larger error is probably to be expected from the difficulty
of seeing stars near the illuminated disk of the Moou, as well as from the
ambiguity of some of the reports,

The probable error found in the elongation-observations Ptolemy reports
is somewhat larger than what we might expect from the precision of £0;10°
which he claims to attain with his astrolabe. Each of these observations,
however, required two accurate sightings, one of the Moon or body to be
abserved, and the other of a reference body. Thus, the probable error in a
single reading of the instrument which corresponds to an error of £0;20° in
the measured elongation is 0;14% In view of the difficulties of observing the
centers of the Sun and Moon accurately, such an error is not unreasonable.

In computing the errors in each group of observations, I have excluded
the few observations which seemed so discordant as to suggest that signif-
icant non-observational errors affccted their reports. It is not surprising
that some of the observations should indicate such errors, in view of the
high probability of either an inadvertence on the part of the observer in
working up his observations at a later time, or, in the case of the pre-
Ptolemaic obscrvations, of seribal errors. Newcomnb [1878, 53] encountered
the same problem when analyzing the Arabian observations of lunar and
solar cclipses reported by Ibn Y#nus, finding that the errors in roughly
80% of the observations were normally distributed, while the rest were
‘so far from fulfilling this condition as to show conclusively that the law
in question (normal distribution) dees not hold, and therefore that the
arithmetical mean is not the most probable final result’
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The presence of anomalous errors is thus not unique to Ptolemy's re-
ports, and is probably to be expected in any group of early astronomical
observations. Because such errors dispropoertionately affect the results of
averaging, excluding them more accurately represents the general quality
of this type of observation.

Such discordant observations, however, were part of the corpus of obser-
vations available to Ptolemy, and they do reflect the quality of the data
with which he worked. Hence, in averaging Ptolemy’s errors I have gen-
erally included the errors from such observations. These errors account for
part of the difference between the average errors in Ptolemy’s data and
those in the actual observatious. Errors in Ptolemy’s reductions of the
observations and solar model account for the rest of the increase,

The relatively large errors characteristic of the observations of occul-
tations and elongations strongly supports Ptolemy’s preference for using
lunar eclipses wherever possible [Alm. iv 1: Toomer, 192]. Not only were
eclipses free from parallax, but they also gave the Moon’s position (relative
to the Sun) with substantially greater accuracy than the other types of
observations. Thus, Ptolemy’s rejection of observations other than eclipses
in cstablishing his lunar model at syzygy was practically, as well as log-
1cally, sound.



The Errors of Ptolemy’s Lunar Parameters

Compared with the Errors of His Observations

The aim of this chapter is to determine whether the accuracy of Ptolemy's
lunar parameters is consistent with the average errors in the observations
which he reports, as found in the preceding chapter. For convenicnce, I
will divide these parameters into two groups. One consists of the mean
motions of Ptolemy’s lunar arguments and the values of these arguments
in Ptolemy’s time; the other includes the parameters of the model by which
Ptolemy depicts the inequalities in the Moon’s motion.

The parameters in the first group can be compared directly with their
modern equivalents and their errors thus casily determined. To compare
these errors with what we would expect from the errors of Ptolemy’'s ob-
servations, I have departed from Ptolemy’s actual procedure and assumed
that cach parameter was determined independently of the others, and also
that in each determination no error was introduced by errors in the other
parameters. In fact, Ptolemy determines several of his parameters simulta-
neously, so that the errors are not independent. This does not significantly
affect the results, however, since my purpose is to ascertain the minimum
probable errors of such determinations.

The parameters which depict the inequalities in the Moon's motion ac-
cording to Ptolemy’s lunar model are more difficult to compare meaning-
fully with modern theory. This is partly because Ptolemy’s model is not
formelly equivalent to Kepler-motion in an ellipse, so that the errors in his
inequality do not arise fromn the errors in his parameters alone. Instead, the
limitations of his model, even with optimal parameters, produce periodic
errors which are often greater than the errors due to his parameters. Thus,
one aim in discussing the periodic errors in Ptolemy’s lunar model will be
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to distinguish between the errors due to his parameters and those due to
the model which he adopts.

A further difficulty arises in choosing the proper quantities in the modern
lunar theory with which to compare Ptolemy’s parameters. It 15 possible
to express the general lunar mmequality according to Ptolemy’s model as a
trigonometric series and to compare the coefficient of each term with the
coeflicient of the ferm with the same argument in modern theory. Such
a comparison may be found in Biot 1848, 703, and also in Kempf 1878,
35, where the errors in Ptolemny’s parameters appear as errors in the co-
efficients of the principal terms of the two largest lunar inequalities [cf. also
Tannery 1893, 213].

The principal shortecoming of such a comparisorn is, on the one hand, that
it does not accurately reflect the circumstances from which Ptolemy derived
his parameters and, on the other, that the quantities which are compared
with the modern coctlicients differ from the quantities Ptolemy actually
determined. This is particularly true of the comparison of the ‘principal
elliptic term’ with the corresponding coefficient of sind in the expansion
of the general inequality according to Ptolemy’s model, since the concept
of a general term equivalent to the mean equation of center for all elonga-
tions plays no role in Ptolemy's theory. Instead, Ptolemy first determines
the Moon'’s cquation of center at syzygy and then introduces a further
inequality based on observations at quadrature and octant, which varies
with the Moon’s elongation. Thus, an evaluation of Ptolemy’s principal
lunar incquality should be made for syzygy rather than for all elongations;
whereas an evaluation of his ‘lunar inequality depending on the Sun’ [Alm.
v 3: Toomer, 264) should be made for quadrature and octant.

At these synodic configurations many of the higher harmonics in mod-
ern lunar theory take on the arguments of the principal terms and, thus,
should be included in the comparison. These terms are ignored by Kempf
[1878, 31], who compares Ptolemy’s lunar equation at these elongations
with the principal terms of Damoiseant’s lunar theory [1827]. Although the
neglected terms are small, they do affect the results of the comparisons and,
in particular, the coefficients of the omitted terms at these elongations.!
Consequently, it scems more convenient to make a new comparison of the

1 In general, the contribution of such harmonics to a given coeflicient differs for
different synodic configurations. Thus, for example, the coefficient of the annual
equation, whose principal term is —11°10” takes on ihe values 14’20/ 81 and
1110* at syzygy, quadrature, and octant respectively, due to the inclusion of
terms with arguments e,£ 2nl), which appear as terms with argoment a; at
these synodic configurations, .
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terms in Piolemy’s lunar equation with their modern equivalents taken from
Brown [1919, 8] than to attempt to revise the defails of Kempf’s analysis.

Detailed descriptions of Ptolemy’s lunar model may be found in Delam-
bre 1817, 1i 142-239; Bict 1843, 694-703; Kempf 1878, 1-37; Tannery 1893,
211; and O. Neugebauer 1957, 193-198 and 1975, i 53-144. In order to in-
troduce the terminology and symbols used in the following discussion, let
us here review the principal features of this model.

In Figure 4.1, () is the center of the Earth and 0.5 points in the direction
of the mnean Sun. Therefore, the relationships shown in Figure 4.1 occurin a
reference system which rotates with direct motion relative to the equinoxes
with a velocity equal to the mean motion of the Sun. The center of the
Moon's epicycle is at €, where ZC'(}S is equal to the mean elongation of the
Moon from the Sun, D. The distance of the center of the Moon’s epicycle
from €} 1s determined by letting a point F, at a distance ¢; from O, revolve
in the opposite direction to OC in such a way that ZSOF = —D and, thus,
LFQC = 2D. The distance FC is taken to be constant and equal to 1 —ey.
Thus, the distance, Q€ = R, may be found from the relationship,

R* — 2Re; cos2D — {1 — 2e;} = 0.

At syzygy (D = 05180°), R becomes 1;0, its maximurn; but at quadrature
it reaches its minimum, 1 — 2e;.

The Moon at M moves on an epicycle of radius r in the direction shown.
The Moon's mean anomaly is measured from the line NC H, where N is the
point on the extension of FO which is at a distance ¢; fromn O and in the
opposite direction from F. At syzygy and quadrature, NCH coincides with
the line OC, so that the mecan anomaly (&) is measured from the apogee of
the Moon’s cpicycle (A) as seen from O. At other elongations, however,
the prosneusis (k) must be added (algebraically) to the mean anomaly in
computing the lunar equation.

The lunar equation (g) is the difference between the Moon's true elon-
gation from the mean Sun and its mean elongation. For any given value
of D, the equation may be represented by motion on an epicycle of radius r
and distance It from 0. This is equivalent to eccentric motion on a circle
having a radius of 1;0 and ccecentricity e = r/E. In discussing the errors in
Ptolemy’s lunar equation at syzygy, quadrature, and octant, [ shall use the
term *eccentricity’ (in reference to Ptolemy’s model) as synonymous with
the ‘radius of the lunar epicyele at unit distance’ Where it is desirable
to distinguish between parameters in Ptolemy’s theary and their modern
equivalents, I have used primes to denote Ptolemy’s parameters.

In discussing the errors characteristic of different types of lunar obser-
vations in chapter 3, I used the terms ‘probable error’ and ‘average error’
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N

Figure 4.1. Ptolemy's Lunar Model

interchangeably. In analyzing the observational errors, I have disregarded
the few crrors which scemed too large to have been caused solely by errors
of measurement, and take 67.4% of the standard deviation of the rest as
the probable error of the group of observations being considered.

Aries |
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In what follows, I shall assume that these characteristie errors of observa-
tion obey the usual rule for combining independent errors, namely, that the
probable error (A) resulting from the combination of several independent,

errors (A;) is
A= /z AL (1)

Ta compare the errors in Ptolemny’s lunar model with the errors in his ob-
servational data [cf. chapter 3], | have determined the probable error which
arises from each term in the trigonometric series expressing the error in
Ptolemy’s lunar incquality. Assuming that all valucs of a term's argument
are equally likely, the probable error (i.e., the median error disregarding

sign) of a term, ¢;sin Ay, 152

1
ﬁcﬁ (2)

whereas the compuosite probable error for the whaole expression is®

A; = ¢;sindh’ =

-1
/_\.:?2- > ek (3)

? In a sinusoidal distribution of errors, the probable crror is the same as the
standard deviation & found from

Imw
= f}ﬁf cilsin?d-dA; = 1/2(:{2.
i}

It seems preferable, then, to use the probable error found in (2) instead of the
{smaller} average error, _

Al = %c,‘.
3 Equation (3) holds for expressions which include terms of the form ¢;sin{n4;)

and ejcos(nA;), as well as terms, ¢;sin{nA;), where lhe arguments are indepen-
dent. This follows from the fact that

21—”. fozw(azsin?fl,' + bcos?A;)dA; = 1a(a® + b%)
and

E‘ﬁf;"(azsinzzﬁli + b%sin22A; + cZsin?34; ... )dA; = Yala® + 82 + c2)...



130 MODELS AND PRECISION

Errors in the mean motions of Ptolemy’s lunar arguments

Four lunar arguments are tabulated in the Alimagest. These are the Moon's
mean motion in longitude (L'), anomaly (@), argumnent of latitude (#),
and elongation (D’). Only three of these are independently determined,
since the mean motion in longitude is derived from the mean motion in
elongation and the mean motion of the Sun (LY).

The two arguments, L', and D’ have counterparts in the fundamental
elements of modern lunar theory and, thus, are directly comparable with
the mean motions and the values of these arguments. Ptolemy’s arguments
of anomaly (&'} and latitude (F') are, however, slightly different from those
used in modern theory. Piolemy counts the Moon's anomaly from the
apogee of its epicycle, which is equivalent to the apogee of its orbit, whereas
today the anomaly 1s counted from the Moon’s perigee. Thus, if .E:n 1s the
Moon's moedern mean longitude, and P the longitude of its perigee, the
angle equivalent to Ptolemy’s mean anomaly 1s

G=1L,—P+180° (4)

Similarly, Ptolemy’s argument of latitude is measured from the north-
ernmaost point of the Moon’s orbit, instead of from the ascending node as is
the modern practice. Accordingly, if ¥ is the longitude of the ascending
node, the angle equivalent to Ptolemy’s argument of latitude is found from
the fundamental elements nsed in modern lunar theory by

F=Lpn—N+90° (5)

The mean motions of Ptolemy’s arguments are, of course, equivalent to the
mean motions of their modern counterparts, since the phase-angle disap-
pears on differentiating.

Ptolemy derives D' @ and F' from abservations of eclipses in such a way
that these arguments are unaffected by the error in his mean motion of the
Sun. From {4} and (5}, however, it 1s cvident that Ptolemy’s positions and
meat motions of the Moon’s apogee and node are affected by the same error
in the Sun'’s mean longitude as is the mean longitude of the Moon. Con-
sequently, this error affeets only the system of reference in which the Moon
moves and not the arguments from which the lunar inequalities are derived.

Table 4.1 gives the mean (Julian) centennial motions of the fundamental
clements and arguments. Those shown iu part I are from modern theory
[Nautical Almanac Office 1961, 98] for epoch 1900.0, corrected in accor-
dance with the elements derived in appendix 1. In part II, the same ele-
ments and the principal arguments derived from them are reduced to epoch
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1. Modern Elements 190¢.0

#({;m)
#(Ls)
#(D)
#(P)
()

+1336" 307° 53" 36.89" + 21.52"T + 0.0204" 7%
+100"  Q° 46’ 10.79" + 4.18"T
+12367 307° 7' 26.10" + 17.34"T + 0.0204" T2
4117 109° 2' 2.52" — 74.34"T — 0.135 "T2
—57 134° & 31.23" + 14.96"T — 0.024 "7T?

I1. Modern

Elements Ap 0.0

B L)
p( L)
#(D)

()

p(N)
1(a)
#(F)

+13367 307° 46' 55.38" 4+ 20.74"T + 0.0204"T?
+1007  0° 44 51.37" + 4.18"T
+12367 307° 2/ 4.02" + 16.56"T + 0.0204" T

+117 109° 24’ 46.22" — 69.21"T + 0.135 "1
—57 134° 13/ 24.13" + 15.87T"T — 0.024 "7
+13257 198° 22' 9.16" + 89.95"T — 0.1554"T*?
+13427 82° 0" 19.51" + 4.87"T + 0.0444"T7

III. Ptolemy’s Mean Motions

#{ L)
n(L)
p(D')
pu(a')

p(F')

+13367 307° 21' 37.47"
41007 0° 197 42.76"
+1236" 307° 1' 54.71"
+1325" 198° 29’ 56.27"
+13427 82° 2’ 42.82"

1V, Errors in Ptolemy’s Mean Motions

Ap(L!) +0° 25 17.91" + 20.74"T + 0.0204"T*
Au(L) +0° 25' 8.61" + 4.18"T

Apu(D") +0° 0° 931" + 16.56"T + 0.0204"T*
Apfah) +0° 7' 47.11" + 89.95%T — 0.1554" 72
Au(Fh +0° 2’ 23.31" + 4.87"T + 0.0444"T2
Table 4.1, Expressions for the Centennial Mean Motions

of the Fundamental Lunar Arguments and for
the Errors in Ptolemy’s Mean Motions

131
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Figure 4.2. Errors in the Centennial Mean Motions
of Ptolerny’s Lunar Argurnents

AD 0.0. In part III are Ptolemy’s mean motions for the corresponding argu-
ments; and i part IV, the corrections which must be applied to Ptolemy's
motions to reduce them to motions from modern theory [cf. Figure 4.2}

The improvement in the accuracy of the mean motions of cach of the prin-
cipal arguments { D, @, and F') over that of the Sun’s longitude is striking,
Apart from the term due to the Moon's acceleration, about which Ptolemy
of course knew nothing, the difference between his mean motion in elon-
gation and that derived from modern elements nearly vanishes throughout
the whole period for which he reports observations.

