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PREFACE

This investigation was originally undertaken as a dissertation presented
to the Faculty of Yale University in 1966 in partial fulfillment of  the re-
quirements for the degree of Doctor of Philosophy. Whi le  working on i t
then, I  held a Graduate Fellowship from the National Science Foundation
whose support I gratefully acknowledge. Subsequently, Yale University has
afforded me access to their facilities as a Visiting Fellow, which greatly
assisted the preparation of this work for publication. In  addition, I wish to
record with special gratitude the financial support for the publication of
this work provided by the Neugebauer Fund at The Institute for Advanced
Study (Princeton).

It is also a pleasure to express my special indebtedness and gratitude to
my former advisers and subsequent colleagues, Professors Asger Aaboe and
Bernard Goldstein, whose suggestions and constructive criticisms helped
greatly to focus, clarify, and improve this work during its several stages.
I should also like to  thank Professor Gerald Toomer for his encourage-
ment and helpful comments, not to  mention his splendid translation of
the Almagest. A m o n g  the many others who have helped in the prepa-
ration of  this work I  am particularly grateful to the late Professor Otto
Neugebauer for his reading and helpful criticisms of the rough draft o f
this book. I  am also indebted to the late Professor Gerald Clemence for
his help in obtaining information concerning Simon Newcomb, to the late
Professor Derek de Solla Price for his always stimulating suggestions, and
to the late Professor Abraham Sachs, who furnished me with much infor-
mation about Babylonian astronomy and with translations of unpublished
cuneiform texts.

Lastly, I  wish to express my profound indebtedness and special thanks to
Doctor Alan C. Bowen, who initiated and carried through the publication
of this work as editor. Without his resourceful and persistent labors, guided
by a discriminating and sensible judgment, this publication would not have
happened.
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International Publishers, Ltd.



INTRODUCTION

The following study grew out of a survey of attempts by astronomers of the
nineteenth and early twentieth centuries to determine the amounts of the
Moon's secular acceleration and the retardation of the Earth's rotation. I n
the course of it, I  found substantial differences among determinations by
different investigators, and particularly between the values of the secular
acceleration of the Moon's elongation obtained by Newcomb [1878, 1912]
from his analysis of Ptolemaic and Arabian eclipse-data, and the results
obtained by others from analyses of  different ancient observations. T h e
latter include observations of  equinoxes, occultations, and lunar eclipse-
magnitudes reported by Ptolemy, as well as references in ancient literary
sources to events which could be interpreted as solar eclipses that were
total at a specific place.

It became apparent that the differences between the various determina-
tions of the accelerations in question were partly due to assumptions made
by investigators about the quality of the available evidence, and especially
to assumptions about the reliability of the observations which Ptolemy re-
ports. Newcomb, for example, argued that the Ptolemaic eclipses afforded
the onlYs-reliThirdata from antiquiti, and that taken together these eclipse-
reports gave a secure value for the acceleration of the Moon's elongation.
Fotheringham [1915a, 1918, 1920] and Schoch [1930], on the other hand,
regarded the lunar eclipses described by Ptolemy as too ambiguous, too in-
consistent, or too suspect to be useful. Hence, they preferred to use either
those other observations reported by Ptolemy but made by his predecessors,
or the literary reports of total solar eclipses.

The latter approach was consistent with a tradition of critical scepticism
about Ptolemy's abilities as a practical astronomer and even his integrity
as a reporter, which became widely accepted during the eighteenth cen-
tury and was most effectively articulated by Delambre in his Histoire de
Pastronomie ancienne [1817]. T h e  substance of  this criticism was _that
Ptolemy was at best an inferior and clumsy observer, that his reports of
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x  I N T R O D U C T I O N

both his own and his predecessors' observations were imprecise and often
ambiguous, and that his general use of only a minimal number of observa-
tions in deriving the parameters of his models reflected an unsophisticated
and indeed simplistic disregard of the inevitability of observational errors.
Furthermore, the instances where Ptolemy confirms parameters obtained
by Hipparchus and the general agreement between Ptolemy's models and
his reported observations were both considered evidence that Ptolemy ei-
ther selected or altered the original observations to obtain such agreement
[cf. Lalande 1757, 421-422], or even that the observations were fictitious
[Delambre 1817, i xxv—xxvi]. Finally, the common assumption, first artic-
ulated by Tycho Brahe [Dreyer 1918, 349], that Ptolemy's star-catalogue
was merely a plagiarism of Hipparchus' was extended by Delambre, who
argued [1817, i xxv—xxix] that much of the substance of the Almagest was
really the work of Hipparchus which Ptolemy revised and presented without
proper credit.

Delambre's premise that Hipparchus was the real author of much of the
Almagest gave him an easy explanation for many of the difficulties and
inconsistencies which emerge when one examines the Almagest in detail.
Not only did this assumption support Delambre's aspersions on Ptolemy's
integrity, i t  also reinforced his criticisms of Ptolemy's abilities as a prac-
tical astronomer. Thus, by assuming that most of Ptolemy's results were
either taken directly from Hipparchus or derived sub rosa from the latter's
observations, Delambre could freely, i f  somewhat anachronistically, criti-
cize Ptolemy's observations, his descriptions of his instruments, and, most
forcefully, Ptolemy's methods for obtaining the values of his parameters.

Subsequent research has substantially qualified Delambre's estimate of
Hipparchus' accomplishments and of the extent of  Ptolemy's unacknow-
ledged debt to  Hipparchus [cf. Aaboe 1955, 1974; Neugebauer 1956 and
1975, 274-341; Swerdlow 1969, 1979; Toomer 1967, 1973, 1974, and 1980].
In particular, Kugler's discovery [1911, 111] that nearly all of the param-
eters for mean motion ascribed to Hipparchus were of Babylonian origin,
destroyed most of  the direct evidence supporting Delambre's thesis that
Hipparchus was the superior practical astronomer and that Ptolemy de-
pended heavily on his predecessor for his empirical results. Delambre's
argument was further weakened by Vogt's [1925] careful demonstration
that Ptolemy's star-catalogue could not have been simply taken from Hip-
parchan data with an adjustment in longitude for precession [cf. Neuge-
bauer 1975, 200-284; Evans 1987].

The emergence of a more realistic, i f  still fragmentary, picture of Hip-
parchus' accomplishments reopens many questions about the practical as-
tronomy of the Almagest, which hitherto had been conveniently answered
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by reference to hypothetical lost works of Hipparchus. The following study
addresses some of these questions. In  particular, it seeks, through an anal-
ysis of the solar and lunar observations reported in the Almagest and of
the associated models, to gain a better understanding of both Ptolemy's
abilities as a practical astronomer and of the role of observations in the
development of his theory.

Specifically, i n  chapter 1, I  examine Ptolemy's description of  his de-
termination of the obliquity of the ecliptic to ascertain whether Ptolemy
could have confirmed Eratosthenes' value from real and independent ob-
servations. Since Ptolemy's (and Eratosthenes') value for the obliquity
(23;51,20°) is too large by roughly 0;10°—corresponding to an error of
0;20° in the measurement of the double obliquity—it seems unlikely that
independent observations should yield an identical, erroneous result. I
show, however, that the peculiar motion of the Sun's shadow on the plinth,
the instrument Ptolemy appears to have used, would tend to produce just
the error found in Ptolemy's value i f  this behavior of the shadow were not
taken properly into account.

In chapter 2, I  investigate the solar observations Ptolemy reports and
determine both the periodic and secular errors in his solar model. I  first
examine the observations and their errors and discuss the possible sources
of systematic error in  Hipparchus' and Ptolemy's observations. H e r e  I
show that both the relative accuracy of the times of Hipparchus' equinox-
observations and the small systematic error in declination which they ex-
hibit can be explained by supposing that Hipparchus knew at least one
parameter of his solar model beforehand and that he used this to fix the
alignment of his instrument.

Ptolemy's solar observations, in contrast, are systematically in error by
roughly a day, and they do not exhibit a systematic error in declination.
Previous investigators [e.g., Delambre 1817, i xxvii; Tannery 1893, 142 ff.;
Fotheringham 1918, 420] have argued that the observations are too much
in error and too consistent with Hipparchus' solar parameters to  be in-
dependent observations. Consequently, I  have investigated whether these
errors could arise from a misalignment of the equatorial ring which Ptolemy
appears to have used, or from the effects of refraction. Since neither effect
would produce the errors found in Ptolemy's observations, I  conclude that
these errors could not have resulted merely from systematic observational
errors. On the other hand, the irregularities in the Sun's apparent behav-
ior which are due to refraction would have made it extremely difficult for
Ptolemy to obtain a series of consistent equinox-observations, and so to
make any appreciable improvement on Hipparchus' solar model by means
of such observations. Thus, although it does not seem reasonable to accept
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Ptolemy's solar observations as the results of careful, independent meas-
urements, the irregularities in the Sun's apparent behavior and Ptolemy's
need for solar tables to make other observations, would have given Ptolemy
good reason to accept Hipparchus' solar model.