For —293, the midpoint between the dates of the two eclipses which
Ptolerny uses to correct his provisional (Babylonian)* mean motions in
elongations and anomaly [4lm. iv 6], the error in his mean motion in elon-
gation is only —0;0.65° per eentury. In the 8.5 centuries between these two
eclipses, this amounts to an error of -0;5.6° in the observed motion in elon-

* Cf. Kugler 1900, 6-8; Aaboe 1955 and 1974; O. Neugebauer 1956 and 1975, i,
309-315; Toomer 1980, for discussions of the Babylonian origin of the provisional
mean motions of the lunar arguments which Ptolemy takes from Hipparchus.
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gation, or a total error in the measured interval between the two eclipses of
—12 minutes of time. Since the error in Ptolemy’s value for the difference
in longitude between Alexandria and Babylon slightly improves the agree-
ment between his mean motion and the modern value, the total error in
the interval between the two eclipses would have been = £20 minutes, if
the eclipses had been reduced with the proper longitude-difference.

In chapter 3, T showed that the probable error in the time of a single
eclipsc-midpoint used by Ptolemy was 418 minutes. Thus, we would expect,
an average error of +25 minutes in measurements of the time between two
eclipses, corresponding to an error in the Moon's elongation of +0;12.8°

Although the error in Ptolemy’s solar eccentricity is effectively reduced
at syzygy by the Moon's annual equation [see 144, below], the additional
probable error in each determination fromn this source and neglected terms
is +0;10.3° or, for two independent determinations, -+0;14.6° The total
probable error of an observed interval in elongation should, therefore, be
40;19.4% This is more than four times the error of the progress in elon-
gation which Ptolemy obtains from these two eclipses, and roughly twice
the error in the progress which he would have found had he used the cor-
rect longitude-difference between Babylon and Alexandria. Thus, his value
for the Moon's mean motion in elongation (or, more accurately, of the
Babylonian System B value, which Ptolemy accepts) is considerably more
accurate than the value we would expect from a single determination based
on a random pair of eclipses.

Ptolemy's mean motion in anomaly agrees less closely with its modern
equivalent than his value for the mean motion in elongation. For —293,
the effective epoch of Ptolerny’s determination, the error is —0;12.2° per
century, which corresponds to an error of —1:44° in the Moon’s progress
in anomaly in 8.54 centuries,

To compare this with the error we would expect from the errors of the
observations and the limitations of Ptolemy’s model, I assumed that the
Moon’s motion at syzygy can be described by a simple epicyclic model in
which the radius of the epicycle is € and that of the deferent is 1;0, 1 further
assumed that e and the mean longitude (L) are accurately known, and that
the equation (g}, which is equal to the difference between the mean and
the true longitude, is directly determined from observation.

Since g is small,

tang &g = —esina (6)

1+ecos@’
so that
A —(1+ecosi)’

S8y T T ecosd) 1.
Ag e(e +cosa) ’ €= (7)
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Also, Aa/{_\g 1s a minimum when a = 1809 at which point

Ag l1—¢
A= o ®)

Using Ptolemy’s value for e, 0:5,15, the minimum error (Aa) which would
arisc from an error Ag in the observed equation is

Aa > 10.4Ag. (9)

Since &@/A g becomes infinite at @ = arccos(—e), the probable error in @
caused by a given error in g will be considerably larger than that shown in
{9). The average crror is difficult to evaluate, however, and the minimum
will suffice for our purposes.

Following the same procedurc as we used to obtain the probable error
i1 a determination of the mean motion in elongation, we find the proba-
ble error in a single observed equation to be +0;13.7° From (9) such an
error would produce a probable error greater than £2;22° in the mean
anomaly obtained from a single determination. Thus, the probable error in
the progress in anomaly between two observations is greater than +3;21%
correspording to an error of £0;24° per century. In contrast, the error in
Ptolemy’s mean motion in anomaly is just half this amount; and his cor-
rection to his provisional mean motion of —(0;1,59.5° per century shightly
improves his value for this paramecter.

As noted at the beginning of this chapter, the assumptions {except for
that of epicyclic motion) from which T derived the minimum error in a
as a function of that in ¢ do not exactly correspond to Ptolemy’s actual
procedure, sinece he determines I, &, and ¢ simultancously from a triad of
eclipses. Since, however, the estimates derived above are for the circum-
stances most favorable for determining the anomaly, Ptolemy’s procedure
should lead to a substantially larger probable error. In any case, it is
clear that Ptolemy’s mean motion in anomaly is considerably better than
would be expected from a single determination, in view of the errors of the
observations available to him and the imperfections of his solar model.

To determine the correction to his provisional mean motion in the argu-
ment of latitude, Ptolemy selects two cclipses which satisfy the conditions
that:

(a) they be separated by the greatest passible interval of time,
(b) they be of the same magnitude, and
{(c) they occur when the Moon is at the same distance from the Earth

As Ptolemy points out, the Moon will be at the same distance from the same
node in the samc direction during two cclipses satisfying these conditions.
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Descending Ecliptic
Node

Figurc 4.3

The two eclipses Ptolemy chose for this correction occurred in —490 Apr
25 and +125 Apr 5, so that the effective epoch for this determination is
—183. For this date, the error in Ptolemy’s mean motion in argument of lat-
itude is ~0;2.54° per century, which corresponds to an error of —0;15.6° in
the progress in argument of latitude during the intervening 6.15 centuries.

Figure 4.3 shows the configuration of the Moon, the Earth’s shadow,
and the descending node at the time of these two eclipses. The error in
F' caused by an error (AM) in the recorded magnitude will be very nearly

0;2.5AM

AF =AF = 1
tan a° ( )’ ( U)

since both AF and AM are small.

Since a systematic error in the estimate of the magnitudes will have the
opposite effect of the error in F, depending upon whether the Moon has
passcd the node or not, we may combine the systematic and random errors
found for the Babylonian eclipse-magnitudes. The probable errors in the
cstimates of the magnitudes then become [cf. Table 3.5]

AM = 41 digit, for Babylonuian eclipses, and (11)
= £0.25 digit for Alexandrian eclipses. (12)

Censequently, from the error in the eclipse-magnitudes alone, we should
cxpect an error in F from two eclipses of 40;29.6% To this must be added
the probable error, £:0;19.4° due to the uncertainty in the combined times
of the eclipses and to the error in Ptolemy’s solar equation as reduced by
his omission of the Moon’s annual equation. Thus, the total probable error
in the mean progress in argument of latitude determined from a pair of
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eclipses should be +0;35% corresponding to an error in the mean motion
in the argument of latitude of £0:5.8° per century.

Again, Ptolemy’s actual error is less than half the probable error deduced
from the errors of the recorded obscrvations. In this instance, however, his
correction to his provisional motion in argument of latitude, +0;1.5° per
century, worsens the agreement with the modern value, and accounts for
roughly 60% of the total errer in this parameter.

In conclusion, we have seen that, although Ptolemy’s mean motion of
the Moon in longitude and the mean motions of the lunar apse and the
node are all affected by the error in his mean (tropical) motion of the Sun,
the mean motions of the lunar arguments which are determined directly
from lunar eclipses are not. Furthermore, the error in the mean motion
of each of these arguments is significantly less than what we would expect
from the average errors found in Ptolemy’s data and the errors introduced
into his determinations by failing to take account of the annual equation.

This may, of course, merely reflect the excellence of Ptolemy’s provisional
mean motions, since his corrections to them are very small (he makes no
correction to the mean motion in elongation). Indeed, Delambre [1817, i
xxvil] has suggested that Ptolemy’s corrections were introduced merely to
increase his readers’ confidence in his determinations. This unsupported
assurnption is doubtful, however, since the mean motion which Ptolemy
does not correct is the most aceurate of the three, and since he also would
have had no reason not to correct the provisional mean motions had he
found significant discrepancies.

Indeed, what s curious is that Ptolemy did not obtain larger corrections
than those which he applied, not because his provisional mean motions
required them, but because from the errors of the observations we would
expect significant deviations in individual determinations. In general, the
procedures which Ptolemy describes should have led to mean motions less
accurate rather than more accurate than those with which he started. Con-
sequently, it is difficult to avoid the conclusion that either Ptolemy was very
fortunate in his choice of eclipses or he had better reasons than he states
for adopting the mean motions which he did.

Errors in the mean arguments

Although it is possible to attribute the excellence of the mean motions of
Ptolemy’s lunar arguments to the accuracy of his provisional mean mations,
it is much more difficult to explain the consistent accuracy of Ptolemy’s
mean arguments themselves. Table 4.2a shows the corrections necessary
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A(LL) | +0;29,50° + 0;25,17.91°T + 10.37"T% + 0.0068"T3
A(D") —0; 0,16° + 0; 0, 9.31°T + 8.28"7? + 0.0068"T?
A(@") —0; 1, 8° — 0; 7,41.11°T + 45.00"T2 + 0.0518"7?
A(F" +0; 5, 1° — 0; 2,28.31°T + 2.44"T? 4 0.0148"73
A(LL) | +0:30, 6° + 026, 8.61°T + 2.00"T?

Table 4.2a. Errors in Ptolemy’s Lunar Arguments, AD 0.0

Year AE:W AD! Aa’ AF Ai';
—700 | —2;18,49° | +0; 5,22° | +1;29, 7° | +0;23,38° | —2;24,11°
—600 | —1;55,18 | 40; 345 | +1,11,48 | +0:2046 | —1;59,30
—a00 —1;32,20 | +-0; 224 | 4+0;55,56 +0;17,67 | —1:34,44
—400 | —1; 8,33 | 40; 1,19 |+0:41,33 | +0;15,12 | —1; 9,54
—300 | —0;44,30 | —0; 0,30 | 402839 | +0;12,53 | —0;45,
—200 —020,4 | =0; 0,2 | +3;17,14 | 40; 9,51 —0;20,
—100 | 4+0; 4,44 —0; 017 | 40, 7,18 | 40; 7,27 | 40; 5,

0 [ 40,2050 | —0; 0,16 | —0; 1, 8 | +0; 5 1 | +0;30,
+100 | +0;55,19 | +0; 0, 2 | —0; 8, 4 | 40; 240 | +0:55.17
+200 | +1;21, 8 |40; 036 | —0;13,30 | +0; 0,24 | +1;20,32
+500 | +2;40,39 | +D; 358 | —0;2044 | —0; 554 | +2:36,41
+1000 | +5; 0,13 | +0;15,12 —0; 2,11 —0;12,33 | +4:45, 1
+1500 | 4+7:27,42 | +0:33,37 | +0:55,11 | —0;20,50 | +6:54, 5

[ TS N T

Table 4.2b. Errors in Ptolemy’s Lunar Arguments: Tabular Values

to reduce Ptolemy’s mean arguments to those computed from Brown (cor-
rected in accordance with the adopted accelerations of the mean lougitudes
of the Sun and Moon), and Table 4.2b records the values of these corrections
for centennial dates from —700 to +1500.

The errors shown in Table 4.2b are plotted in Figure 4.4. Evidently,
the error in each of the three principal lunar arguments is much smaller
in Ptolemy’s time than at the time of the Babylonian cclipsc-observations
which he used, together with his own observations, to determine the neces-
sary corrections to the mean motions. This is more than a little curious,
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since nothing in Ptolemy’s procedure for determining the mean elongation
and anomaly should lead to a more favorable result at his own time than at
the earlier epoch. Indeed, as chapter 3 shows, the three eclipses Ptolemy
observed are in no better agreement among themselves than are the three
Babylonian celipses (ca. —720) which he uses in this determination.
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Figure 4.4. Errors in Ptolemy's Mean Lunar Arguments

Even more striking, moreover, is the small error at Ptolemy’s time in his
mean argument of latitude. In contrast to his procedure for determining
the cpach of the mean elongation and anomaly, he does not use the same
eclipses that he used to correct its mean motion in order to determine the
epoch of his mean argument of latitude. Instead, to aveid making assump-
tions about the relative sizes of the diameter of the Moon and the Earth's
shadow, he uses two other Babylonian eclipses which occurred at —719 Mar
8 (also used in determining the mean elongation and anomaly) and —501
Nov 19. These eclipses were required to satisfy the same conditions as in
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the deterrnination of the correction to the mean motion, except that they
had to oceur at opposite nodes rather than at the same node.”

Apart from this difference—which enables Ptolemy to solve a simple
linear equation in order to find the distance of the Moon from the node—
the procedure (and, thus, the probable error of the determination) is similar
to that used to correct the mean motion in argurent of latitude. Since none
of the eclipses used in the two determinations are the same, however, the
epoch established for this parameter at Thoth 1 of Nabonassar 1 [cf. 54n9,
above], is not directly connected to any observations in Ptolemy’s time.
It is, then, all the more remarkable that the argument of latitude—Ilike
the mean elongation and anomaly—is substantially closer to its modern
equivalent at Ptolemy's time than at the time of the earlier observations
which Ptolemy used to determine it. Also remarkable is the fact that the
errors in Ptolemy's lunar argnments are so small, especially at Ptolemy's
epoch. Comparing the probable error in each argument if determined from
a single observation with the errors in arguments in 4135 and —700, we

find:

Argument Probabte Error from Actnal Error
A Single Observation 4135 =00
D' + (:13.5° +0; 0.2° +0; H.4°
f_f {>)+ 220 -0;10 +1;29
B + ;25 +0; 2 +(24

In each case the errors for both 4135 and —700 are less than the probable
crrors from a determination based on a single observation. For Ptolemy's
time, moreover, the errors in his arguments are all less than the probable
error by more than a factor of 10. Thus, the crror i Ptolemy's mean
clongation in -+135 is less than 150 of what we would expect from a sin-
gle observation,® while the errors in the mean ancmaly and argument of
latitude are both less than /14 of their expected errors.