After discussing the errors in Ptolemy's and Hipparchus' solar observa-
tions, I  consider whether Ptolemy's solar tables were identical with those of
Hipparchus. I  conclude that they were not, although Ptolemy may have
used a Hipparchan equinox-observation as the basis for the epoch of  the
Sun's mean motion.

Finally, I  determine the errors in Ptolemy's solar model. Although the
secular part of this error has been analyzed by others [e.g., Kepler 1627,
praec. 196; Lalande 1766, 467; Ideler 1806, 107], the influence of this error
on Ptolemy's reductions of most of his other observations made it desirable
to re-determine it using modern solar elements. This error, which is 1;5° in
the year +135, is compounded by an additional error from Ptolemy's solar
inequality of roughly ±0;25°, which must be taken into account when one
compares his reduced observations with modern computations.

One of the principal problems addressed in chapters 1 and 2 is whether
real observations could plausibly have agreed with previously determined
but erroneous parameters and, thus, whether Ptolemy's statements about
his own observations and procedures are credible. I n  the case of the Moon,
however, the problem is quite different. I n  the first place, Ptolemy's own
lunar observations are not clearly distinguishable from those of his predeces-
sors, since the latter are not significantly more accurate or consistent than
Ptolemy's. Secondly, although two parameters in Ptolemy's lunar model—
the mean motion in elongation and the Moon's maximum latitude—are
identical with those used by Hipparchus, other parameters such as the mean
motions and epochs of the arguments of anomaly and latitude, the ratio
of the diameter of the Moon to the diameter of the Earth's shadow, and
(most probably) the radius of the Moon's epicycle, are different from those
of Hipparchus. Consequently, the question of whether real observations (in
the case of the Moon) could confirm a predetermined, but erroneous set
of parameters does not arise. On the contrary, what is intriguing is that all
of Ptolemy's lunar parameters are quite accurate, while the observations
from which he derives them are often imprecise and inaccurately reduced.
Accordingly, the question here is whether Ptolemy's lunar parameters were
derived solely from the observations which he reports or whether some
other explanation for their accuracy must be found.

Chapters 3 and 4 address this question. I n  chapter 3, I  investigate the
quality of  the lunar observations which Ptolemy reports, and determine
the errors in the observations themselves and in the data which result from
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Ptolemy's reductions. These observations fall into three groups: lunar
eclipses; occultations; and measurements of  the Moon's elongation from
the Sun, stars, or planets. Although not all these observations were used
by Ptolemy to specify the parameters of his lunar model, I  have included
them as additional evidence of the quality of lunar observations in antiquity.

The eclipse-reports are the most accurate of  the three groups. T h e y
exhibit an average error in the Moon's elongation of roughly ±0;6° while
that found for the measurements of elongation is around ±0;20° The  oc-
cultations show an average error in the Moon's sidereal position of around
+0;10° and thus are somewhat less accurate than the eclipse-observations,
but far more accurate than the direct measurements of the Moon's elonga-
tion. On the whole, the errors of the observations agree well with what we
would expect from careful observations made with the techniques available
in antiquity. Furthermore, the errors are well distributed with regard to
sign and show no systematic deviation from modern computations.

In addition to observational errors, the data resulting from Ptolemy's
reductions are also affected by numerous other errors, frequently of com-
putation; and one of the purposes of chapter 3 is to determine the additional
error engendered by Ptolemy's reductions. I n  each group of observations
the average additional error from this source was found to be around ±0;4°
In the occultations, however, Ptolemy's reductions introduced a large sys-
tematic error of roughly —0;25°

In chapter 4, I  compare the parameters of Ptolemy's lunar model with
their modern equivalents in  order to  assess the errors in Ptolemy's pa-
rameters. I  then compare these errors with what we would expect from
the average errors in Ptolemy's reductions of his observations and from
the procedures by which he derives his parameters. For each of the eight
parameters so tested, I  found that Ptolemy's value is significantly more
accurate than we would expect. I n  particular, i t  is striking that the ac-
tual values of  Ptolemy's lunar arguments at his own time are extremely
accurate, even though the methods by which he derives them do not favor
observations made at his own epoch over others made at earlier epochs.

These findings strongly suggest that Ptolemy was not entirely candid in
describing the procedures by which he determined his parameters, for the
relatively high accuracy of each of these parameters cannot be explained
satisfactorily by assuming that Ptolemy was merely lucky or that he relied
on Hipparchus' results. The  most plausible explanation for the accuracy
of these parameters is that they were the result of some average of many
determinations from a much larger number of observations than Ptolemy
describes. This conclusion departs sharply from the traditional view that
Ptolemy's procedures for analyzing observations and deriving the param-
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eters of his models were quite unsophisticated. Indeed, it seems likely that
the procedures he actually followed were much closer to modern procedures
than has been thought.

The question remains, Why should Ptolemy have described procedures
for determining his parameters less sound than those which he actually
employed? While it is impossible to answer such a question with certainty,
it is my view that the Almagest was not intended to be a historical account
but rather a pedagogical treatise. I n  general, Ptolemy takes great care to
make his demonstrations and determinations conform as nearly as possible
to the standards of logical rigor encountered in Greek mathematics. Hence,
he may reasonably have concluded that the interests of clarity and rigor
were better served by examples of how his results were obtained than by
a lengthy, and necessarily non-rigorous, discussion of his procedures for
obtaining parameters from discordant observations.

One corollary to this conclusion is that Ptolemy almost certainly selected
the observations which he reports because they yielded just the values
of parameters which he wished to demonstrate. T h i s  is not to say that
Ptolemy tampered with the reports of the observations or that he made
intentional errors in their reduction and analysis. Indeed, he would have
had no need to do so, since among a large number of determinations a few
could be expected to illustrate almost any desired value for a parameter
(as long as this value was approximately correct).

Since the investigations described above draw heavily on comparisons of
Ptolemy's observations with modern theory, i t  seemed desirable to use a
consistent set of lunar and solar elements throughout instead of the variety
of elements used by previous investigators. Consequently, I  have adopted
the elements used by the Nautical Almanac Office [1961, 98, 107] wi th
two modifications. These modifications affect only the apparent secular
accelerations of the Sun and Moon, the modern values for which I found to
be based on an erroneous analysis by de Sitter [1927]. I n  appendix 1, I
discuss previous determinations of these parameters and derive the revised
values which I have used throughout this work. In appendix 2, I give those
corrections which reduce the elements used by earlier investigators to the
elements I  have adopted.

Since this study was first completed in 1966, our resources for under-
standing Ptolemy and the Almagest have been importantly affected by
four major works. These include two extensive commentaries on the Al-
magest, one by Olaf Pedersen in 1974 entitled A Survey of the Almagest,
and the other by Otto Neugebauer in 1975 as part of A History of Ancient
Mathematical Astronomy. T h e  primary objective of  both Neugebauer's
and Pedersen's commentaries is to describe the methods, models, and func-
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tions which Ptolemy employs in the Almagest, with emphasis on textual
and internal evidence and a few comparisons with calculations from modern
astronomy. Consequently, most of the substance of the present study is not
duplicated in either work.

A third major resource for understanding Ptolemy and the Almagest is
Gerald Toomer's superb English translation, Ptolemy's Almagest. Prior to
its publication in 1984, the best modern translation was Manitius' [1912-
1913]: Halma's French translation [1813-1816] and Taliaferro's mediocre
English translation [1952] both suffer from textual and interpretative in-
adequacies. A p a r t  from being the first good English translation of  the
Almagest, Toomer's version also comes with several hundred (noted) cor-
rections to  Heiberg's text, w i th  the result that we now have as secure
a text as we are likely to. Moreover, Toomer has extensively annotated
the translation and includes accurate values for many calculations, thus
supplementing the commentaries by Pedersen and Neugebauer.