5 Ptolemy could as easily have used eclipses occurring on opposite sides of the
same node, but not eclipses on either the same side of the same node (such as he
used 1o correct the mean motion in argument of latitude} or on opposite sides
of different nodes, For a thorough discussion of the methods of Ptolemy and
Hipparchus for determining the epach of the Moon’s argument of latitude, cf.
Pedersen 1974,

© This is somewhat less than the probable uncertainty of the modern value; but
even allowing for this uncertainty, Ptolemy’s error should be less than !/z5 of the
probable error for a single determination.
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The smallness of these errors, particularly for Ptolemy’s time, cannot be
explained merely by the excellence of his mean motions of these arguments.
Even had he chosen his eclipses to demonstrate values for the mean motions
of his arguments similar to the values of his provisional mean motions, we
would expect to find errors in the mean arguments at the times of both
sets of eclipses similar to the probable errors shown above.

These comparisons show clearly that, apart from Ptolemy’s erroneous
value for the mean motion of the Sun, the error introduced into his lunar
model by the arguments and their mean motion is very small over the pe-
riod —750 to +150, and negligible at his own time (the maximum error
due to the error in anomaly is less than 0;1°). Although this speaks well
for Ptolemy’s lunar model, it unfortunately raises more questions than it
answers. The principal question, of course, is how Ptolemy obtained these
values, which in all six insiances are significantly closer to the modern val-
ues than one would expect in view of the average errors of the observation
which he reports and those introduced by his reductions of these observa-
tions. Not only are all of Ptolemy’s mean motions accurate to well within
the observational error over the entire period for which observations were
available, but the valnes of these arguments in his own epoch are excep-
tionally accurate. Since Ptolemy obtains his incan motions from pairs of
observations, we would expect some compensating crrors go that his mean
motions ought to be in better agreement with their modern equivalents
than are the actual values of the arguments themselves. We find just the
opposite, however, since at Ptolemy’s time the values of each of his lunar
arguments are in even better accord with the modern values than are his
mean motions.

Excellent agreement between the Ptolemaic and modern values far one
or two of these parameters would not be remarkable, since such agreement
could be accidental. But the probability of accidentally achieving much
better values for all six parameters seems too small to support the assump-
tion that this accuracy was wholly fortuitous. A more likely explanation
1s that these parameters represent the result of a larger number of deter-
minations. Such procedure would reduce the probable error of a single
determination quite sharply, especially since the errors introduced by the
reduction to the mean arguments would tend to cancel each other.

I shall rcturn to the question of whether Ptolemy might plausibly have
followed such a procedure, after discussing the periodic errors in his lunar
model. Suffice it to note here that, in contrast to his model for the Sun, the
mean motions and values of his lunar arguments are in excellent agreement
with the modern values for his own time and that, in general, they remain
so until well into the medieval period.
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Periodic errors in Ptolemy’s lunar model

The symbols and terms used in what follows as well as the characteristics
of Ptolemy’s lunar model at different elongations are deseribed at the be-
ginning of this chapter [cf. Figure 4.1]. In each comparison, I have used
the value of the parameters which Ptolemy adopts in his tables.” As above,
subscripted ‘m’ and ‘s’ denote quantities pertaining to the Meon and Sun
respectively.

Errors at syzygy. Ptolemy’s lunar model at syzygy is formnally equivalent
to simple eccentric motion on a circle of radius 1;0 and r = ¢’ = 0;5,15.
For cccentric motion, the equation may be represented by®

1 1 1 .
g =¢'sina+ Ee'z sin2a@ — 56'3 sin3a + Ee’d sinda. .. (13)
On substituting for ¢ = 0;5,15 = 0.0875 and converting from radians to
degrees, we obtain the coeflicients shown in Table 4.3, which also presents
the corresponding cocflicienis from Brown 1919, 8.

The differenees in the last eolumn form the cocflicicnts of a new series of
sine-terms which describes the error in Ptolemy’s lunar equation. Only the
error in the coefficient of sina is due primarily fo the error in the radius of
the epicycle (¢'): the errors of the coeflicients on the higher harmonics arise
for the most part from the assumption of cccentric (i.e., epicyclic) rather
than elliptic motion. If in (13) we replace ¢' by 2e (where € is the eccentric-
ity of the Moon's actual orbit), the error in Ptolemy’s equation becomes

Alg = +4.2"sing — 4'44.4" sin2a + 26.9" sin3a — 2.3" sin4a.  (14)
Thus, the error shown in (14) can be attributed to the limitations of

Ptolemy’s model rather than to the inaccuracy of his value for the lu-
nar eccentricity.

7 These are not always ihe precise values which Ptolemy finds in computing his
parameters, nor arc they the values which result from an accurate recomputation
of the parameters frem his data. For example, he obtains 055,13 and 0;5,14 for
the radius of the lunar epicycle at syzygy from the three Babylonian eclipses {ca.
—720) which he uses and from the three eclipses which he observed. Furthermore,
there is an error in his computed longitude of the Sun at the time of the first
Babylonian cclipse (—720), the correction of which would yield yet another value
for the radius of the lunar epicycle. For reasons of consisteney, and also becanse
of the large probable errors in individual determinations of such parameters, it
seemed preferable to use the values Ptolemy adopted in constructing his tables.

8 See appendix 3, for proof.
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I 1I Im
e Ptolemy Brown A(TI-T)
1| -5°0 482" —5°3 151" | —2' 26.9"
2| 413 94"  +8 581" | —4' 11.3"
3 —46.1" —22.5" +23.6"
4 +3.1" +1.07 —2.1"

Table 4.3. Coefficients of sin(na) in Lunar
Equation for D = 05 180°

Subtracting the coetficients of each term in (14) from the errors in the
corresponding terms given in Table 4.3, we obtain for the error in Ptolemy’s
equation (which is due to the error in his eccentricity),

A.g=-2'31.9"sina + 33.1"5in2a — 3.3"sin3a + 0.1"sinda... (15)

Thus, the errors in the coefficients of the higher harmonics of @ are due
almost entirely to the limitations of Ptolemy’s madel rather than to the
error In his eccentricity. Since Ptolemy could not have significantly reduced
these errors without changing his model, the optimal value for the radius of
the lunar epicycle is that which would make the coefficient of sina equal to
5;3,15% or

€ optimal = 0;5,17,35 (R = 1). (16)

For this value of ¢, the equation at @ = £90° would be F5;2,27° and the
maximuimn equation would be ¥5;3,39.4°

In accordance with the procedure deseribed above [cf. equation (3)], the
coefficients shown in colurnn 111 of Table 4.3 result in a probable error in &
single eomputed lunar equation of

Ag = +0;3.45° (17)

The maximurm error, which occurs near & = £57% 18 70;5.9°

In addition to the errors discussed above, there are a number of inequal-
ities at syzygy of which Ptolemy is unaware, and which thus contribute
to the errors of his computed positions and also to his determinations of
the mean elongation or argument of latitude from observed positions. The
inequalities with coefficicuts greater than 0;1° are:

a) Annual equation 4+14'19.8" sina, — 15.9" sin2a,
b) Reduction to ecliptic  —7'52.6" sin 2F

¢} Miscellaneous —5'33.2" sin{Gm + @,)

d) Miscellaneous 4+3'11.7" sint {am + (_1,)

P
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Since the arguments of each of these terms can take on any values inde-
pendently of the others, the probable error of a computed longitude due
to the omission of these terms is, in accordance with equation (3),

AX = +0;12.5° (18)

When the longitude of the Moon is determined with reference to the
Sun, as is the case in eclipses and direct measurements of the Moon's
elongation, the mean elongation resulting from the application of Ptolemy’s
equation will be affected not only by the errors in this equation, including
the contribution from omitted terms, but also by the error in Ptolemy’s
solar equation, which alters the computed place of the Sun. As shown
previously [cf. 46, above| the latter error is

Ag, = +23'24" sina, — 1'9" sin2a), + 9'12" cos al,.
SinCC fOl‘ an Observed ElOIlgatiOIl

D= J?Jm + 45— (f’m +gs)1 (19)

where g¢,, and g, are the actual equations of the Moon and Sun, it follows
that

D = Doy — (g0, — 93) — (Bgl, — Agl), (20)

where g], and ¢! are Ptolemy's equations for the Moon and Sun and where
Agl, and Ag) are the errors in Ptolemy’s equations. Accordingly, the
error in the mean elonga.tion of the Moon determined from an accurate
observation will be

AD = Agl — Ag',. (21)

Since the error due to omitting the annual equation has the same sign as
the principal term in the error of Ptolemy’s solar equation, the two crrors
will tend to cancel each other. Combining these errors, we find for the
error depending only on the solar anomaly, which I shall call the ‘apparent
anmial equation’,

AD(d)) = —9'4" sind@, + 55" sin 22, — 8'6" cos @, (22)

where @) is the Sun’s mean anomaly according to Ptolemy, and where
A(a!) has the same sign as the required correction to a computed longi-
tude (hence, the opposite sign from AD). The probable error in a single
determination due to errors depending only on the solar anomaly is, thus,

A(@) = +0;9.2°, (23)
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making the total probable error due to neglected terms equal to
AD = +0;11.2° (24)

For eclipses, however, where the reduction to the ecliptic may be neglected,
the probable error from neglected terms becomes

ADgq = +0;9.7° (25)

The combined probable error in Ptolemy’s equation during eclipses due to
both neglected terms (25) and to the errors of the particular model which
he assumes (17) is, then, £0;10.3% the major part of which iz due to the
error in his solar equation.

Taking this error with the average error in elongation found in Ptolemy's
eclipse-data, +0;9.1% we should expect the average error in individual de-
terminations of the ‘observed’ equation to be 40;13.7° Under optimal con-
ditions (@ = +90°), this would correspond to an error in the radius of
the lunar epicycle of = £0;14 (R = 1;0), although, in general, the error
would be considerably larger than this. As noted in the discussion of the
errars in his argument of anomaly and its mean motion, Ptolemy’s actual
determination involves three eclipses and simultaneous solutions for the
mean elongation and anomaly as well as the eccentricity. This procedure,
however, should not greatly affect the probable error of each determination.

It seems, then, that the probable error of a single determination of the
Moon’s eccentricity is roughly five times as great as the difference between
Ptolemy’s value for this parameter and the optimal value (0;5,17,35). More-
over, the contribution of the latter error to the total error of a computed
longitude is negligible in contrast to the error originating from the use of an
eccentric model and from the omission of inequalities with arguments other
than the mean anomaly. Indeed, Ptolemy’s value for the radius of the lunar
epicycle is sufficiently accurate that no improvement upon it would signif-
icantly alter the accuracy of his equation at syzygy, unless accompanied
by both the use of an equant model and the introduction of inequalities
equivalent to the omitted terms listed above.

Errors at quadrature. Ptolemy's lunar model at quadrature [Alm. v 2-4:
Toomer, 259-269] is similar to his model at syzygy except that the distance
of the center of the epicycle from the observer (R) is 0;39,22,(30) instead
of 1;0. Thus, the equation in this synodic situation is identical with that
of an cecentric model with eccentricity ' = 0;8 = 0.1333. Following the
procedure described above, we abtain the coefficients of sin (na), which are
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shown in Table 4.4 together with corresponding values from Brown 1919, 8,

I II 1
n Ptolemy Brown A(LI-T)
1| —7° 38 23.0" -7°29' 57.9" | +8" 251"
2 +30' 384"  +15' 36.3" | -15' 2.17
3 -2 43.0" —0' 46.7" | +1’ 66.3"
4 +16.5" +2.8" —13.3"

Table 4.4. Coefficients of sin{na) in Lunar
Equation for D = £90°

Although the principal coefficient agrees less well with its modern equiv-
alent than in the case of syzygy, the major cause of the error is still the limi-
tations of the eccentric model rather than the effective eccentricity assumed
by Ptolemy. The error in the lunar equation—assuming Kepler-motion in
an ellipse and substituting ¢, Ptolemy’s valuc for the eccentricity (i.c., 0;8),
for 2e—is

A'g=+489.8"sina —4'29.6"sin 2a + 19.8"sin3a — 14" sinda..., (26)

but the irreducible error of the model assuming eccentric motion as well
as the modern value for the eccentricity would be

A.g = +14.2"sina — 13'50.9" sin 2a 4 1'47.2" sin 3a — 12.4"sinda ... (27)

The value of the radius of the epicycle which would yield the same coef-
ficient for the principal terms as Brown's at distance R = 1;0 would be

e?I:rptima,l = 0;7,51,14,

while the distance R which would yield the same coefficient for r = 0;5,15
(r is the radius of epicyele) would be

Roptimal = 0340629 (e1 = 0;9,56,45).

At quadrature the values of the neglected inequalities are:

Annual equation +8'0.7" sin a, B
Reduction to ecliptic = —5'560.8" sin 2#
Miscellaneous +1'34.2" sin (@ + @. )

Miscellancous +1'45.5” sin(dm + @.).
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The ‘apparent annual equation’ [see 144, above), however, is
AD(al) = —15'23" sina, + 55" sin 28, — 9’0" cos @,. (28)

Taken together, the probable error in a computed longitude due to the
omitted terms is ~
AD=40;7.2° (29)

if the actual annual equation is included, and
A'D = +0;13.5° (30)

if the apparent annual equation is included.

Since Ptolemy's determination of the magnitude of the lunar equation at
quadrature depends upon the computed position of the Sun, (30) represents
the probable error in a single determination due to the omitted terms and
the error in his solar cccentricity. Furthermore, since Ptolemy sceks to
determine the equation when the mean anomaly is near £905 the error in
the coeflicient of the term with argument 2@ [cf. Table 4.4] would affect his
results very little. Thus, we need consider only the error in his observed
elongations, in addition to that shown in (30) above, to determine the
probable error in a single determination of the equation at quadrature.

In chapter 3, the average error of Ptolemy’s concluded data from meas-
urements of lunar elongations was found to be =5 4-0;25° Taking this as the
probable error of a single observation, we find that the probable error in
a single determination of the equation at quadrature is

Agops = £0;28.4° (31)

In contrast, the error in the principal term of Ptolemy’s equation is only
(0;8.4° Once again, Ptolemy’s value is significantly more accurate than
would be expected from a single observation, although the disparity is
not as large as in the case of syzygy. Conversely, if we assume a normal
distribution of errors, we find that the probability that two observations
should both yvield an error in the principal coefficient of less than 0;10° and
with the same sign is on the order of 0.01.