These works by Neugebauer and Pedersen and Toomer have substantially
enhanced both our resources for understanding Ptolemy and our apprecia-
tion of his accomplishments as an astronomer, mathematician, and author
of the Almagest. Contemporaneously, R. R. Newton published several
books which attempt to prove an extreme and opposite conclusion. Th is
is that Ptolemy was at best a mediocre astronomer [1977, 364] who fab-
ricated all but a few of the observations reported in the Almagest [1977,
344-346, 364, 378], thereby committing an elaborate fraud resulting in the
destruction of much 'valid Greek astronomy' [1977, 362]. Consequently,
Newton concludes [1977, 379] that the Almagest l a s  done more damage
to astronomy than any other work ever written'.

This is 'the crime of Claudius Ptolemy' that Newton alleges at length
in his book of that tit le [1977], a crime said to have been 'committed by
a scientist against his fellow scientists and scholars, ... that has forever
deprived mankind of fundamental information about an important area
of astronomy and history' [1977, xiii]. T h i s  book expands upon several
earlier works [Newton 1970, 1973, 1974a—b, 1976] published in connection
with efforts to determine the effective accelerations of the Sun and Moon.
In turn i t  is followed by two related works [Newton 1982, 1985a—b] which
discuss the origins of Ptolemy's parameters and tables, and which further
amplify Newton's thesis that 'Ptolemy was the most successful fraud in the
history of science' [1977, 379].

Newton's work has been widely criticized—see, e.g., Swerdlow's excellent
review [1979] of  The Crime of Claudius Ptolemy [1977]—and, indeed, i t
affords ample ground for criticism. In general, it is a biased and unrelieved
polemic against Ptolemy, composed in a vexatious and intemperate style (as
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may be sensed from the foregoing quotations), and it contains many errors
of fact and comprehension, as well as inconsistencies in both argument and
logic. Indeed, were it not for the sheer scope of Newton's work, the zealous
energy it reflects, and the emotional language it employs, I suspect that few
would have paid it much heed. As it is, however, Newton's work has come
to represent a counterview of Ptolemy's contributions which has proven
difficult to dislodge.

I have not attempted, nor is there space, to present a critical analysis
of Newton's work here. I n  general, I  think that his main conclusion with
respect to Ptolemy's stature and achievements as an astronomer is simply
wrong, and that the Almagest should be seen as a great, i f  not the indeed
the first, scientific treatise. Furthermore, I  am inclined to wonder i f  New-
ton's unrelenting animus towards Ptolemy may not arise from the fact that
the observations in the Almagest do not support the (anomalous) accelera-
tions that Newton [1969, 1970, 1972, 1979-1984] finds from other data and
seeks to have accepted. Final ly,  I  note from errors scattered throughout
Newton's work, that he has relied extensively on Halma's Greek text by
way of Halma's or Taliaferro's translations, and that he evidences little fa-
miliarity with either Manitius' superior translation or Heiberg's far superior
text. While consistent with Newton's acknowledgment [1985, 53] of having
`small Latin and less Greek', this contrasts with his purported methodology
and raises a small but important question regarding his own candor.

For all its deficiencies, however, Newton's work does focus critical at-
tention on the many difficulties and inconsistencies apparent in  the fine
structure of the Almagest. I n  particular, his conclusion that the Almagest
is not a historical account of how Ptolemy actually derived his models and
parameters is essentially the same as mine, although our reasons for this
conclusion and our inferences from it differ radically.

In revising this study, I  considered how best to  treat Newton's work,
which raises important issues regarding virtually all the material discussed
here. I n  the end, I  decided that to  address these issues directly would
substantially change both the character and scope of this work, a  work
completed some years before Newton's first publications on these subjects.
Consequently, I have purposefully omitted what would otherwise have been
extensive references to Newton's writings, preferring that this study address
Ptolemy rather Newton.

In preparing this work for publication, I have made a number of changes
to the 1966 text. T h e  most important of  these is the replacement of all
previous translations of passages from the Almagest with Toomer's trans-
lations. Generally, this has improved the clarity and consistency of such
extracts, but in no instance has it changed the substantive conclusions relat-



Introduction x v i i

ing to any given passage. Other changes include corrections of calculations
and the updating of notes and references to acknowledge relevant mate-
rial published since 1966. This resulted in some expansion of the material
on the secular accelerations [appendix 1], though its principle conclusion
remains the same. Final ly,  I  have made minor revisions throughout the
text in the hope of improving its clarity. The  net effect of these changes
is modest in  scope and either technical or literary in nature. Thus,  the
findings and conclusions of this study are essentially unchanged from those
in my original dissertation.

New Haven, Connecticut
June, 1992
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Models and Precision: The Quality of
Ptolemy's Observations and Parameters

I f  Ptolemy in continuing the same observations near-
ly 300 years after Hipparchus, had been content
to publish a  general history, i f  he had not  more-
over changed the positions of the stars in the Cata-
logue, and instead o f  establishing the elements o f
the movement o f  the planets wi th the aid o f  hy-
potheses and from a small number of observations,
had he discussed and collected faithful ly al l  tha t
which could be brought to  bear on the mean mo-
tions, the nodes, the inclinations, the aphelia, and
the eccentricities or greatest equations of the orbits
of the planets, i t  is certain that  astronomy would
be much further advanced than i t  is today, and
we would know the laws o f  the celestial motions
much better a t  present. B u t  he was less inter-
ested in rendering his Almagest or Syntaxis useful
to astronomers than in making i t  available to  the
ordinary man and the calculators. A n d  since the
true way to perpetuate this sort o f  work is to  an-
nihilate al l  the observations which would be con-
trary to  i t ,  i t  has happened that  except for  only
the observations which he was obliged to use in the
construction o f  his tables, the other astronomical
observations have been lost.

Le Monnier
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1

Ptolemy and the Obliquity of the Ecliptic

Ptolemy's determination of the obliquity of the ecliptic [Alm. i  12] illus-
trates some of the problems one encounters in trying to understand the
interplay between the observations and the parameters Ptolemy adopts in
the Almagest. The determination is straightforward and requires no previ-
ously developed theory for the reduction of the observations. I f  zip is the
noon zenith-distance of the Sun at winter solstice [see Figure 1.1], and zs
the noon zenith-distance at summer solstice, then

zw z s  =  20
— zs =  26,

Zenith
Summer Solstice

E

E

Equator

Winter Solstice

South

Figure 1.1
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where i s  the latitude of the place of observation and e is the obliquity.
After describing the procedure for finding the zenith-distance of the Sun

on the meridian by means of a plinth or quadrant [see Figure 1.2], Ptolemy
writes [Alm. i  12: Toomer, 63]:

From observations of this kind, and especially from comparing obser-
vations near the actual solstices, which revealed that, over a number
of returns [of the Sun], the distance from the zenith was in general
the same number of degrees of the meridian circle at the [same] sol-
stice, whether summer or winter, we found that the arc between the
northernmost and southernmost points, which is the arc between the
solstitial points, is always greater than 472/3° and less than 473/4°.
From this we derive very much the same ratio as Eratosthenes, which
Hipparchus also used. For  [according to this] the arc between the
solstices is approximately 11 parts where the meridian is 83.

Three points in this passage are noteworthy. First, Ptolemy states explic-
it ly that the angle measured was the zenith-distance and not the altitude.
Second, he reports that the zenith-distances measured were nearly always
the same and thus denies a solar motion in latitude.1 F ina l ly,  Ptolemy
says, in effect, that from several years of his own observations he confirmed
Eratosthenes' value for the obliquity,

11
2€ =  83— • 360° =  47;42,39,2...°

e =  23;51,20°

which is the value Ptolemy [Alm. i  15] adopts in his table of declinations.

1 According to Theon of  Smyrna [Dupuis 1892, 289, 313], Eudoxus made the
Sun move on a sphere whose axis was inclined to that 'through the middle of
the [zodiacal] signs'. Theon says further that this inclination was 1/2°, so that
the maximum altitude of the Sun at summer solstice, for example, could vary
by as much as 1°. In his Commentary to the Phaenomena of Aratus and Eudoxus
[Manitius 1894, 88], Hipparchus discusses this question and remarks that Attalus
and other contemporary mathematicians affirmed the existence of a solar motion
in latitude. Hipparchus asserts that such a motion is impossible, since the dis-
crepancy between computed and observed eclipse-magnitudes was seldom found
to be greater than 2 digits or 0;5°. Despite Hipparchus' argument, the notion that
the Sun exhibited a periodic deviation from the mean ecliptic remained current
at Ptolemy's time, as witnessed by Theon of Smyrna [Dupuis 1892, 211, 223, 279,
289, 313]. Indeed, in spite of Ptolemy's denial, Martianus Capella maintained
it as late as the 5th century AD. See Dreyer 1906, 94-95, for a summary of the
several variants of this theory and further references.
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In contrast, the modern value for the obl iquity at Ptolemy's t ime (+130) is

e =  23;40,461 s o
2E =  47;21,32°. 2

The error  i n  (correct ion to )  t he  value adopted by  Pto lemy is, therefore,
—0;10°, whi le  the error  in  the angle actual ly measured is —0;21°. Since the
lat ter er ror  is  f ou r  t imes greater t h a n  the precision claimed b y  P to lemy
(±0;5°) ,  and since Ptolemy's results confirm almost exactly the earlier value
obtained by  Eratosthenes, i t  is  na tura l  t o  ask i f  Pto lemy could have ob-
tained h is  resul t  f r om careful, independent observations.3 I s  i t  p lausible
that  a  careful  observer, fo l lowing the  procedures described b y  Pto lemy,
could have consistently found Ptolemy's l imi ts  wi thout  adapt ing his obser-
vational procedures to  yield the predetermined result?

2 T h e  modern expression for the obliquity of the ecliptic [Nautical Almanac Of-
fice 1961, 81], epoch 1900.0, is 23;27,08.26° — 46.845"T — 0.0059"T2 +  0.00181"T3.
In year +130, (T  = —17.7), i ts value is 23;40,46°; in —140, i t  is 23;42,46°.
3 C f .  Delambre 1871, i  86, i i  75. When Delambre wrote his Histoire de l'astro-
nomie ancienne, the rate of  change of  the obliquity (and, thus, the value of  the
obliquity a t  Ptolemy's t ime) was stil l uncertain. Delambre notes that  Ptolemy
uses Eratosthenes' value in  his tables o f  declination rather than the mean o f
the l imits which Ptolemy claimed to  have found; and this is also remarked by
Manitius [1912-1913, i 44nb]. This fact is, o f  course, irrelevant to the question of
whether Ptolemy re-determined the obliquity, since the difference, 0;0,5° is far
too small to  warrant changing an apparently satisfactory value.

A more significant question was raised b y  Berger [1880, 131] who  pointed
out tha t  the text is  ambiguous concerning the value o f  the obliquity used by
Eratosthenes and Hipparchus. Berger suggests that Eratosthenes and Hipparchus
used 24° for the obliquity and that the ratio, 11:83, was Ptolemy's invention. I f
Berger is correct, then the question o f  how Ptolemy confirmed the value o f  his
predecessors o f  course vanishes. Berger 's argument, however, seems weak for
two reasons. One is that Theon of Alexandria [Rome 1936-1943, i i  52, 528-529]
states tha t  Eratosthenes discovered the value 11/83 o f  a circle fo r  the double
obliquity. Theon  may have had no further information than that  given in  the
Almagest, and thus his testimony is not conclusive. Nevertheless, his statement
seems to deserve some weight. Secondly, i f  the value, 23;51,20° ( =  11/83 • 180°),
did not originate with Eratosthenes, i t  is difficult to understand why Ptolemy did
not merely take the mean between his observed limits for the double obliquity,
47;42,30°, corresponding to an obliquity of 23;51,15°.

For further discussion, see also Tannery 1893, 119-120; Toomer, 63n75; Gold-
stein 1983.
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Ptolemy describes two instruments for making these observations, a
meridional armillary and a plinth or quadrant.' I t  appears, however, that
he used only the pl inth and not the meridional armillary. T h i s  is sug-
gested by two facts. First,  Ptolemy begins his description of the construc-
tion and use of the plinth [Heiberg 1898-1903, i 66.5] with the statement,
T L CSE ei)xpricr-r6TEpov &Trotolip.€6a ( ` e v e n  more conveniently, however, we

made ... '). I n  contrast, he begins his description of the meridional armil-
lary [Heiberg 1898-1903, i 64.12] by saying in the future tense, Tronicrow
yap icimcXov xciAxEov ( ` w e  shall make a bronze r ing.. .  '). Second, both in
the statement quoted above describing his results and in his description of
the plinth, Ptolemy explicitly mentions 'marks' indicating the midpoint of
the Sun's shadow. In  describing the meridional armillary, however, he says
only that the zenith-distance can be read directly from the scale. Accord-
ingly, I  shall consider here only the problems which Ptolemy might have
encountered in making such observations by means of a plinth.'

First, we should note that the precision claimed by Ptolemy (±0;5°)
is consistent wi th what can be achieved with a plinth of  moderate size.
Ptolemy gives no indication of  the size of  either of  the two instruments
he describes; he simply states that the scales on each instrument should
be divided into integer degrees and their subdivisions. Proclus [Manitius
1909, 43 ff.] does not discuss the plinth but does describe the construction
of the meridional armillary, which he says should be 'not less than half
a cubit in  diameter:6 Proclus adds, however, that the scale on such an
instrument should be subdivided to 0;1°. This would have been impossible
on such a small instrument,' and  we are left to wonder how much Proclus
actually knew about such instruments. Pappus [Rome 1931-1943, i  6]
describes a  `meteorscope' similar in construction to Ptolemy's armillary
astrolabe, whose diameter, Pappus says, was equal to one cubit. Final ly,

4 See Dicks 1954, 78-79 and Price 1957, 587-589, for a discussion and description
of these two instruments.
5 Tannery [1893, 119-120] observed that Ptolemy's determination was actually
made on the plinth, which Tannery describes as more convenient but less accurate
than the scaphe that he supposes Eratosthenes to have used.
6 According to Hultsch [1889, 200-203], the Egyptian cubit was 525 mm. (=
20.6 in.) and the Roman cubit, 443.6 mm. (=  17.2 in.). The range in size of
the instruments mentioned by Proclus, Pappus, and Theon is, therefore, from
9 in. to 41 in.
7 See Dicks 1954, 77-85 and Price 1957, 582-619, for a discussion of the magni-
tude of possible subdivisions on instruments of different sizes in antiquity. Both
authors give 0;5° as the subdivision recommended by Proclus. The text, however,
gives 0;1°: cf. Manitius 1909, 44-45; Halma 1813-1816, 79.
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Theon [Rome 1931-1943, i i  819-820] notes that an equatorial ring of his
day had a diameter of two cubits.

These later descriptions afford us no certain information about the size of
Ptolemy's plinth, but they do suggest the order of magnitude of graduated
instruments in  antiquity. I f  we assume that subdivisions much smaller
than a millimeter were impractical, then a scale graduated to 0;15° would
require a radius of roughly half a cubit (9-10 in.), while subdivisions of
0;5° would require a radius of 11/2 cubits (27-30 in.). Though it is possible
that Ptolemy's plinth was graduated to 0;5°, i t  seems more likely that i t
was graduated to 0;10° or possibly to 0;20° from which readings might be
estimated to halves or quarters of a division.8 I n  either case an error of
0;20° should lie well outside the limits of  instrumental precision. Thus ,
considerations of precision alone suggest that Ptolemy should have been
able to improve upon Eratosthenes' value for the obliquity and to have
obtained a value of e accurate to within ±0;5°.

A second question is whether using a plinth to determine the obliquity
would tend to produce values systematically greater than those found from
accurate observations. Since the shadow on the plinth loses definition as
the Sun crosses the meridian, I shall first consider what should be observed
exactly a t  noon and, then, how the shadow moves in  the interval just
before noon, when readings could have been made more easily. Assuming
for the latitude of Alexandria 0 =  31;12°,8 we find the following apparent
(corrected for refraction) noon zenith-distances of the Sun at summer and
winter solstice for the year +130:

z, =  7;31°
=  54;51!

In contrast, using Ptolemy's value for the latitude of Alexandria [Alm. v
12], 0 '  =  30;58° and his value for the obliquity (e =  23;51,20°), we obtain
the following noon zenith-distances (z'):

= 7 ;  6,40° R . :  7 ;  5
=  54;49,20° 5 4 ; 5 0 .