Errors at octant. Ptolemy's lunar model at octant consists of an epicy-
cle of radius r = (:5,15, whose center is R = (0;49,41° — 0:,1[),192)1/2 =
0;48,36,(1.5). Thus, the effective eccentricity in these synodic configura-
tions (D = £45°% 135°) is ¢/ = 0;6,29 = 0.108023, which valuc can be used
in the standard expression (13) for the lunar equation in eccentric motion.
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In contrast to the situation at syzygy and quadrature, however, the pros-

neusis (k) does not disappear at octant, so that the anomaly is increased by

k(D), where k is positive for D = 45% 225° and negative for D = 135°, 315°
In eonsequence, the expression for the equation at octant becomes

1 1
¢ = —¢'sin(@+k)+ Ee'zsinE(a + k) — 53’35i113(a;t k...
! = 1 2 . _ 1 13 . _
= ¢ cosksin& + ¢ cos 2k sin2a — ge cosdksinda...
‘. N R I N _
Fe 51nkcosai§e s1n2kc052a$§c sindkcosda. ..,

where the upper signs apply at D = 45% 225° and the lower signs at D =
1355 315° Since at octant

. £
k = arcsin
1-— €1

) = 1;59.3"

the mmerical valnes of the coefficients become those shown in Table 4.5a—b.

| 1) 111 v
n Ptolemy Brown A(NI-1Y  C{na@)piolfcos k
1|-6> 3 161" —6°17 55.9" | —14' 39.8" —6° 11' 17.1"
2 +18" 19.8" +13' 196" | -5 0.2 +20' 3.4"
3 -1 10.2" —37.7™ +32.59 —1' 26.6"

Table 4.5a. Coefficients of sin (na@) in Lunar Equation
for I = +45°% 135°

Column IV of Table 4.5a shows the values of Ptolemy’s coefficients of
sin {n@) which would result if the anomaly were not affected by prosneusis.
Thus, the difference between column IV and column I may be taken as the
effect. of prosneusis on the principal terms of the equation of center.

I It 111
Ptolemy Brown A(IT-T}

1 :Flo 1?] 6‘51r :Flo 19.‘ 37-9.‘] :F2.I 31-4"
+8 8.9 +3' 35.0" | £4' 33.9"
3 F50.9" F14.2" +36.7"

Table 4.5b. Coefficients of cos (na)
for D = 45° 225°
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As shown above for other synodic configurations, the major part of the
errors in the coefficients of the higher harmonics arises from the assump-
tion of eccentric circular motion, and so is due more to the model than
to its parameters. The coeflicients of the two principal terms, however,
merit further attention. The cocfficient of cosd@, which arises solely from
Ptolemy's prosneusis, is analogous to the term known as the evection [cf.
Brown 1896, 128], whose modern coefficient equals 1°16°26"" (the difference
between this value and 1°19°37.97 is due to the fact that the latter includes
the coefficients of the sines of other harmonics which become cocfficients
of Fcosit for D = +45° 225°). Thus, regardless of whether we consider
the evection proper, or its apparent equivalent at octant, it is evident that
Ptolemy's value for the evection is very necarly as accurate as his value for
the radius of the lunar epicycle at sygyzy.®

In contrast to Ptolemy’s coefficient corresponding to the evection, that of
the so-called ‘principal elliptic term’ agrees less well with its modern equiva-
lent. The reason for this is partly the effect of the prosneusis and partly the
fact that Ptolemy’s mechanism for increasing the apparent size of the lunar
eccentricity by pulling in the center of the lunar epicycle does not represent
the apparent eccentricity very well except near the extreme distances.

Although the average of the coefficients of sina at syzygy and quadrature
according to Ptolemy’s theory, 6°19'36" agrees very well with the modern
term, 6°17'56" [cf, Table 4.5a), this mean value occurs neither at D' = £45°
nor at mean distance (R = 0;49,41), but at a mean elongation slightly
greater than +45° Without prosneusis, the coefficient of sina at D' =
+45° (6°11'17") is roughly 0;8° less than the corresponding modern value;
while with prosneusis this difference roughly doubles, so that the total
difference between the coefficient of sine at octant and the mean of the
coefficients at syzygy and quadrature is 0;16,20° 1°

5 The ‘apparent evection’ found from Brown 1919, 8 becomes +1;13,22° at
syzygy and quadrature in contrast to 1;19,38° at octant. For Ptolemy, the ap-
parent evection at syzygy and quadrature (i.e., half the diflerence between the
coeflicients of sin @) 1s £ 1;18,45% whereas the coefficient of cos & at octant would
be somewhat less than 1;17,6%if the center of the epicycle were at mean distance
at octant. Thus, Ptolemy’s apparent evection exhibits a variation similar to that
found in medern theory, but with precisely the opposite phase. This variation
is not indicated in Tannery’s analysis [1883, 211} since the principal term in its

coefficient is e’e;, whereas Tannery neglects all terms smaller than e; %

1% The greater part of this last variation is represented by the term in Tannery’s
concluded expression for the equation, the magnitude of which is given as e'e;?
and which Tannery [1893, 213-213] says is roughly 0;18% In fact, however, the
total coefficient is slowly convergent, while e'e;? is equal to only 0;8,52°
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At octant, the principal terms in the Moon’s equation which are omitted
in Ptolemy's model are:

(a) The variation £39/20.9" (D = 457 225°)
b) The annnal equation 4+11'9.9" sina, — 1'20" cos a,
(b) q 5 L
(¢) Reduction to the ecliptic —651.6" sin2F + 50" cos 2F.

Including the error in Ptolemy's solar equation, we obtain for the ‘apparent
annual equation’

AD(a)) = —12"14" sina, + 10'32" cos &,. (32)

Excluding the variatien, the probable error in the elongation due to omitted
terms is

A D = 20;,12.78

and the probable error of a computed elongation due to the errors in the
coefficients of the terms in the equation is

AD = 4011.5°

The combined probable error in a computed elongation, disregarding the
variation, is thus very nearly

AD = 30:17.1°
Combining this with the probable error of an observed clongation, = £0;25°%
we obtain for the probable error in the determination of any additional
inequality from a single obscrvation

AD = +0;30.3°

an uncertainty which is nearly equal to the magnitude of the variation.

The complete coefficient,
eer? (1 + 5k et + 5e1? + T er® ... ),

is equal to roughly 0;14,45°% The remaining difference between this amount and
0;16,20° is due to a small additional term whose coefficient equals

eerd (14 4ey + 112,00,

which is neglected by Tannery.
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In conclusion, the parameters of Ptolemy’s lunar model represent very
well the principal terms of the two largest inequalitias in the Moon's mo-
tion. At the same time the constraints imposed by the geometrical model
Ptolemy assumes introduce errors significantly larger than those due to
his parameters, especially at intermediate elongations between syzygy and
guadrature. It is also evident that Ptolemy’s introduction of the prosneusis
18 needed merely to yield the proper correction for the evection at elonga-
tions other than syzygy and quadrature and, consequently, that it does not
correspond to a partial correction for an additional inequality at octant. On
the other hand, the mechanism by means of which Ptolemy represents the
evection—i.e., by drawing in the center of the lunar epicycle and applying
the further correction for prosneusis—automatically produces a secondary
inequality, only part of which is due to the prosneusis. This residual in-
equality should not be considered a partial correction for the variation, as
Tannery [1893, 214] ituplies, since its argument differs from the argument of
the variation. Indeed, in discussing prosneusis [Alm. v 5], Ptolemy does not
claimn that he is introducing a further inequality, but instead treats prosneu-
515 as a necessary part of the correction for the ‘inequality based on the Sun’

If one includes the variation, the probable error of an elongation near oc-
tant computed from Ptoleiny’s theory 1s £(0;39.5 £ 0;17.1)° Although this
error is only slightly larger than the effective probable error in a single ob-
served elongation (4+0;30.3°), the apparent sccondary inequalities produced
by the limitations of Ptolemy’s model would significantly increase the dif-
ficulty of discovering and cvaluating the inequality corresponding to the
variation. Thus, it is difficult to see how Ptolemy could have substantially
improved his lunar medel without fundamentally altering it.

In summary, the deficiencies of Ptolemy's lunar theory may be attributed
almost wholly to the model itself, and not to the parameters deduced from
observations. It is also clear that however we define Ptolemy’s correction
corresponding to the evection, the magnitude of this correction is very
ncarly as accurate as Piolemy’s value for the radius of the lunar epicycle at
syzyey, despite the fact that the observations fromm which he determined
his second lunar incquality were much less accurate than the observations
of eclipses.

Both inequalities, moreover, are inarkedly mnore accurate than one would
expect from the procedures hie deseribes, the errors of his obscrvations, and
the residual errors introduced into his reductions by the constraints of his
model. Since this is true not only of the mean motions of all three lunar ar-
guments, but—more significantly—alse of their actnal values at Ptolemy’s
time, Ptolemy must have obtained his parameters in some other manner
than the one he describes, given that the probability is negligible that all
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eight determinations should by accident be significantly more accurate than
would be expected.

The most natural explanation for this unexpected accuracy is that each
of these paramcters resulted from many determinations based on a con-
siderably larger body of observations than Ptolemy reports. Indeed, it is
difficult to sce how Ptolemy could have avoided using some kind of average,
since, in general, two separate determinations of the same parameter would
show marked differences due to the errors in the observations and their re-
duction. If Ptolemy did not use some averaging procedure, it is unclear
how he could have chosen among conflicting determinations, let alone con-
sistently chosen ‘correctly”. At the same time, the conelusion that Ptolemy
himself, rather than Hipparchus, must have followed such a procedure is
supported most strongly by the small errors in the actual values of all three
lunar argnments at the time when Ptolemy observed, as well as by the high
accuracy of the correction equivalent to the evection, which 1s indisputably
due to Ptolemy.

We may ask why Ptolemy did not deseribe such a proeedure for arriving
at the values of his parameters, if this was in fact the manner in which he
determined them. The absence of an explicit description, however, is not
at all inconsistent with his general treatment of his own contributions to
the substance of the Ahnagest. Although he frequently mnentions the con-
tributions of Hipparchus and occasionally discusses the difference between
Hipparchus’ solution to a problem and his own, nowhcre does he attempt
either to give a chronological account of his own work or to explain how
he arrived at the particular models with which he accounts for the motions
of Moon and planets. Indeed, the gencral objective of the Almagest is
didactic rather than historical, and for the most part Ptolemy seems more
concerned to show how, and from what sort of ocbservations, a given result
can best be derived than to justify the results of his own derivations.!!

Whenever possible, moreover, these demonstrations are both formal and
rigorous, ¢xeeptions occurring only in those instances where either no rig-
orous sohation can be achieved or where Ptolemy appears not to know the
formal solution. This elose adherence to the standards of geometrical rigor
suggests a further reason why Ptolemy may have chosen to finesse the ques-
tion of how he actually arrived at his parameters, since he could not have
justified with comparable rigor any method of treating errors.

1 “Phe two parameters whose correct ness Ptolemy supports with more than min-

imal evidence are the mean motion of the Sun and its related motion, precession.
This leads onc to wonder if Ptolemy may not have had more reason to doubt
the accuracy of these parameters than his others.
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Thus, if Ptolemy was less than candid concerning the manner by which
he arrived at many of his results, his intent may well have been to avoid
having to find a logical justification for the treatment of errors, rather than
to trick his readers into accepting his results.
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Secular Accelerations of the Sun and Moon

The foregoing investigation draws importantly on the evidence of the errors
in Ptolemy’s solar and lunar observations that is obtained from comparizons
with modern theory. Consequently, it is desirable to minimize the possibil-
ity of introducing significant systematic errors fromn modern theory into the
results. The inequalities in the motions of the Sun and Moen are presently
known with far greater accuracy than such comparisons require. The mod-
ern values for the mean longitudes of the Sun and Moon at ancient epochs,
however, are affected by considerable uncertainty as to the magnitudes of
the secular accelerations of the mean motions of both celestial bodies.

This uncertainty arises primarily from the apparent difference between
the results obtalned from analyses of modern observations and those de-
rived from ancient observations. It is also, however, reflected in the differ-
ent results derived from investigations of ancient observations—differences
which arise partly from divergent cvaluations of the quality of the empir-
ical evidenee from antiquity and partly from variations in the observations
investigated, methodologies employed, assumptions made, and even errors
commmitted, Finally, a small but additional element of uncertainty arises
from the use by the various investigators of slightly different elements—and,
hence, of different effective epochs-—thus complicating the comparison of
their results.!

The following discussion reviews the principal attempts to determine the
accelerations of the Sun and Mocn down to the ‘definitive’ determination by
Spencer Jones [1939], which has been adopted in national ephemerides (i.e.,
‘modern theory') since 1952. Its purpose is to identify the values of these
parameters least likely to introduce significant errors inte comparisons of
Ptolemy's observations with modern theory.

1 Fotheringham’s researches [1909, 1315a, 1918, 1920, and 1923] are a particul-
arly troublesome example of these difficulties, since nearly all are based on dif-
ferent lunar elements.

153
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My principal finding is that de Sitter's [1927] ostensibly definitive analy-
sis of the ancient observational evidence, which Jones [1939] incorporated
in his determination, was seriously flawed by several significant errors, the
correction of which causes the apparent diffcrence between the accclera-
tions derived from ancient and modern observations to disappear. This
correction leads to a significantly smaller value of the Moon’s apparent
non-gravitational acceleration (+3.6") than that (45.22") currently used
by the Nautical Almanac Offices [1961, 98, 107], and to a slightly smaller
value (+1.1") of the Sun’s apparent acceleration than is presently aceepted
{(+1.23"). These values are also smaller than those found by Schoch and
adopted by P. V. Neugebauer [1929, 1934] and Tuckerman [1962-1964] in
theit tables. They are also significantly different from those derived from
ancient observations by Newton [1969, 1970] and Muller and Stephenson
{1975}, but are consistent with the results obtained from ancient obscrva-
tions by Curott [1966] and from modern observations by Morrison and
Ward [1975]. Morecover, a recent analysis of ancient and medieval ob-
servations by Stephenson and Morrison [1984], which includes extensive
data from cuneiform sources, suggests accelerations for the period cov-
ered by Ptolemy’s observations which are only slightly higher than those
used here, although lower than those of Fotheringham, Schoch, and, most
recently, Newton [1983].