8 See Vogt 1925, 40-42, for a discussion of the possibility that Ptolemy's armil-
lary astrolabe may have been graduated at 0;20° and read to 0;10°.
9 P.  V.  Neugebauer [1929, i i  101] gives 31.2°. Dreyer [1906, 176] states that
the latitude of the Museum at Alexandria was 31;11,7°, but gives no source for
this statement. Since i t  is not known where in Alexandria Ptolemy made his
observations, i t  is possible that the value 31;12° may be high by one or two
minutes of arc. See Lalande 1766, 496; Chazelles 1761, 172.
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Ptolemy does not say explicitly that he derived his value for the latitude
of Alexandria from such observations; he merely comments that i t  is easy
to determine the latitude of any place from such observations. (Indeed,
the identity of his value for the latitude of Alexandria with that implicit
in the crude ratio of 5:3 between the length of a gnomon and its equinoc-
tial shadow at noon, '  suggests an alternative source for this parameter.)
Nevertheless, assuming a precision of 0;5°, the above values are the only
possibilities consistent with Ptolemy's value for the latitude of Alexandria,
and so are most probably the zenith-distances he actually observed. I f
so, Ptolemy's determination of the Sun's zenith-distance at winter solstice
was essentially accurate, and the error in his value for the obliquity arose
solely from the error in his measurement of the Sun's zenith-distance at
summer solstice.

Sun

North

Figure 1.2. Ptolemy's Plinth as Seen from the Northeast

Consider next the movement of the Sun's shadow on the plinth as the
Sun approaches the meridian. In  Figure 1.2, BT represents a small cylinder
parallel to  the horizon and perpendicular to the plane of  the meridian,
whose shadow, BFQ,  intersects the scale of the plinth at F.  T h e  face of
the plinth is in the plane of the meridian and the line BG perpendicular
to the horizon. T h e  Sun's actual zenith-distance is denoted by z and its
azimuth by —A. Final ly  z' ( =  LGBF)  is the angle which would be read

10 The ratio 5:3 between the gnomon and its equinoctial shadow at Alexandria
was attributed to IIipparchus by Strabo. See Dicks 1960, 95, 174.
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off the plinth when the Sun was at zenith-distance z, and azimuth —A."
In what follows, I  shall refer to z' as the apparent zenith-distance (on the
plinth). A t  noon, when the Sun crosses the meridian, z1(0) = z(0).

The problem I wish to investigate is:

Given the Sun's declination (8), its hour-angle (t), and the latitude
of the place of observation (0), what is the difference between the
noon zenith-distance of the Sun and the apparent zenith-distance
measured on the plinth at t, i.e., z(0) — z'(t)?

First, consider Figure 1.2 and observe that

tanz' =  tanz • cos A, ( 1 )

where [see Smart 1962, 35]

sin z • cos A =  — cos 0 • sin 8 + sin 0 • cos 8 • cost, and
cos z =  sin 0 • sin 6 + cos 0 • cos 8 • cost.

If we now let

m • sin M =  sin 8,
m • cos M = cos 8 • cost,

and substitute for sin 6 and cos 6 • cos t i n  (2) and (3), we obtain

tan z • cos A =  tan(0 — M)
=  tan z',

whence
zl(t) =  —  M(t).

From (4) and (5),
(tan S)M(t)  =  arctan

cost

Since the noon zenith-distance is

z(0) =  —  6,
11

(2)

(3)

(4)

(5)

Here azimuth is counted from the southern meridian, and is considered posi-
tive to the west and negative to the east.
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our desired quantity is

0° < 8 < 90° zi(0) > z'(t)
0° = 8 z1(0) = z'(t) (11)
0° > 8 > —90° z1(0) < z'(t).

MODELS A N D  PRECISION

z(0) — z'(t) = M(t) — 8
tan 8= arctan ( — )  8 .cos t

(10)

Interestingly, z(0) — z'(t) is independent of 0; that is, the error in the
Sun's apparent zenith-distance observed on a plinth some time before noon
is the same for all places of observation. More importantly, (10) shows
that for

Thus, when the Sun is north of the equator z'(t), the apparent zenith-
distance, reaches a maximum at noon (t =  0°), whereas when the Sun
is south of the equator, z'(t) is a minimum at noon. T h e  behavior of
the shadow on the plinth when the Sun has a positive declination is just
the reverse of what we might intuitively expect, since the Sun's actual
zenith-distance has, of course, always a minimum at noon.

The error in the value of the obliquity which arises from accurate meas-
urements made at summer and winter solstice some time (t) before noon, is
determined as follows. For

we have from (10)

6' = ±e,

cobs = —2 [zI(t),D — zi(t)s]

= arctan ( — )  .cost
tan e

The error in the obliquity from such a determination is, therefore,

tan e
E —  f o b .  =  € —  a r c t a n cost

(12)

(13)

Hence, the effect of making either observation somewhat before noon is to
make the measured obliquity greater than the true obliquity. Since this is
the direction of the error in Ptolemy's value for the obliquity, it is possible,
then, that Ptolemy's error of —0;10° arose in this way.

Table 1.1 shows the error, e — fobs, which would result from accurate
observations at winter and summer solstice in Alexandria T minutes before
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Minutes
before
Noon

e — Cobs
(0;1°)

Summer
z3 — A 3

Winter
z ,  — A t ,

Distance
to

Meridian

0 0.0 7.52° 0.00° 54.88° 0.00° 0.00°

—20 —4.8 8.73 31.73 55.09 5.59 4.58
—30 —10.9 10.04 43.31 55.35 8.36 6.87
—40 —19.5 11.62 52.13 55.71 11.10 9.15

—60 —44.3 15.27 64.17 56.73 16.47 13.71

noon. This error is numerically the same as the error in a single observed
zenith-distance at either solstice measured at that time. (The sign of the
error at summer solstice is positive.) A n  error in the obliquity of —0;10°
would arise from two observations made nearly 30 minutes before noon,
or from a single observation made roughly 40 minutes before noon. A t
summer solstice in Alexandria 40 minutes before noon, for the shadow to
reach the scale of  the plinth, the cylinder which casts the shadow would
have to be greater than 0.25r, where r  is the radius of  the scale o f  the
plinth, i.e., greater than 5 inches i f  r  =  1 cubit. T h i s  requirement does
not seem unreasonable, and we can safely assume that readings could have
been made at this time.

Table 1.1

The error in  Ptolemy's value for the obliquity can thus be accounted
for by assuming that he made his observations roughly half an hour before
noon. If, on the other hand, the error arose primarily from the observations
at summer solstice, as seems implied by Ptolemy's value for the latitude
of Alexandria, then the time before noon required to produce this error is
around 40 minutes. Th i s  seems a rather long time, although the Sun is
already very near the meridian then. Moreover, this assumption fails to
explain Ptolemy's apparently accurate determination of the Sun's zenith-
distance at winter solstice.

An alternative, and to my mind preferable, explanation is that Ptolemy
made his determination some time before noon and estimated the progress
of the shadow in the interval to noon. I f  in so doing, he extrapolated
the wrong way at summer solstice (which would be a natural mistake), the
error in the determination at summer solstice would be twice the estimated
correction. Thus, i f  Ptolemy made accurate observations roughly half an
hour before noon and assumed that the shadow moved 0;10° further in
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the direction of decreasing zenith-distance during the interval to noon, his
results would be in error by just the amounts which we find.

This explanation is neither altogether satisfactory nor conclusive. F o r
his part, Ptolemy mentions the difficulty of observing the shadow at noon
[Alm. i  12: Toomer, 63] and says that he placed something at the edge of
the scale to make the shadow visible. Theoretically, this procedure would
obviate the difficulty and would allow him to observe the shadow just as
the Sun crossed the meridian. I n  any event, the preceding explanation of
the possible origin of Ptolemy's error requires us to assume that Ptolemy's
actual procedure was slightly different from what he describes, for no other
plausible source o f  systematic error comes to mind which would tend to
produce consistently high values for the obliquity.12

A different explanation, which Delambre [see 3n3, above] and other critics
of Ptolemy have favored, is that Ptolemy's entire description of his deter-
mination is an elaborate misrepresentation, and that his observed limits for
the double obliquity are either imaginary or the result of  careless efforts
to confirm Eratosthenes' value for the obliquity. This, however, seems even
less satisfactory than the explanation offered above for several reasons.

First, i t  ignores the fact that even after Hipparchus, some astronomers
upheld the theory that the Sun possessed a perceptible motion in latitude
[see 2n1, above], so that for theoretical reasons Ptolemy would have been
concerned to establish the constancy of the Sun's extreme altitude from his
own observations. Second, Delambre's explanation requires that we assume
a highly contrived and unlikely distortion by Ptolemy. For, i f  Ptolemy did
not determine the obliquity from his own observations and, instead, merely
accepted the value of  Eratosthenes, i t  is difficult t o  understand why he
should have bothered to describe two instruments for determining it, to

12 The most obvious other sources of systematic error are graduation-error or an
error in centering the cylinder which casts the shadow. The first should least
affect observations at summer solstice, when the Sun's zenith-distance is small,
whereas i t  appears that this observation was the one most seriously in error.
Concerning the second, i t  can easily be shown that the apparent error in the
Sun's zenith-distance at summer solstice would require an error of 1 inch in the
lateral positioning of the cylinder on a plinth of radius 1 cubit. Such an error
seems far too large to have been possible.

Another possible source of error is that the plinth was not accurately aligned
in the plane of the meridian. To produce the observed error in the obliquity, the
azimuth of the plinth would have to be +12° at both solstices. For the error to
arise from the determination at summer solstice alone, the azimuth of the plinth
at summer solstice would have to be roughly +17°.
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indicate which of these he actually used, and to state the limits he found
for the observed arc.

On balance, therefore, i t  seems that we should withhold judgment on
whether Ptolemy actually determined the obliquity as he said he did, since
it is quite possible that the systematic errors discussed above affected his
determination. Furthermore, the evidence we have suggests that one of the
two observed limits for the Sun's zenith-distance was indeed quite accurate,
while the other may have been distorted by the peculiar behavior of the
Sun's shadow on the plinth in summer.
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Observations of Solar Position
and Ptolemy's Solar Model

Ptolemy mentions a total of 28 observations of solstices and equinoxes. Four
of these are his own, and the rest are taken from two works by Hipparchus,
On the Changes of the Solstitial and Equinoctial Points and On the Length
of the Year [Alm. i i i  1: c f .  Table 2.1 for  dates and times]. T h e  latter
observations concern two summer solstices, one observed by 'the school
of Meton and Euctemon' ( -431)  and one by Aristarchus (-279), and a
spring equinox (-145) observed at Alexandria. The remainder is comprised
of a summer solstice observed by Hipparchus in —134, six fall and three
spring equinoxes which Hipparchus designated 'very accurately observed',
and eleven spring equinoxes which are described as agreeing with the other
three in accordance with the 1/4-day surplus. The gap between —140 and
—134 in what is otherwise a complete series of spring equinoxes suggests
that these eleven equinoxes were in fact observed, and I  have therefore
included them in the discussion.'

According to Ptolemy [Alm. i i i  1: Toomer, 139], Hipparchus discusses the sol-
stices observed by Aristarchus ( -279)  and himself ( -134)  in  his work, On the
Length o f  the Year, which is probably also Ptolemy's source for the report o f
the solstice o f  —431. P to l emy  gives only the  year i n  which Aristarchus' and
Hipparchus' solstices were observed. Thus, we have no direct evidence that Hip-
parchus found the solstice of  —134 to have occurred 941/2 days after the spring
equinox o f  that year. T h i s  date, however, is the only one consistent w i th  the
time of the solstice of Meton and Euctemon and Hipparchus' value for the length
of the year. Since Ptolemy notes that Hipparchus computed the interval between
the solstice o f  Meton and Euctemon ( -431 )  and that o f  Aristarchus ( -279)  as
well as that between the solstice of  —279 and —134, i t  is probable that all three
were consistent with his value for the length of the year. I  assume, therefore, that

12
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Spring
Equinox

Fall
Equinox

—161 Sep 27 18h
—158 Sep 27 6
—157 Sep 27 12
—146 Sep 27 0

—145 Mar 24 6h —145 Sep 27 6
—142 Sep 26 18

—134 Mar 24 0
—127 Mar 23 18

Ptolemy's four observations include one spring equinox (+140), two fall
equinoxes (+132, +139), and a determination of the summer solstice in
+140. H e  tells us [Alm. i i i  7] that the earlier fall equinox was 'one of
the most accurately determined', and that i t  was 'among the first of the
equinox observed by us'. He also says [Alm. iii 1: Toomer, 138] that he
observed 'very securely' the other fall equinox, which he compares with
the one Hipparchus observed in —146 to verify the length of the year. In
contrast, Ptolemy says only that he found the following spring equinox to
have occurred at the stated time. Finally, he reports that he 'determined
securely' and 'as accurately as possible' that the summer solstice of +140
occurred about 2 hours after midnight.

Ptolemy does not state explicitly what instruments or measurements ei-
ther he or Hipparchus used to determine the equinoxes and solstices, but
only indicates the observations in which he and Hipparchus had great-
est confidence. There is some evidence, however, that the two men used
different methods to find the times of the equinoxes.

the times (using a midnight epoch) o f  the two solstices were: —279 Jun 26 18h
(Aristarchus) and —134 Jun 26 12 (Hipparchus).  Fo r  a discussion o f  Meton's
solstice-observation, see Bowen and Goldstein 1988.

The equinoxes listed as accurately observed are:

The spring equinoxes are all consistent with each other and with the 1/4-day sur-
plus. The fall equinoxes are less consistent, and are observed progressively earlier
than would accord with the 1/4-day surplus. Thus, the equinoxes of —158, —146,
and —142 were each observed 6h earlier than would be expected from the preced-
ing equinox, while those of —157 and —145 agree with the preceding equinoxes.
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In discussing the 1/4-day discrepancies in the fall equinoxes reported by
Hipparchus,2 Ptolemy remarks that an error of this amount would arise ' i f
the placing or division of the instruments deviated from exactness by only
one 3600th part of the circle [of declination]', (i.e., by 0;6°). Th is  implies
that Hipparchus used a graduated instrument similar to  the meridional
armillary described in book i 12. W i t h  such an instrument the Sun's dec-
lination could be determined from its meridian-altitude and the latitude of
the place of observation (or read directly from the scale if the equator were
marked on the instrument). A  meridional armillary with a diameter of 1
cubit 1 8  in.) could have been graduated to 1/5° (0;12° =  0.85 mm.),3
or twice the amount Ptolemy mentions. Subdivisions of 1/5° would also
mean that near the equinoxes the Sun's declination would change just two
divisions a day. T h i s  would permit the times of  the equinoxes to be es-
timated to the nearest 1/4 day from successive observations either before or
after the equinox, while any greater precision would require a considerably
larger instrument.

Hipparchus' report [Alm. iii 1] of the spring equinox of —145 also suggests
that he measured the Sun's declination directly to determine the equinoxes,
rather than using an equatorial ring. For he says he found that the equinox
occurred at dawn, but that the ring at Alexandria was illuminated equally
from both sides at about the f i f th hour (of the day), so that the 'same
equinox, differently observed, was found to differ by nearly five hours'.4

2 See 12n1 above, for a list of discordant equinoxes. Ptolemy [Alm. iii 1: Toomer,
135] says that Hipparchus found from eclipses that  the magnitude of  suspected
inequality in  the length o f  the year was not greater than 3/4 day. T h i s  is the
amount by  which the fall equinox o f  —142 differs from that  o f  —161 assuming
a tropical year of  3651/4 days, and is also equal t o  the maximum error due to
refraction for equinoxes observed on an equatorial ring.
3 See chapter 1 for a  discussion o f  the possible dimensions and graduations o f
ancient instruments. Rome [1937-1938, 218] notes that Theon 'admits' gradua-
tions of 0;5° on a meridional armillary, which Rome points out would correspond
to 3 divisions per millimeter on a scale 1 cubit in diameter.
4 Considerable confusion has surrounded Hipparchus' report o f  this equinox
(-145 Mar)  and its relation to  the rest. Delambre [1817, i  xxii i ]  interprets the
passage [Alm. i i i  1: Toomer,  134] to  mean that  the ring at Alexandria showed
the equinox first at dawn and again at the fifth hour, but he concludes that Hip-
parchus observed the equinox at Rhodes at dawn, and that this report was sec-
ondhand. Tannery [1893, 149] refers to the 'double determination' and concludes
that this equinox was part of a series which included the three fall equinoxes o f
—161, —158, and —157. Tannery thinks that these equinoxes were all observed at
Alexandria, by  someone other than Hipparchus. Fotheringham [1918, 408] dis-
putes this conclusion, and also shows that there is no evidence that  Hipparchus
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Furthermore, Hipparchus' statement [Toomer, 133] that the variation in the
year-length could be seen from equinoxes observed on the ring in the Square
Stoa at Alexandria also implies that he did not use such an instrument for
the observations he reports.