To facilitate the comparison of historical investigations, I have followed
the convention of using the term ‘acceleration’ to denote the cocfficient of
the term in 72 in the polynomial expression for any clement, where T is
expressed in Universal {rather than Ephemeris) Time. Thus, except where
otherwise noted, the accelerations referred to denote the apparent acceler-
ations resulting from both gravitational and non-gravitational causes. The
symbaols used in equations are as follows:

S, Sidereal lunar acceleration in longitude

S/, Non-gravitational lunar acceleration in longitude, S, — 6.05”

Ss Sidercal, non-gravitational apparent solar acceleration in longitude
due to the slowing of the Earth’s rate of rotation

Sp Acceleration of the Moon’s mean elongation, $,, — 5,

S5 Non-gravitational acceleration in elongaticn, 57, — S, = SH—6.05"

Ever since Clemence’s paper [1948, 172], it has been customary to use
Ephemeris Time as the independent variable and to consider AT = ET —
UT ( the cumulative effect of the Farth’s variable rotation) in placé of 5,
and to use 1z 5, (the resulting non-gravitational retardation of the Moon’s
sidereal longitnde) in place of 57,. To facilitate comparisons with recent
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studies, T note the following relationships between the accelerations dis-
cussed here and related parameters discussed by others. (The approximate
relationship for §!_ results from the adoption of different effective epochs
for the modern mean motions.)

5 _ AT el
T 9435T2 T 2435 1546
m 1. 1,
s =fmg 4 Sim & 131685, + Siim.

m —
k-]

Early determinations of the Moon's acceleration

The first to suggest that the Moon exhibited a sensible acecleration was
Edmund Halley. On October 19, 1692, he read a paper before the Royal So-
ciety proposing that certain discrepancies among the terrestrial longitudes
ascribed to such places as Babylon and Antioch could be reconciled by sup-
posing that the Moon (and planets) were retarded by the aether [MacPike
1632, 229].2 This retardation, Halley concluded, showed the impossibility
of the world's eternity. Subsequently, on October 18, 1693, he promised
[MacPike 1932, 232]

to make out the necessity of the world’s coming to an end, and
consequently that it must have had a beginning, which hitherto had
not. been evinced from anything that has been observed in nature.

Although the Journal Book of the Royal Society [see MacPike 1932, 232]
notes that Halley was ordered to print a dissertation on this subject, his
only published reference to the Moon’s acceleration appeared in 1695 as a
postscript to an article discussing the ruins of Palmyra [Halley 1695, 174].2

2 MacPike [1932, 210] has collecied Lhe references to Halley in Thomas Birch’s
History of the Royal Socicty, which includes the contents of the Saciety’s Journal
Book up to December 1687. MacPike also published [urther relerences to Halley
from the Society’s Journal! Hook from January 1687/8 to July 1, 1695. The
quotations in the text are from this source.

® One frequently encounters the statement that Halley first proposed the exist-
ence of a lunar acceleration in an earlier paper published in 1693 [ITalley 1693],
in which he discusses four cclipses described by al-Battani and corrects some of
the numbers given in the two editions of al-Battani [1337, 1645] then available.
Alihough it is possible that his discovery of the acceleration arose frem comparing
his rcconstructed epochs for al-Battan?s lunar arguments with values computed
from contemporary lunar theory, Halley makes no mention of the phenomenon in
this paper. Cf, Ilouzean and Lancaster 1882-1889, ii col. 1197,
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In this he asked ‘any curious traveller residing there’ to make observations
of lunar eclipses in Baghdad, Aleppo, and Alexandria, so as to enable him
to re-determine the longitudes of these places. With seeure values for these
longitudes, he

could thenr pronounce in what proportion the Moon’s motion does
accelerate; which that it does I think I can demonstrate, and shall
{God willing) one day make it appear to the publick.

The promised publication never appeared, and it sccms that Halley never
succeeded in determining the amount of this acceleration. In the second
edition of the Principia [1713, 421], Newton did mentiou that Halley was the
first to discover the Moon's acceleration as shown by Babylonian eclipses
and eclipses observed by al-Battdni. This reference, however, was sup-
pressed in the third edition of 1727 for reasons 1 have been unable to
discover.*  Moreover, Halley makes no reference to this acceleration in
his lunar tables [1749], which were completed (although not published)
by 1720, suggesting that he was unable to satisfy himself that it really
existed.

After Halley, the question of the Moon'’s acceleration was taken up by
Richard Dunthorne [1749, 162] who attempted to determine the amount
of ‘that acceleration of the Moon’s motion which Dr. Halley suspected’
In his determination, he rejected eclipses observed by Tycho Brahe and
Bernard Walther as being too near his own epoch, and also those ohserved
by al-Battant because of the uncertainty of the longitudes of Antioch and
Racca. Instead, he used three solar eclipses—two of which were reported by
Ibn Ytnus (977 and 978) and the other by Theon (364)—and three lunar
eclipses reported by Ptolemy (~720, —382, —200). He chose the latter
because each oceurred near Sunrise or Sunset and thus afforded a partial
check on the times reported by Piolemy. From these eclipses, Duntherne
concluded that the magnitude of the Moon's acceleration was roughly 107
an estimmate which has proven to be very nearly correct.

Values of the accelerations similar to Dunthorne’s werc subsequently ob-
tained by Mayer {1752] and Lalande {1757], but neither introduced any ad-
ditional observational evidence or significantly improved npon Dunthorne’s
rough analysis.” Concurrently, the Moon’s acceleration was proving an em-
barrassment to theoretical astronomers, since no gravitaticnal explanation

* 1 ean find no reference to this question in the published correspondence of
either Ilalley [MacPike 1932]) or Newtaon [Turnbull 1959-1961, Edleston 1850,
Cohen 1938, Rigaud 1841].

5 Mayer [1752, 389-392] discusses only the two Arabian eclipses used by Dun-
thorne and remarks on the unsatisfactory nature of the Ptolernaic cclipse reports.
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for this phCIlOIIICIlOIl Cou].d be fouud. AS a result Severﬂ.l papers appeared,
tost notably by Lagrange [1773], Jean Bernoulli [1773], and LaPlacc [1773],
in which the authors emphasized that the empirical evidence supporting the
existence of this phenomenon was not decisive, particularly in view of the
(ostensibly) dubious reliability of Ptolemy’s reports. Curiously, all these
authors considered only the eclipses discussed by Dunthorne and ignored
the 16 others described in the Almagest.

A theoretical explanation of the Moon’s acceleration was finally achieved
by LaPlace [1786G], who showed that it resulted from a slow variation of the
cceentricity of the Earth's orbit. Moreover, LaPlace’s initial computation
of the magnitude of the acceleration, 11.135" agreed well with the empirical
determinations of Dunthorne, Lalande, and Mayer.

The close agreement between the theoretical and empirical values of the
Moon’s acceleration reduced the suspicion with which Ptolemy’s eclipse-
reports had been regarded. It also reduced the necessity of a more pre-
cise empirical determination, since the magnitude of the acceleration could
be computed from gravitational theory using elements known with high
accuracy from modern observations, In his Mécanigne celeste, LaPlace
[Bowditch 1829-1839, iii 643] justified his final value for the Moon’s ac-
celeration, 10.18" .. ., with the remark,

This secular equation is placed beyond doubt by Mr. Bouvard, by
a profound discussion of the ancient eclipses which were known to
astronomers and also of those he has obtained from an Arabian
MMS of Ibn Yunis.®

Bouvard, however, seems not to have published this paper, and LaPlace
evidently did not think it necessary to discuss his results further. Elsewhere
LaPlace [1835, 492-494] showed that his own computed values of the ac-
cclerations of the Moon's elongation, anomaly, and argument of latitude
yielded values for these arguments at Thoth 1, Nabonassar 1 {Ptolemy’s
epach) that were in good agreement with Ptolemy’s tabular values, values
which LaPlace took as representative of Ptolemy's eclipse-data.

In his tables, Mayer includes a eorrection for the Moon's acceleration equivalent
to +6.7"T? (epoch: 1700), without indicating how he arrived at this number.
In a subsequent revision ol his tables, Mayer [1770] changed the magnitude of
the acceleration to +9.007% again without explanation.

Lalande [1751, 430} obtained the value of +9.886" using the same eclipses as
Dunthorne, but afier making small corrections to the Moon’s mean anomaly at
the time of the Arablan eclipses [+977,8).

S A text and translation of the observations reported by Ibn Yiunus were pub-
lished by Caussin in 1804.
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As aresult of LaPlace’s work, it was generally accepted that the available
ancient observations supported the magnitude of the Moon's acceleration
cotaputed from gravitational theory, which in turn was considered more
accurate than any empirical determination. Consequently, ancient eclipses
received little attention during the first half of the nineteenth century, ex-
cept for occasional attempts [cf., e.g., Wurm 1817, Zech 1851] to improve
the modern values of the Moon's mean motions in anomaly and argument
of latitude.

By 1850, improvements in the accuracy of the lunar theory made it possi-
ble to use the path of totality of solar eclipses as evidence of the magnitude
of the Moon’s acccleration. Airy [1853, 1857), and Hanscn [1854, 8] inves-
tigated the circumstances of a few ancient solar eclipses which appeared
to have been total at known places, and showed that these reports could be
satisfied by a small increase in the value of the secular acceleration found
by LaPlace. As a result, Hansen adopted the value 12.18" for the sidereal
acceleration of the Moon m his lunar tables published in 1857, even though
this value differed from the theoretical value.

Shortly before the publication of Hansen’s lunar tables, Adams [1854]
showed that certain terms in the develapment of the thearctical value of
the acceleration, which LaPlace and others had neglected as mnsensible,
were not insensible at all; and that, when these were included, the value
for the acceleration was roughly half that obtained by omitting them. This
discovery precipitated a heated controversy, but was eventually accepted.
The definitive value for the Moon’s theorctical sidereal acceleration was
found by Brown [1909, 148; 1919] to equal +6.05" & 0.02" (1900).

By destroying the apparent agreement between the theoretical value of
the secular acceleration and that found from ancient eclipses, Adams’ dis-
cavery re-established the desirability of securely determnining the secular
acceleration from ancient observations. The preblem should have been
straightforward, since, as Newcomb [1878, 25| pointed out, the secular ac-
celeration could be determined from the Ptolemaic and Arabian eclipses
with a probable error of £0.4" and £0.8" respeetively, if the Moon’s mean
centennial motion eould be determined from modern observations with an
equivalent accuracy. The latter seemed possible given the number and pre-
cision of observations since 1750, provided that the deviations from theory
since 1750 could be attributed to either observational errors or errors in
theoretical terms of short period. Thus, the principal requirements for a
straightforward solution were merely that the coeflicients of the significant
theorctical inequalities of long period be accurate and that the ancient
observations be free of large systematic errors.
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As it turned out, neither requirement could be satisfied with certainty.
The first condition—that Hansen’s lunar theory should adequately rep-
resent the inequalities of long period in the Moon's motion-—was initially
challenged by Delaunay [1863], who showed that a large term which Hansen
had found to arise from the action of Venus, +21.47" sin(8V —13G + 45449,
was virtually insensible (0.272") when its development was completed. Due
to the difficulties attending the developinent of the planetary terms in the
lunar theory, this conclusion (like Adamns’) was also questioned for some
time. But subsequent investigations confirmed Delaunay’s calculation, and
virtually eliminated the possibility that a term of this magnitude would re-
main undetected.

Since Hansen [1854] had shown that his theory, including the question-
able Venus-term, satisfled the observations from 1750 to 1850 well, the
correction of this term meant that the Moon exhibited unexplained de-
viations from its theoretical position. These deviations, moreover, could
not be adequately described by the observations in this interval, since the
period of the inequality supposed to account for them (239 years) was
more than twice the interval for which reliable observations were available.
Thus, the determination of the secular acceleration from ancient observa-
tions came to require also a resolution of the discordance between modern
theory and observations, in order to permit establishing the Moon’s mean
motion securely from modern observations.

Modern determinations of the aceclerations of the Sun and Moon

The problem of re-determining the Maoon’s acceleration from ancient obser-
vations was first attacked intensively by Newcomb. In 1870, he showed that
Hansen’s theory, even with the erroneous Venus-term, failed to satisfy both
a number of eclipses prior to 1750 and the most recent observations since
1850. This removed any possibility of describing the Moon’s deviation from
theory solely by means of observations from the period 1750-1850, and
caused Newcomb to investigate observations of occultations and eclipses
made by 17th and 18th century astronomers (later extended in his second
memoir to include observations of occultations to 1908).

Having extended the interval for which lunar observations could be used
to obtain the necessary corrections to Hansen’s theory, Newcomb rnade
two separate attempts to determine these corrections. The first, published
in 1878, used observations of occultations and eclipses from 1620 to 1750
together with the errors deduced from Hansen's theory by eliminating the
above-mentioned Venus-term. The second, published in 1912, extended the
comparisons of oceultations to 1908 and introduced certain corrections to
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Hansen’s clements and planetary terms. In both investigations, Newcomb
rejected all ancient reports of ostensibly total solar eclipses,” and deter-
mined the Moon's aceeleration from the times of the lunar eclipses reported
by Ptolemy and of the lunar and solar eclipses described by Ibn Yiinus.

The results of these two investigations were very nearly identical, de-
spite the several refinements and great amount of additional observational
material ineluded in the later paper. After removing the empirical Venus-
term, Newcomb [1878] found the following corrections to Hansen's mean
longitude for 1800:

AlLgre = —1.14" —29.17"T — 3.86"T% + 15.5" sin (1.32°T + 93.9°)
Sp=227" (1)
Sp =830

while in his later paper he found the correction to be:

AlLyjgrs = —0.31" — 26.57"T — 4.22"T? — 0.0067"T*
+12.95" 5in (1.31°T + 100.6°)
SH=1.61"
Sn = 7.94"

(2)

Subsequently, Brown {1913, 699; 1915, 513] found that Newcomb omit-
ted some planetary terms of long period in his sccond paper which, when
mcluded, made Newcomb's final result for 1800:

A'Ligrs = —1.14" — 27.24"T — 3.378"T% — 0.0067"T*
+12.95" sin (1.31°T + 100.6°)
Sh = 2.75"
Sp =8.71"

(3)

In his papers of 1878 and 1912, Newcomb followed slightly different proce-
dures in arriving at his corrections to Hansen’s elements, but both solutions
were based on the assumption that the deviation from theory in modern
times was properly described by a mean motion and sinusoidal term which
minimized the squares of the deviations. The major part of Newcomb's cor-
rection to the Moon's mean motion and his entire correction to the mean

" Cf. Newcomb 1878, 28-34; 1912, 228-246, for an excellent critical discussion of
the quality of the ancient reports of total eclipses as evidence for determining the
amount of the accelerations of the Sun and Moon.
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lougitude at epoch thus arise from solving the equations of condition de-
rived from modern obscrvations ou the assumption of a periodic deviation.

Furthermore, a substantial part of Newcomb's correction to Hansen’s
acceleration was duc to his resulting correction to Hansen’s mean motion.
Thus, as shown in his ecarlier paper, Newcombh's corrcction to Hansen’s
mean motion by itself required a corresponding correction to Hansen’s ac-
celeration of

ASn = —1.25"(1800)

S = 10.9"(1800)

in order to satisfy the solar eclipses of Thales (—584), Larissa (—556),
and Agathocles (—309), which Hansen used. Thus, the effective difference
hetween the secular acceleration Newcomb derived from the Ptolemaic and
Arabian lunar cclipses (1878) and the acceleration satisfying these three
solar eclipses was =2 2.1 equivalent to roughly 20 minutes in the time of
an eclipse at Ptolemy’s epoch and to 35 minutes at —400.