It seems likely, then, that Hipparchus determined the times of the equi-
noxes from direct observations o f  solar declinations: t h a t  he observed
them we know from Ptolemy [Alm. v i i  3] and his own commentary on
the Phaenomena of Aratus and Eudoxus. Moreover, seven of Hipparchus'
eighteen reported determinations of the declinations of stars [Alm. vi i  3]
are quoted in 1/5°, and the others could readily have been made on an in-
strument so graduated.' Th is  further suggests that Hipparchus may have
possessed an instrument with graduations of 0;12° which, as we have seen,
would have been most convenient for finding the times of the equinoxes.

The other instrument for this purpose mentioned in the Almagest is a
ring set in  the plane o f  the equator. Hipparchus' report o f  an equinox
observed on such a ring at Alexandria (-145) and his statement in On the
Displacement of  the Solstitial and Equinoctial Points [Alm. i i i  1: Toomer,
132-133] that such a ring, made of bronze, was placed in the 'place called
the Square Stoa' at Alexandria, have already been cited.'

Ptolemy [Alm. i i i 1: Toomer, 134] also refers to at least two metal rings,
in the same passage in which he discusses how errors in the alignments of

made his observations in Alexandria. Rome [1937-1938, 230] points out that the
text does not imply that this equinox appeared twice on the ring at Alexandria.
He also notes [1931-1943, 817] tha t  Theon understands this passage t o  mean
that Hipparchus observed the equinox at Rhodes at dawn, and that someone else
observed it at Alexandria at 11 hours. Thus, there is no evidence that Hipparchus
did not observe the equinoxes which he reports at Rhodes.
5 Vog t  [1925, 19] states tha t  I n  Arat .  includes more than 40 designations o f
declinations not mentioned in the Almagest. O f  the declinations determined by
Hipparchus and cited in  the Alm. v i i  3 [Toomer, 331], four are given in  integer
degrees, one in half degrees, two in thirds of a degree, two in quarters of a degree,
seven in fifths of  a degree, and two in sixths of  a degree. Thus, i f  we include the
declinations given in integers, nearly two thirds of the total can be accounted for
by assuming a scale subdivided to 0;12°. The remaining fractions can be explained
if we assume that  they were read as 'a l itt le more than' or 'a l itt le less than'  a
certain division. A l though the distribution of  fractions other than fifths is not
quite symmetrical, i t  is difficult to  imagine another subdivision in which it  would
be natural to estimate positions between the divisions to  fifths of  a degree.
6 C f .  Rome1937, 233 f., for a detailed discussion o f  equatorial rings. See also
Price 1957, 587-589 and Dicks 1954, 79. Rome [1937, 226] notes that  there is
no reason to identify this ring with one of those Ptolemy mentions as being in the
Palaestra.
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instruments could have led to errors in the times of the equinoxes. After
noting that an error in declination of only 0;6° will produce an error of a
1/4 day, he continues:

The error could be even greater in the case of an instrument which,
instead of being set up for the specific occasion and positioned ac-
curately at the time of the actual observation, has been fixed once
[and] for all on a base intended to preserve it in the same position
for a long period, [if] the instrument is affected by a [gradual] dis-
placement which is unnoticed because of the length of time over
which it takes place. One can see this in the case of the bronze
rings in our Palaestra, which are supposed to be fixed in the plane
of the equator. When we observe with them the distortion in their
positioning is apparent, especially that of the larger and older of the
two, to such an extent that sometimes the direction of illumination
of the concave surface in them shifts from one side to the other twice
on the same equinoctial day.

Unfortunately the interpretation of this passage is not entirely secure in
some details. Yet, i t  is clear that Ptolemy observed some equinoxes on at
least two different equatorial rings, that he found discrepancies and irreg-
ularities in the results obtained, and specifically that he discovered that
an equinox sometimes appeared twice on the same instrument. Further-
more, Ptolemy implies that by carefully adjusting and checking his own
instrument he overcame these difficulties, although he does not say how.7

Ptolemy states his observations of equinoxes to the nearest hour. This
would require an implausibly large instrument if the equinoxes were deter-
mined from noon-altitudes or declinations of the Sun. On  an equatorial
ring, however, such apparent precision could be obtained by observing the
time when the edge of the ring in shadow first became illuminated, or vice
versa. The equinox would occur, of course, when the two edges of the ring
were equally lit, as Hipparchus indicates in connection with the equinox
observed at Alexandria in —145. Hipparchus and Ptolemy both mention
the 'change of light' observed in these rings, which would occur roughly
3 hours before or after the actual equinox (if there were no refraction), and

7 Rome [1937, 224, 231; 1931-1943, 817-818] argues that no astronomer would
believe that the equinoxes appeared twice on the same ring, despite the transient
effect due to refraction, since the shadow would cross the ring in the proper direc-
tion only once. Thus, he prefers the interpretation that the equinox was merely
observed at two different times on two different rings. This interpretation seems
somewhat forced, and also unnecessary, since Ptolemy mentions the phenomenon
only to indicate the poor alignment of the rings.
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which would have been apparent within an hour!' A  simple extrapolation
would then yield the time of the equinox. Therefore, although Ptolemy
does not explicitly say so, we may conclude that i f  he did indeed observe
the times of the equinoxes which he reports, his instrument must have been
an equatorial ring.

In sum, Hipparchus probably determined the times of  equinoxes from
measurements of  the Sun's declination, while Ptolemy's observations, i f
real, were probably made on an equatorial ring. Furthermore, Hipparchus'
meridional armillary seems likely to have been graduated to 1/5°, which
would have enabled him to estimate the times of equinoxes to the nearest
1/4 day. I n  contrast, the equatorial ring should, in  theory, have enabled
Ptolemy to determine the hour at which an equinox occurred, a precision
which is consistent with Ptolemy's reported observations. As  I shall show
subsequently, however, the gain in precision afforded by an equatorial ring
would have been more than offset by other difficulties encountered in its use.

The errors of the observations

In Table 2.1, columns I  and I I  show the times of  the equinoxes and sol-
stices Ptolemy reports and the Sun's modern longitudes for these times.9
Three different sets of errors are also presented. Column I I I  shows the er-
rors deduced from my elements [cf. appendix 1] expressed as corrections to
Ptolemy's stated times. C o l u m n  IV gives these errors reduced to Schoch's

8 Rome [1937, 233] shows it would be difficult to estimate the time of equal illumi-
nation to within 41' on a ring 2 cubits in diameter. He ignores refraction, however.
9 Computed from Tuckerman [1962-1964] and corrected by

A(L) =  + 0.86" + 1.23"T — 0.51"T2 (epoch, 1900.0)

in accordance with the elements derived in appendix 1. I f  ( L )  is the correction
to the Sun's computed longitude at a given moment in Universal Time, and
A(t) is the mean correction to the time computed (Tuckerman) at which the
Sun would have a given longitude, A(t) is equal to —A(L) divided by the Sun's
mean motion, 147.8" per hour. These corrections, for the dates covered by the
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Date and Place

I
Local

Apparent
Time

II
Solar

Longitude
(Computed)

I I I
Error in

Time
Observed

IV
Error

(Schoch)

V
Error

(Newcomb)

-431 Jun 27 A t h e n s 6" 88.83° +29.5" +27.4" +32.7"
-279 Jun 26 [Alexandria] [18] 89.52 +12.1 +10.3 +15.0
-161 Sep 27 [Rhodes] 18 180.62 -15.0 -16.6 -12.3
-158 Sep 27 [Rhodes] 6 180.40 -9.6 -11.2 -6.9
-157 Sep 27 [Rhodes] 12 180.41 -9.8 -11.4 -7.1
-146 Sep 27 [Rhodes] 0 180.23 -3.6 -7.2 -3.1
-145 Mar 24 Rhodes 6 359.61 +9.5 +7.9 12.0
-145 Mar 24 Alexandria 11 359.81 +4.6 +3.0 +7.1
-145 Sep 27 Rhodes 6 180.24 -5.8 -7.4 -3.3
-144 Mar 23 Rhodes 12 359.62 9.3 +7.7 +11.8
-143 Mar 23 Rhodes 18 359.63 +9.1 +7.5 +11.6
-142 Mar 24 Rhodes 0 359.64 +8.9 +7.3 +11.4
-142 Sep 26 Rhodes 18 180.01 -0.2 -1.8 +2.3
-141 Mar 24 Rhodes 6 359.65 +8.9 +7.1 +11.2
-140 Mar 23 Rhodes 12 359.66 +8.5 +6.9 +11.0
-134 Mar 24 Rhodes 0 359.70 +7.4 +5.8 +9.8
-134 Jun 26 Rhodes 12 90.17 -4.0 -5.6 -1.6
-133 Mar 24 Rhodes 6 359.71 +7.2 +5.6 +9.6
-132 Mar 23 Rhodes 12 359.72 +7.0 +5.4 +9.4
-131 Mar 23 Rhodes 18 359.73 +6.8 +5.2 +9.2
-130 Mar 24 Rhodes 0 359.73 +6.6 +5.0 +9.0
-129 Mar 24 Rhodes 6 359.74 +6.4 +4.8 +8.8
-128 Mar 23 Rhodes 12 359.75 +6.2 +4.6 +8.6
-127 Mar 23 Rhodes 18 359.76 +6.0 +4.4 +8.4
+132 Sep 25 Alexandria 14 181.36 -32.7 -33.9 -30.9
+139 Sep 26 Alexandria 7 181.37 -33.0 -34.2 -31.2
+140 Mar 22 Alexandria 13 0.83 -20.4 -21.6 -18.6
+140 Jun 25 Alexandria 2 91.42 -35.4 -36.6 -33.6