Newcomb’s work raised two important problems. The first was whether
it was proper to assume that an unexplained deviation from gravitational
theory in the Moon’s motion was periodic over the interval for which mod-
ern observations were avallable and, thus, whether Newcomb’s rednction
of Hansen’s mean motion was justified. Although there appears to be no
formal justification for doing so [cf. van der Waerden 1961], the absence of a
more satisfactory procedure has made it common practice to determine the
Moon’s mean motion by a periedic least-squares analysis, which minimizes
the deviations shown by modern observations. Thus, most of Newcomb's
reduction of Hansen’s mean motion has been accepted.

The second problem, which Newcomb discussed in his paper of 1878,
was whether the Ptolemaic and Arabian eclipses did not require a smaller
value in the Moon’s acceleration than that which appeared to satisfy certain
ancient solar eclipses. This question beeame a matter of controversy even
before Newcomb published his second paper and eventually occasioned a
te-cxamination in bits and pieces of all of the relevant ancient observations.

In a series of memoirs, Gingel [1882-1884] discussed reports of over 50
solar eclipses ranging in date from —752 to 1415, From 29 of these, he
obtained corrections te Hansen's elements which slightly reduced Hansen’s
acceleration, but which increased his mean motion in 1800 by 9 Ginzel
also arrived at a correction to the motion of the Moon's perigee which was
considered too large to fall within the limits of uncertainty of either mod-
ern theory or modern observations. Finally, in his Spezieller Kanon der
Finsternisse [1885, 5], Ginzel published small additional corrections. In
1887, Oppolzer published his Kanor der Finsternisse [cf. Oppolzer 1962],
which was based upon Hansen’s clements modified by a different empirical
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correction than Ginzel’s. Newcomb [1912, 238] showed that Oppaolzer’s cor-
rection to the Moon’s mean motion and secular acceleration was virtually
identical with his own, but that Oppolzer also incorporated inadmissible
corrections to the mean motion of the nede and the secular acceleration of
the perigee, both of which were thought to he determined securely from
gravitational theory.

In 1905 and 1906, Cowell analyzed reports of six ancient solar eclipses,
which scemed to indicate that totality was visible at specific locations. Ex-
cept for the eclipses of —309 (Agathocles) and —430 (Thucydides), neither
Neweomb nor Airy had previously discussed any of these eclipses. Cowell
coneluded that five solar cclipses (~1062, ~762, —647, —430, and 197)
could be satisfied only by decreasing the sceular acceleration of the Moon's
node or increasing the secular acceleration of the $un and Moon by 3.5"

Neweomb ehallenged Cowell’s results, arguing that such a reduction in
the acceleration of the node was inadmissible on theoretical grounds, while
his own analyses of modern observations of the Sun and Mercury rendered
imnplausible the existence of a sclar acceleration only a third as large as Cow-
ell proposed. Nevertheless, although the numerical results of Cowell's anal-
ysis were never widely accepted, his suggestion that the Sun exhibited a per-
ceptible acceleration was eventually confirmed by subsequent investigators,

After Newcomb’s last memoir, Fotheringham took up the problem of
determining the secular accelerations of the Sun and Meon from ancient
observations. In a series of papers extending from 1909 to 1927, Fother-
ingham analyzed not only the observations of solar and lunar eclipses
[1920a-b} which had been previously utilized for these purposes, but also
the cquinox-observations of Hipparchus [Fotheringham 1918}, the lunar
eclipse-magnitudes reported by Ptolemy [Fotheringham 1909a], and the
lunar oeccultations reported in the Almagest [Fotheringham 1915a). His
final estimate of the values best satisfying the eclipses and occultations
was S = +10.8 5, = +1.5"% and Sp = 9.3" (5p = 3.27"), applied to
a mean motion and epoch (1800) very nearly identical to Newcomb's [cf.
Fotheringham 1920b, 125].

Fotheringham’s values for the sccular accelerations derived from differ-
ent types of observations are shown in Table Al.1. His discussion of the
non-Babylonian eclipses reported by Ptolemy led to nearly the same accel-
eration of the Moon’s mean clongation as the one Newcomb had chtained
from his analysis of both Ptolemaic and Arabian eclipses. His investigations
of other ancient data, however, indicated both a larger secular acceleration
of the Mcoon and the existence of a sensible acceleration of the Sun. The lat-
ter was perhaps Fotheringham’s most significant finding, and was attested
dircctly by the Alexandrian celipse-mnagnitudes and Hipparchus' equinox-
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Lunar Lunar Eclipse  Occultations Equinoxes Solar Fclipses
Eclipses Magnitudes (Oipparchus)  (Totality)
Sm 10.3" £0.74" 10.8*
5 1.78" + 6.45" 1.65 + 0.27" 1.5"
Sn 79" 9.3"

? Corrected from 10.8” in accordance with Fotheringham 1923, 273.

Table Al.l. Fotheringham’s Accelerations of the Sun and
Moon from Different Ancient Observations

observations, as well as indirectly by the difference between the values for
the lunar acceleratipn derived from occultations and the acceleration n
elongation derived from lunar eclipses.

The individual values for the Sun’s acceleration determnined from the
different sets of observations were not entirely consistent, and the discrep-
ancies appeared to support a relatively high value for this acceleration.
The occultations and lunar eclipses suggested a solar acceleration of 2.4"
(originally 2.9% close to Cowell’s value), compared with roughly 1.9" {orig-
inally 1.0") from equinoxes, 1.8" from eclipse-magnitudes and 1.5” from
solar eclipses. Similarly, the acceleration of the Moon’s elongation found
from occultations, equinoxes, and eclipse-magnitudes was 8.4" compared
with 9.3" from solar eclipses and 7.9” from lunar eclipses. Thus, Fother-
ingham’s results appeared to confirm the discrepancy, first suggested by
Airy [1853] half a century earlier, between the acceleration in elongation
implicit in the lunar eclipse-times and that derived from other ancient data.

Fotheringhamn’s results became an important element in the derivation
of the accelerations presently accepted as ‘modern theory’ Accordingly,
the specific values which he obtained from different types of observations
deserve critical scrutiny.

First, in determining the Sun’s secular acceleration from Hipparchus®
equinoxes, Fotheringham [1918] assumes a constant error in declination
{—0;4.4%), which he derives from Hipparchus' declinations of seven stars
near the equator [cf. Ptolemy, Alm. vii 3]. He then applies this etror,
which differs appreciably from the mean systemnatic error of 4-0;0.7° for all
18 declinations [cf. Pannekoek 1955, 64], to Hipparchus’ spring equinoxes
from —134 to —127 in order to obtain his ‘definitive result’,

S, = +1.95" +0.27"
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In the same paper, Fotheringham showed that assuming an error in dec-
lination which would yield the best fit for all equinoxes (—0;7.6° £0;0.46°}
would make the most probable acecleration

S, = +1.0" £0.18"

Thus, while the probable errors obtained from the discordances are rela-
tively small, the determination is very sensitive to the assumed systematic
error in declination. On balance, the lower result seems at least as proba-
ble as the higher, but virtually any value for the secular acceleration of the
Sun between =~ +0.8" and +2.0" is arguably consistent with Hipparchus’
equinox-observations.

Much the same can be sald of Fotheringham's determinations based on
the reported lunar eclipsc-magnitudes and cccultations. In the case of the
former, he [1909a] excludes the Babylonian eclipses, which would increase
the secular acceleration, while taking no account of the uncertainty of the
motion of the node. As a result his final determination,

8y = +1.78" + 045",

1s uncertain by a considerably larger amount than the errer he estimates.

In the case of the occultations, the result, which Fotheringham de-
duced from a set of seven very discordant observations, depends largely
on his assumptions about the probable clock-errors. Using three different
assumptions—(1) that the clock-error was proportional to the time from
Sunrise or Sunset, whichever was closer to the event; (2} that the clock-
error was independent of the time from Sunrise or Sunset; and (3) that
the clock-error was proportional to the time from Sunset alone {which he
describes as ‘improbable,’) —Fotheringham [1915a, 393] found:

(a) Sp = +10.8" + 0.7
(b) S = +10.8" £ 0.9”
(¢) Sm = +10.0" £0.8"

Of these, he accepted (a) as the most probable. Subsequently, Fothering-
ham [1923] corrected an error in his comparisons, thereby modifying the
above values (assuming the same modern mean motions) to:

(a") 8, = +101" £0.7"
(b) $pm = +10.1" £0.9"
(') S =+ 9.3"1+08"
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From (a') and a further correction to Cowell’s value for the Moon's mean
motion, Fotheringham [1920b, 125] concluded that the Moon’s sidereal ac-
celeration best satisfying Ptolemy’s occultations was

S, = 10.3" £ 0.74"

The probable crror of this, however, could easily be increased by a slightly
different estimation of the probability of assumptions {a) and {c}.

In 1920, at the conclusion of a paper re-investigating the ancient solar
eclipses, Fotheringham [1920b, 126] announced his oft-quoted values for
the secular accelerations of the Sun and Moon,

Sm=+10.8" &, = +4.75"
S, =+ 15" 85 =325,

which he asserted best satisfied all classces of ancient data. As shown by the
graph on [1920b, 123} of that paper, these eclipses give extremely uncertain
and discordant results. Indeed, Fotheringham seems to have obtained his
final values by assuming the value of the secular acceleration of the Moon
previously derived from the Ptolemaic occultations (10.8"), and accepting
the largest solar acceleration consistent with this value and the condition
that the eclipse of —128 be total at the Hellespont. His subsequent correc-
tion of the Moon's acceleration as determined from the occultations would
have satisfied the eclipse of —128, with values for the solar acceleration
ranging from +0.9" to +1.25"; while his lower value for the Moon's ac-
celeration derived from the occultations under assumption {c} would have
satisfied the eclipse of Hipparchus, together with several others with a solar
acccleration ranging from +0.5" to +0.9"

If we disregard Fotheringham’s determination of the Sun’s acceleration
from eclipse-magnitudes and Hipparchus' equinoxes as too uncertain, or,
alteruatively, if we accept the value 5, = +1.0" derived from his inti-
tial analysis of the equinoxes as equally probable as his concluded value
{+1.95"), then the bulk of the solar eclipses, including that of Hipparchus,
would be satisfied by the accelerations:

Sm = +9.9" £ 04"

S = +43.85" +0.4"
S, = 409" 40,278
S§h = +2.95" + 0.6"

These values, moreover, agree with the corrected results of Fotheringham’s
analysis of the occultations on either assumption concerning the clock-
errors, as well as with his initial deterrminations of the sceular acecleration

3 ¢r Fotheringham 1023, 123.
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of the Sun from Hipparchus' cquinoxes. They alse agree very uearly with
Newcomb's final determination (as corrected by Brown) of the acceleration
of the Moon's elongation from both Arabian and Ptolemaic eclipses, the
discordance being reduced to = 0.2"

Following Fotheringham’s investigations, Schoch [cf. 1926, 3; 1931] re-
commputed the occultations described in the Almagest with greater preci-
sion than Fotheringham had and also re-investigated the circumstances of
a number of ancient solar eclipses. Schoch’s procedure for determining
the values of the two accelerations from this material contrasted sharply
with both Newcomb's and Fotheringham’s. Whereas they had derived their
results from the average deviations of a relatively large number of obser-
vations, Schoch’s values, as far as I can make out, were determined from
two events, the occultation of Spica observed by Timocharis in —282 Nov 8
[Ptolemy, Alm. vii 3 Toomer, 336] and the solar eclipse of —128 Nov 20
assoclated with Hipparchus. Concerning the former, Schoch noted a dis-
crepancy (previously remarked by Ptolemy) between the time reported for
the occultation and the comment thab it occurred ‘just as the Moon was
rising’. Accepting the second designation as more accurate and interpret-
ing it to mean that the occultation took place half an hour after Moonrise,
Schoch concluded that the sidereal secular acceleration of the Moon was

Sy == +11.097

Although he gives no details, he says in the same work [1926, 3] that the
Sun’s acceleration was determined from the ancient selar cclipses, of which
‘the best criterion for [determining] the clement is the cclipse of Hipparchus
in —128" Since Schoch’s adopted value, S, = +1.511" would make this
eclipse central at the Hellespont, given the lunar acceleration noted above,
his result appears to rest on this assumption.

Having determined the accelerations in this manner, Schoch [1926, 2
dismissed the lunar cclipses reported by Ptolemy as ‘worthless’, and showed
that his values agreed more or less with various solar eclipse-reports and
with a lunar eclipse in —424 Oct 9 recorded in a cunciform text [Kugler
1913-1935, 233]. Since both Fotheringham and Newcomb showed that
some eclipses can always be more or less satisfied by any pair of reasonable
accelerations, Schoch’s procedure scarcely enhances the credibility of his
results. In this respect, it is also unfortunate that Schoch did not publish
more of the details of his computations and comparisons.

The results obtained by Fotheringham and Schoch were further analyzed
by de Sitter in a paper published in 1927, which was generally accepted
by contemporary astronomers as the definitive discussion of the ancient
obscrvational evidence. In it de Sitter scts up separate equations of con-
ditions for:



Sccular Accelerations - 167

(i} the accelerations of the Sun determined by Fotheringham from
(a) Hipparchus' equinoxes,
(b) the solar eclipses, and
(c) the lunar cclipse-magnitudes;
(i1} the accelerations of the Moon determined from
(d) Ptolemy’s cccultations and
{e) ancient solar eclipses;
(iii) the relationship between the two accelerations found by Fotheringham
from
(f) the eclipse of Hipparchus (—128); and
{(iv) the acceleration of the Moon’s elongation determined by Fotheringham
from
(g) the Alexandrian lunar eclipses and
{h) Schoch’s discussion {1926, 3] of the Babylonian lunar cclipse of
—424.
After weighting these equations according to Fotheringham’s and Schoch's
estimates of the probable error of each determination, de Sitter [1927, 23]
obtained the non-gravitational accelerations (1900),

' =(5.22" £ 0.30")R
S, = (1.80" £ 0.16")R,

where B = 7% 4+ 1.337 — 0.26. R was introduced to minimize the effect of
the corrections on the agreement between theory and modern observations,
and makes the effective epoch of the mean motions 1833.5.

De Sitter’s procedure in arriving at these results affords several grounds
for criticism, and it is hard te understand why others have accepted his
analysis so uncritically as representing the evidence of ancient observations.
In the first place, he treats a number of Fotheringham’s results—e.g., the
accelerations of the Sun and Moon derived from solar eclipses, and the rela-
tion between them derived from the solar eclipse of Hipparchus {—128)—as
independent determinations, when in fact they are independent neither of
each other nor of the rest of Fotheringham’s results. Indeed, the only ev-
idence afforded by the solar eclipses alone which supports the relatively
high value for the lunar acceleration adopted by Fotheringham is the so-
called Eclipse of Babylon in —1062. Since there is considerable doubt as to
whether this vague report refers to an eclipse at all [¢f. Fotheringham 1920b,
105-1086], there is no justification for counting it  condition to be satisfied.

A second ecriticism of de Sitter’s procedure is that he adopts Fother-
ingham's estimates of probable error as the basis of weighting his equa-
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tions without taking any account of the sensitivity of Fotheringham’s re-
sults to slightly different assumptions about the observational procedures
or their possible systematic errors. This is particularly true of the val-
ues of the secular acceleration of the Sun determined from Hipparchus’
equinox-observations and from lunar eclipse-magnitudes and of the lunar
acceleration determined from occultations.

Finally, and most significantly, de Sitter’s results are vitiated by impor-
tant numerical errors. In deriving the equation of condition for the Moon’s
secular acceleration as determined from the occultations—which is the only
independent evidence in support of a lunar acceleration greater than 10" —
de Sitter not only disregards Fotheringham’s subsequent correction of his
first determination, he also computes AL incorrectly, arriving at a figure
610" too large. Even worse, in his equations derived from the accelerations
of the Moon's elongation found by Fotheringham, he includes the total
difference, Sp = S, — S5, into the computation, although the rest of his
cquations and his solution are for only the non-gravitational component,
5%. To correct for this, the numbers +2950” and +2320" [de Sitter 1927,
22] must be replaced by +620" and +660" respectively.

When these corrections are made and de Sitter’s weights for individual
equations of conditions are revised to reflect somewhat larger estimates
of the probable errors in each determination than Fotheringham’s, signif-
ieantly lower values for both aceelerations result. Furthermore, de Sitter’s
use of Fotheringhan's revised determination of the Sun’s acceleration from
Hipparchus’ equinoxes (1.95”) instead of his initial solution {1.0") seems
unjustified in view of the several questionable assumptions which Fother-
ingham made in arriving at the higher value. Although these observations
are at best tenuous evidence of the magnitude of the Sun’s acceleration,
it seems preferable to accept the lower value with a probable error equal
to roughly the same amount (£1.0") in combining determinations from
different types of obscrvations.

With these corrections, and using the mean of Fotheringham'’s corrected
results for the occultations deduced from assumptions (a') and (c') [see
164, above|, 1 find on re-solving de Sitter's equations:

Smo=+9.67" +0.5"
Sl = +43.62" £0.5”
Se = +1.14" £0.3"
Sp = +8.53" +0.6"

L= 248" +£06"

These values satisfy all of the Ptolemaic obscrvations; and the acceleration
of the Moon’s elongation, Sp, is very close to what Newcomb deduced



Secular Accelerations 169

from Ptolemaic lunar eclipses. To satisfy the majority of the ancient solar
eclipses discussed by Fotheringham [1920b] would require that Sp = 8.9
and, thus, either a somewhat larger lunar acceleration {& +10.1") or a
smaller solar acceleration (&= +0.8"); but the uncertainties and ambigu-
ities attending these reports greatly diminish their value as evidence of
either acceleration [cf. Newcomb 1912, 228-246]. Furthermore, the Ara-
bian eclipse reports discussed by Newcomb are best satisfied by opposite
corrections, namely, an increase in the Sun’s acceleration or a decrease 1n
the Moon'’s acceleration. Since these eclipses are nearer the modern epoch,
and since there are difficulties with some of the reports as well as sys-
tematic differences among observations made by different observers, they
cannot be taken as conclusive evidence. Nevertheless, they seem at least as
valuable as the ancient reports of total solar eclipses and so tend to offset
the evidence of the latter.

De Sitter's paper [1927] also addressed the correlation between the ap-
parent accelerations and fluctuations (unexp]ained discrepancies between
observations and gravitational theory) in the longitudes of the Sun, Moon,
and planets. If these are due entirely to variations in the Earth’s rotation,
then their magnitudes should be in proportion to their mean motions. He
found this to be true for the accelerations and fluctuations of the Sun and
inner planets, clearly not true in the case of the Moon’s acceleration, and
unclear with respect to the Moon’s fluctuations.

After removing the effects of the accelerations derived from ancient ob-
servations, de Sitter compared the total fluctuations (including Newcomb’s
‘great empirical term’) of the Sun, Moon, Mercury, and Venus. He found
that the best solution to the residuals gave

Q ni/nm = 1'2'5”:-/”1“

as the most probable ratio of the magnitudes of the fluctuations of the Sun
and planets to those of the Moon (here n, is the mean motion of the Sun or
planet in question and n,, that of the Moon).

Subsequently, in 1939, Morgan and Scott demonstrated that the meridian-
observations of the Sun from 1900 to 1937 could be satisfied by assuming
7 = 1.00. In the same year, Spencer Jones [1939] reviewed the entire
body of modern observations of the Sun, Moon, Mercury, and Venus. Us-
ing de Sitter’s value for the non-gravitational acceleration of the Moon,
+5.22" Jones first solved the cquations of conditions for ) and the Sun’s
acccleration, obtaining

=102 S, =+125"
and

@=1062 S, =+1.26
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depending on whether observations of the Sun’s right ascension were in-
cluded in the analysis. From these results, Spencer Jones concluded that )
was indeed unity.

Re-solving for (¢ = 1.00, Spencer Jones found for the Sun’s acceleration

S, = +1.14" £0.11" (from solar observations) (4)
and
Ss =+1.24" £0.04" (from Mercury transits), (8)

giving a weighted mean of
Se = +1.23" +0.04" (6)

These values depend upon the assumption that de Sitter’s value for the
non-gravitational acceleration of the Moon, +5.22" represents the actual
non-gravitational acceleration of the Moon over the period for which mod-
eru observations are available. As Spencer Jones pointed out, auy change
(AS].) in this value would require a corresponding change,

"

A5, =

*AS! = 0.074TAS!,,

Fim

in the value of the secular acceleration of the Sun to satisfy the condition
that @ = 1 for the fluctuations.

In discussing the discrepancy between his results and de Sitter’s, Jones
determined the value of AS!, which would give the same ratio between the

non-gravitational accelerations of the Moon and Sun as de Sitter's values.
He concludes [1939, 555-536],

The best values that we can assign for the (non-gravitational ) secular
accelerations of the Sun and Moon at the present time (or more
strictly the best average values for the past two hundred and fifty
years) are therefore:

For the Moon S, = +3.11" +£0.57"
For the Sun 5, = +1.07" + 0.06"

These values of the accelerations will not satisly any of the ancient
abservations of eclipses and occultations, which are on the whole in
very good agreement with each other in requiring appreciably larger
values. There seems to be no escape from the conclusion that the
effects of tidal friction are appreciably less at the present time than
the average effects over the past two thousand years.
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In view of the errors in de Sitter’s analysis, and of the evidence discussed
above that most of the ancieni observations are well satisfied by lower
valtes for both the lunar and solar accelerations than de Sitter found,
Spencer Jones’ conclusion seems untenable. Indecd, if we replace de Sitter’s
published value for the non-gravitational acceleration of the Moon (45.22")
with that found by re-solving his equations with appropriate corrections
[sec 168, above], the secular accelerations from Jones' analysis become:

5! =3.62" +0.5" (de Sitter revised)
5, =1.11" +0.08" (S. Jones rcvised) (7)
Sp =2.51"+0.5" (S. Jones revised)

Alternatively, if we assume, following Spencer Jones, that the ratio of the
accelerations has remained constant (i.e., 362/1.14), we obtain:

s =3.50"+0.5" (8)
5,=1.10" £ 0.06"

Both sets of values, (7) and (8), are in excellent agreement with those found
from re-solving de Sitter’s equations with correct data and revised weights.
Thus, the apparent discrepancy between the accelerations determmned from
ancient and maodern observations arose mainly from errors committed by de
Sitter and unwittingly introduced into accepted theory by Spencer Jones.

In 1948, Clemence transformed Joues' non-gravitational acceleration of
the Sun to an expression for AT, being the difference between observed Uni-
versal Time and an invariable Ephemeris Tunc (originally called Newton-
ian time by Clemence). Expressed in Ephemeris Time (ET) Jones' non-
gravitational acceleration of the Moon becomes

1
5 = 5.22—13.368 - 1.23" = ~11.22"
or
fim = —22.44 ey,

Interestingly, the first person to publish an analegous calculation of the
Mooan’s secular retardation was Schoch [1926, 34] who found

l ft
Sim=—1484"  or i, = —20.68 ey,

In 1852, Spencer Jones' and Clemence’s aceelerations were adopted by
the International Astronomical Union, and they have since been incorpo-
rated in the ephemerides prepared by the American and British Nautical

Almanac Offices [1961, 94]. Thus did Fotheringhamn’s results and de Sitter’s

errors become part of modern theory.
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Recent investigations of the secular accelerations

Since the adoption of Spencer Jones® accelerations in 1952, there have been
scveral further studies of these parameters, which on the whole have left
the matter as uncertain as ever, In 1952, Brouwer revised and extended
Spencer Jones’ analysis, excluding de Sitter's results and using modern
data from lunar occultations through 1948 and the results of Newcomb's
analysis of Ptolemaic and Arabian eclipse-times for andent data. From
these, he obtained

S, =1.01" (epoch: 1715)

9
s =222" §,=121" ©®

as the aceclerations best fitting the ancient and modern data, although he
noted [Brouwer 1952, 141] that this result is seusitive to how the Moon's
(modern) fluctuations are treated. Brouwer showed that these appeared to
be random instead of periodic, and his solution was based on this premise.
In 1961, van der Waerden extended Brouwer’s methodalogical discussion
and tried to reconcile the obhserved accelerations with Jeffreys’ theory [1952,
225] which suggested that the ratio of the apparent accelerations, Sm/s,,
should be roughly 6.9, far higher than that resulting from Spencer Jones’
accelerations (4.2}, let aloue Brouwer's {2.2). Van der Waerden derived
revized accelerations from four data-points having mean epochs of: 1962
{based on extrapolations from 1958.0 lunar data; 1635 (based on New-
comb’s analysis of observations by Gassendi and Hevelius); 950 (based on
Brouwer’s data derived from Neweomb’s study of Arabian cclipse-times);
and —386 {based on his own analysis of three apparently critical ancient
observations)., These last were (a) the Babylonian lunar eclipse of —424
Oct 9 [¢f. also Schoch 1926; de Sitter 1927]; {b) the lunar eclipse of —382
Dec 23 observed in Babylon and reported by Ptolemy [sce 61-63, above];
and {c) the lunar occultation observed by Timocharis on —282 Nov & [see
86G-88, above]. These three observations give very discordant results, and
van der Waerden's result does not represent any one of them very well, let
alone all three. Nevertheless, from these data, he finds accelerations of:

S, =1.31" £0.10" (epoch: 1755)
5, = 6.28" £0.82" (10)
Sp =4.97" £0.9"

In 1966, Curott investigated ancient records of solar eclipses using Ephem-
eris Time and Spencer Jones’ {de Sitter’s) value for the Moon’s acceleration
(5.22") together with other modern parameters. He found an apparent solar
acceleration of 1.10 £ 0.06” (epoch: 1900), which becomes
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S, =1.25" £0.07" (epoch: 1780),

a result virtually identical with Jones’ Curott, moreover, found an aver-
age value for ASsfas,, of 0.12 for the relevant eclipses, so that for

A5, =—-1.6" +0.5"
AS, = —0.19" + 06"

ar

S' =362" +0.5"

11
S, =1.06" £0.09" (epoch: 1780), (1)

a result virtually identical with Spencer Jones” as revised [cf. 171, above].

In 1969, R. R. Newton announced that he had re-analyzed all of the
traditional (i.e., non-cuneiform) ancient and medieval observations and
found that the apparent accelerations of both the Sun and Moon varied
significantly with time. In particular, he found the following (average}
accelerations since 1900 for ancient and medieval ohscrvations, respectively:

Before 500 After 500
Epoch: —200 Epoch: 1000
S,= 179" +0.22" 1.45" +0.23"
S, = 134" +215" 3.12" 4+ 3.05" (12}
m = —41.6" +4.3" - 423" +6.1"

Comnparing these with a value for 5, = —20.1" + 2.6" which he [1969,
826] had previously found by analyzing modern data, Newton [1970, 280]
concluded that {the average effective value of) i, varied In time as

fim=—22"4+33"T+0.114"T? (Tp = 1900),
and, thus, that there was a ‘strong presumption that 7, has changed by
a factor of 2 within historical times’

Newton’s full analysis was published in 1972. It was followed in the same
year by an analysis of 379 additional medieval solar eclipses, from which he
found accelerations of:

S,= 275" +0.65"
Sh= 5.32"+79" (13)
fim = —78.9" +£15.9"
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These have an effective epoch of 976, and are clearly inconsistent with the
values shown above, values which Newton found from Islamic observations
around the same datc. Subsequently, Newton implicitly abandoned both
sets of results.

In 1975, Muller and Stephenson carefully investigated the circumstances
of 25 reports of solar eclipses from ancient and medieval times. From these
they found accelerations equivalent to:

S, =1.88"+£0.21" (epoch: 1770}
S = 6.32" 1 02.5" (14)
Sp =4.44" £ 02.5"

Of the 25 eclipses, however, the authors regarded only seven as certain while
only two contributed evidence defining the lower boundary of 5,. Of these
two, one was a partial eclipse observed at an inferred location in China in
120, and the other was a total eclipse observed near the Kerulen River by
the party of Ch'ang-ch'un in 1221 [Muller and Stephenson 1975, 491-493).

Furthermore, in 1975, Marrison and Ward re-investigated all of the trans-
its of Mereury from 1677 to 1973, Assuming Spencer Jones' value for the
apparent solar acccleration, they {1975, 197-198] found:

S, = 123" (5. Jones)
S — 345" 42"

Sh= 222"+2"

Fim = —26.0"

This result is close to Spencer Jones’ when the latter is adjusted to correct
for de Sitter’s errors, and supports the assumption of constant accelerations
since ancient historical times.

Following his polemic against Ptolemy, Newton [1979-1984] attacked
Jones® methodology and concluded that the solar and lunar accelerations
at the modern epoch (1900} were radically diffcrent from those derived by
Jones, In addition, he concluded that ,, is probably constant and equal
to —28.4" 4 5.7" (in contrast to his earlier finding), but that the rate of
the Farth’s rotation exhibits a sensible acceleration which he attributed
mainly to a change in the gravitational constant. In a subsequent work,
Newton [1985b, 324] found 5, to vary as

S, = 0.70" — 0.0668"T — 0.0015" T (T, = 1900). (16)
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This combined with the value 7, = —28" results in the following param-
cters for ancient and modern epochs:

Epoch: —300 Epoch: 1900

S, = 1.44" 0.62"
s = 525" - 571" (17)
Sp = 3.81" - 61"

While these are inconsistent with his earlier findings, it is interesting that
Newton's most recent accelerations for —300 are very similar to those found
by Fotheringham and Schoch.

Recently, a number of investigators have used different techniques to
mcasure the lunar acceleration (#m ) directly. As summarized by Stephen-
son and Morrision [1984, 50], the most accurate of these are:

Investigator Method Tm “fey
Morrison/ Ward [1975)] transits of Mercury —26.01+ 2.0
Lamhbeck [1980] numerical tidal model —29.6 4- 3.1
Cazenave [1982] artificial satellites —-26.1 £ 2.9

Dickey/Williarus [L982] | lunar laser ranging —25.14-1.2

These results suggest that the current value of 7., lies between —24" and
—26" which compares favorably with the value of -23.2" derived from de
Sitter’s analysis of ancient observations as corrected.

Stephenson and Morrison [1984] and Newton [1985b] have published new
attempts to describe the variation of the Earth’s rotation, assuming a con-
stant value for 7, and using ancient and medieval observations incorpo-
rating extensive Babylonian data from cuneiform sources. Though their
mcthods and conclusions differ, they all find that a constant acceleration
will not account well for both ancient and medieval observations. For —300,

the accelerations implicit in their studies, assuming 5, = —25'| are:
Stephenson/Morrison Newton
S, = 1.26" 1.32"
S, = 4.33" 5.13" (18)

L= 3.07" 3.81"
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Investigator Sy S, S B Epachs
van der Waerden [1961] 1.317 628" 497" —22.4" —380/1780
Muller /Stephenson {1975] 1.88 632 444 376 0/1770
5. Jones [1939] 1.23 [5.22] 3.99 —224 —200/1780
Newtan [1985)" 132 513 381 [-25.0] -300/1790
de Sitter [1927) 1.80 522 342 -37.7 —-200/1833
Schoch [1526] 1.51  5.04 3563 -30.3 -200/1800
Fotheringham {1920b) 1.50 4.7 3256 -30.6 —250/1800
Stephenson/Morrison [1984)° | 1.26  4.33  3.07  [-25.0] —300/1900
Newcomb [1912)° (1.23] {3.97] 2.75 [-25.0}] —300/1800
Curatt {1966) 1.06 [3.62] 2.56 —21.1 2z 0/1780
S. Jones (revised)® 1.11 [3.62 251 —22.4 —200/1780
de Sitter (revised)® 1.14 3.62 248 —23.2 —200/1833
Morrison/Ward {1975] [1.23] 345 222 260 1677/1973
Newton [1670] 1.7 313 134 —-416 -—200/1900
Brouwer [1952] 1.01 222 121 —20.5 —300/1900

® Calculated from 5, and §1. ® CL 171, above. © Cf. 169, above.

Table Al.2. Summary of Recent Determinations of
the Accelerations of the Sun and Moon

The results of the investigations discussed above, beginning with New-
comb [1912], are summarized in Table A1.2. Since, for ancient observations,
the acceleration in elongation (S%) is the best dctermined parameter, the
findings are listed in order of Sp' Parameters which are assumed from
other studies and not independently derived are shown in [ |. More than
half (7/13) the results give values for Sp between = 2.5" and 3.5" with
the values of S, falling between roughly 1.1 and 1.5" At present, the best
estimates of the {average) accelerations for —300/1900 seem to be:

5, = 1.15" £0.15"

= 2.85" £0.5"
St = 4.00" +0.6"
Hm = 25" 4 2

(19)

These are very close to Stephenson and Morrison's implicit findings [1984]
and to Newcomb’s results [1912] when adjusted for the Sun’s acceleration.
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Elements of the Sun and Moon used in this work

When this study was first completed, the accelerations which seemed to
fit the ancient and medieval data best were:

S, =1.0"
S5 =3.62" (8 =9.76") (20)
Sy, =2.62" (Sp=8.67"),

and these parameters were adopted in this work. Recently, the combination
of better modern techniques for estimating 7, and the use of more exten-
sive Babylonian data in estimating 5, have suggested that slightly higher
accelerations may in fact apply. These would affect the calculated times of
lunar phenomena reported by Ptolemy by no more than 10 minutes. In
view of the uncertainties which still attend the values of these parameters,
I have left unchanged the parameters originally adopted.

The following table shows the corrections to the compuied times of the
solar (At,) and lunar (Atp and At,,), phenomena which would result from
the use of the accelerations shown in (19) in place of the elements adopted
in this work.

Epoch N, Atp Aty
140 | —19™ 3™ 4™
—140 | —25 =3 -5
—-250 | —28 —4 -3
=500 | =35 -5 17
~780 | —-43 =5 —18

The adopted accelerations differ from those deduced by 8. Jones [1939] and
included in the elements accepted by the Nautical Almanac Offices by:

A5, =-1.6"
AS, =-0.23"

These corrections should be multiplied by R = T?+1.337—0.26 to minimize
their effect on modern observations. Hence, the total corrections to the
expressions for the mean longitudes of the Sun and Moon at 1900 become:

ALmp = +0.42" —2,13"T — 1.6"T*
AL, = +0.06" —0.31"T —0.23"T2
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Applying these to the elements used by the Nautical Almanac Offices [1961,
98, 107}, expressed in terms of Universal Time,? we obtain for 1900.0:

L, = 270;26,16.78° 4 13367306;53,36.80°T + 10.76"T*
L, = 279:41,49.10° + 10070;46,10.80°T + 2.09" T2
D = 350:44,27.68° 4+ 12367307:7,26.09°T + 8.67'T*

In this work, the longitudes of the Moon’s perigee and node are from the
expressions derived by Brown [1915] and used by the Nautical Almanac
Offices [1961, 107]. For reference, these are (1900.0):

Prm = 334;19,46.40° + 117109;2,2.52°T — 37.12" T2
Ny = 258:10,59.79° — 57134:8,31.23°T 4 7.48" T

® The elemnents stated in Nautical Almanac Offices [1961, 98, 107] are for Ephem-
eris Time. To obtain expressions for the elements for Universal Time the following
corrections must be applied:

ALpm = +4.65” + 12.96%T + 5227% + B
ALy = +1.00" + 297" T + 1.23*T*% 4 0.07475,

where B is the value of the Moon's fluctuation. In the present study, B has been
neglected because its magnitude at ancient epochs is unknown.
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Corrections to Earlier Elements

Previous investigations of Ptolemaic observations have been based on differ-
ent lunar eleimnents than those derived in appendix 1, as have the most con-
venient tables for computing the circumstances of solar and lunar phenomn-
ena in antiquity. Therefore, it seems desirable to present the corrections
required to reduce these elements to those adopted in this study.
The most useful tables for computing the positions of the Moon at distant
epachs or for determining the circumstances of eclipses are:
(a) P. V. Neugebauer, Tafeln fiir Sonne, Plancten und Mond
nchst Tafel der Mondphasen: Tafeln zur astronomische Chro-
nologie [1914]; with corrections based on Schoch’s elements

[P. V. Neugebauer 1929, i 35; ii Table E, ]

(b) P. V. Neugebauer, ‘Spezieller Kanon der Mondfinsternisse
filr Vorderasien und Agypten von 3450 bis 1 v. Chr’. [1934];

{c) T. R. Oppolzer, Canon of Eclipses [1962, first published in
1887]; and

(d) B. Tuckerman, Planetary, Lunar and Solar Positions — 600
ta + 1649 [1962-1964].

Of these, P. V. Neugebaucr's tables and Tuckerman’s computed positions
are bascd on Schoch's corrected elements as given in P. V. Neugebauer 1929,
1 35. Oppolzer’s Canon [1962]; on the other hand, is based on the clements
of Hansen and Leverrier, to which Oppalzer applies an empirical correction.

For January @, 1900 Schoch’s clements [1926] are:

L., = 270;26,16.65° + 1336"307:53,30.52°T 4 12.22" T2
P = 334;19,45.94° + 117109;1,58.50°T — 37.12"T°
N = 259:10,58.80° — 57134:8 25.90°T + 7.51" T2
D = 350,44,28.41° + 12367 307;7,29.95°T + 9.62" T
L, = 279:41.48.24° 4+ 100710:46,9.57°T + 2.600"7T2
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Comparing these with the elements shown in appendix 1, we obtain:

ALy, = +0.13" — 2.63"T — 1.46"T*
AP, = +0.46" + 3.02"T + 0.00"T?
AN, = =0.01" — 5.33"T — 0.03"T*
AD = —0.73" — 3.86"T — 0.95"T*
AL, = +0.86" + 1.23"T — 0.51"T?

Thesc corrections computed for ancient and eatly medieval epochs are given
in Table A2.1, where At is the correction to the time at which the body
in guestion would reach a given mean longitude or elongation according
to Schoch’s elements.

T AL, At, AD Atp AL, FAY

—10  (900) | —120™ 43.6™ —BH8™ 41.9™ —62™ 424.8™
—15 (400) | —289 +88 -—162 +55 -—122 4488
—20 (—100) | —532 +16.1 -304 +10.0 —22 491.2
—25 (=600) | —845 +25.6 —497 416.3 —348 +139.0

Table A2.1. Corrections to Schoch’s Elements

To compute the difference in time of a given event such as an eclipse or
occultation, the appropriate AL should be divided by the actual velocity.
In using tables depending on Schoch’s elements, only the corrections to
the mean longitude and elongation need be cousidered. This is because the
differences between the motions of the perigee and node according to Brown
and Schoch would not produce sensible effects in the position of the Moon
except at very far distant epochs, and also because the difference is within
the probable error assigned to these motions by Brown [1915, 514-515).

This is not true of the elements on which Oppolzer’s Canon are based.
For those, we must consider the corrections not only to the mean motions
on longitude and elongation, but also to the principal arguments of lati-
tude and anomaly. Using Newcomb's comparisen (1912, 238] of Oppolzer’s
corrected elements and comparing them with Schoch’s for 1900, we find:

ALn = +0.68" — 6.36"T — 2.42"7T?
AP, = +12.56" + 20.86"T + 9.82"7*
AN, = —71.32" —71.03"T — 2.07'T*?

AD = 40.84" + 5.66"T +0.93"T>
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Applying the correction to Schach found above, we obtain:

AL, = +081"+ 3.73"T+ 0.96"T*

AD= 011"+ 250"T — 0.02"7T?
Ad=AL-—AP=-11.73" - 17.13"T - 8.86"T*
AF = AL~ AN = +72.16" + 74.76" T + 3.03" T2

These corrections are tabulated in Table A2.2.

T AD Atp Aa  AF

—10 (900} | —27" +0.9™ —727"-373"
—15  (400) | —42 +1.4 —1750 —367
—20 (=100} | —58 +1.9 —3210 —222
—25 (—600) | -75 +2.5 —5716 +97

Table A2.2. Corrections to Oppolzer’s Elements

The correction to Oppolzer’s elongation is negligible, and the correction
in the argument of latitude will yield an error of less than 0.29 in com-
puted eclipse-magnitudes at Ptolemy’s time. The error in the argument
of anomaly, however, can affect the time of conjunction at —100 by nearly
10 minutes.

Finally, since it is sometimes convenient to refer to Newcomb'’s computa-
tions [1878], which are bascd on Hansen’s tables, the following corrections
to Hansen’s elements are consistent with those described above.

AD = —-20.76" — 31.24"T — 2.6"T?
Aa = —37.10" — 41.80"T — 0.66"T?
AF = 3747 —38.54"T — 0.87"T"?

The corrections to each of these elements for specific dates are given in
Table A2.3.

T AD Atp Aa  AF

~17  (200) | —215" +7.1™ +478" +393"
-18 (100) | —275 491 +496 +406
-20 (—100) | —391 +13.1 4527 +409

Table A2.3. Carrections to Hansen's Elements

The error in the time of an eclipse due to the error in Hansen’s anomaly
is less than £2 minutes for the period over which Ptolemy reports observa-
tions. The error in an eclipse-magnitude can reach nearly 0.59
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The Inequality in Eccentric Motion

The expression for the inequality in eccentric motion is frequently stated
[cf. Tannery 1893, 168 £.], but its development is seldom shown. If we ig-
nore powers of ¢f greater than 4, the inequality is developed most simply in
this way:

tana’ — ¢ sina’ ' 1
§= 1 +e'cos&”e
= e'sing' (1 — ¢ cosa’ + ¢ cos? @ — €'’ cos® @' ...)
1 . 1 1 . 1 .

= (e" + Zcra)sm a — (ECJQ + Zc'd)sm 28 + 16!3 sin 3a’

1 IE —r

— —e sinda ..,

8

If we neglect powers of ¢' greater than 4, we may put,
1 1
g =tang' - gg*a =tang' — 3 tan® ¢’ (2)

From (1), we obtain,

1 1
Ztan ¢’ = —¢
=3

3

1 1
* sing’ - 1—12—6'3 sin3a’ - Zc"i sin2a + ¢ *sinda’ +... (3)

8

Thus, from (1), (2), and (3), it follows that

1 1 1
"= e'sina — 56'2 sin2a’ + 56'3 sin3a’ — ZEM sinda’ . .. (1)
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1;16,26° (modern)
1;17,6.8° (Ptolemny) 147
1;19,37.9° (apparent) 147
omitted terms, 142, 145, 148
prosneusis, 148
Obliquity of the ecliptic
23;40,46° (modern, +130}, 3
23;51,20° (Ptolemy, «lif}, xii, 2
24% 3n3
I*recession, 77
34.8"fyr (Ptolemy, optimal), 77
36" }yr (Ptolemy), 77
Ptolemy’s epoch
746 Feb 26 noon, 54-85
Ptolemy’s lunar model, 127-128
Ptalemy’s solar model
apogee {65;30"), 12—
equation, 42, 44-45
mean longitude, 41

148

motion in latilude, 2

second inequality, 2Inl8, 32
Solar acceleration, 162

1.007 (assumed), 177

1.15" (concluded), 176
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1.23" (S. Jones), 170-171, 174

1.5" (Fotheringham}, 165

1.511* {Schoch), 166
Terrestrial latitudes

Alexandria
30;58° (Ptolemy), 5

31;12° {modern), 5, 112-113,
116
Rhodes
36:24° (modern), 102-104
Time
reports of, 50-51
obszervations of, 99-100