MODELS A N D  PRECISION

Table 2.1. Errors in Solar Observations
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Date A(L) A(t)

—431 —305" = —0.085° +2.1h
—279 —268 = —0.074 +1.8
—150 —238 = —0.066 +1.6
—130 —234 = —0.065 +1.6
+130 —181 = —0.050 +1.2
+140 —179 = —0.050 +1.2

elements for the Sun,i° which I  have included since these elements form
the basis for Tuckerman's tables [1962-1964]. F ina l ly,  column V  shows
the errors which result from omitting the Sun's secular acceleration from
the computations. These errors are virtually identical with those found
by using any of the older solar tables," a n d  I have included them merely
to illustrate how the Sun's acceleration affects the distribution and mag-
nitudes of the errors in Hipparchus' observations. The following discussion
refers to the errors in column II I  unless stated otherwise.

It is evident that Ptolemy's equinox-observations are significantly and
systematically in error; whereas the times Hipparchus reports fall on either

equinoxes, are:

The errors shown in column I I I  of Table 2.1 are determined from L "  — L divided
by the Sun's t rue velocity; thus,  they represent the  corrections t o  Ptolemy's
stated times. T h e  solar velocities have been taken t o  be 0.0405° per hour at
spring equinox, 0.0399° per hour at summer solstice, and 0.0415° per hour at fall
equinox. The longitudes of the equinoxes in column I I  and the errors in column I I I
have been checked against Fotheringham's [1918] with the appropriate corrections
[cf. appendix 2]; small adjustments (less than 0.2") have been made in some of
the errors in the times (column I I )  to  compensate for the errors in rounding in
Tuckerman. Thus, the errors in the times should be accurate to +0.1h..
1° Determined from column 2 by applying A( t )  shown in 17n9 above.
11 These errors are determined by  Fotheringham [1918, 410], and for the sol-
stices from my calculations using Newcomb's solar tables [Newcomb 1898]. The
differences between Newcomb's longitude for the Sun and that shown in column
I I  (CH) may be found from

A I L )  =  L(CH) — L  (Newcomb) =  1.06" +  2.66"T2 (1900).

Cf. the comparisons by Rome [1937, 215-216] which are based on Schram's Tables
[1908]. These tables, like Newcomb's, do not contain a correction for the Sun's
secular acceleration.
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Ye a r T y p e
I I I

Solar 6 Res idua l  Error
(Declination) (Col. I  +0;7.0°)

I I I  I V
Solar 6 Residual Error

(Schoch) (Co l .  I I I  +0;6.0°)

- 1 6 1 FE - 1 5 . 0 - 8 . 0 - 1 6 . 6 - 1 0 . 6
- 1 5 8 FE - 9 . 6 - 2 . 6 - 1 1 . 2 - 5 . 2
- 1 5 7 FE - 9 . 8 - 2 . 8 - 1 1 . 4 - 5 . 4
- 1 4 6 FE -5.6 +1.4 -7.2 -1.2
-145 SE - 9 . 5 - 2 . 5 - 7 . 9 - 1 . 9
- 1 4 5 FE -5.8 +1.2 -7.4 -1.4
-144 SE - 9 . 3 - 2 . 3 - 7 . 7 - 1 . 7
- 1 4 3 FE -9.1 -2.1 -7.5 -1.5
-142 FE -8.9 -1.9 -7.3 -1.3
-142 FE -0.2 +6.8 -1.8 +5.2
-141 SE - 8 . 7 - 1 . 7 - 7 . 1 - 1 . 1
- 1 4 0 SE - 8 . 5 - 1 . 5 - 6 . 9 - 0 . 9

- 1 3 4 SE - 7 . 4 - 0 . 4 - 5 . 8 + 0 . 2
- 1 3 3 SE - 7 . 2 - 0 . 2 - 5 . 6 + 0 . 4
- 1 3 2 SE - 7 . 0 - 0 . 0 - 5 . 4 + 0 . 6
- 1 3 1 SE - 6 . 8 + 0 . 2 - 5 . 2 + 0 . 8
- 1 3 0 SE - 6 . 6 + 0 . 4 - 5 . 0 + 1 . 0
- 1 2 9 SE - 6 . 4 + 0 . 6 - 4 . 8 + 1 . 2

- 1 2 8 SE - 6 . 2 + 0 . 8 - 4 . 6 + 1 . 4
- 1 2 7 SE -6.0 +1.0 -4.4 +1.6
+132 FE - 3 2 . 7 - 3 3 . 9
+ 1 3 9 FE -33.0 -34.2
+140 SE + 2 0 . 4 + 2 1 . 6

MODELS A N D  PRECISION

side o f  t h e  c o m p u t e d  t i m e s ,  a n d  e x h i b i t  r e l a t i v e l y  s m a l l  e r ro rs .12  A l s o ,
H i p p a r c h u s '  o b s e r v a t i o n s  d i s p l a y  a  s y s t e m a t i c  e r r o r  i n  d e c l i n a t i o n ,  w h i l e
P t o l e m y ' s  d o  n o t .

Ta b l e  2.2.  S o l a r  D e c l i n a t i o n s  a n d  R e s i d u a l  E r r o r s  a t  t h e  T i m e s
o f  E q u i n o x e s  R e p o r t e d  b y  H i p p a r c h u s  a n d  P t o l e m y
i n  U n i t s  o f  0 ;1°

12 Note that the relatively small errors of the solstices (+29.5" in -431, +12.1h
in -279, and -4.0h in -134) are generally less than the errors in Ptolemy's
equinoxes. Note also that the error in the equinox observed on the ring at Alexan-
dria (-145) is equivalent to an error of less than 0;5° in declination. Thus, the
alignment of this ring at the time must have been quite accurate.
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This can be seen in Table 2.2, where column I shows the Sun's declina-
tions at  the times reported for the equinoxes.13 A l l  o f  Hipparchus' ob-
servations require a negative correction to the observed declination (i.e.,
8). T h e  average error for all  twenty observations is —0;7.7°, or  —0;7.0°,
excluding the three earliest observations (-161, —158, —157). Column I I
shows the error remaining when a systematic error of —0;7° is removed.
Except for the fall equinoxes of —161 and —142, these residual errors are
all less than 0;3°.14 Thus, i f  we ignore the systematic error in declination,
Hipparchus' equinox-observations are accurate to the nearest 1/4 day with
only two exceptions.

For comparison, columns I I I  and I V  in  Table 2.2 show the errors in
declination derived from Schoch's elements and the residuals after correct-
ing for a  mean systematic error of  —0;6°. T h e  differences between the
two sets of residuals, especially for all but the three earliest observations,
are very slight and of questionable significance for determining the Sun's
acceleration.' Indeed, the only significant difference occurs in the equinox-
observations of —158 and —157, where the residual errors exceed 0;3° ac-
cording to Schoch's elements, in contrast to those shown in column II.

13 Near  the equinoxes the Sun's declination changes a t  a  rate o f  very nearly
±0;1° per hour. Therefore, the magnitudes o f  the errors in  the times o f  the
equinoxes are also equal to those of the errors in the observed declinations of the
Sun at the stated times. The  sign of the correction to the observed declination is
always the same as the sign of the error in the time at fall equinox, while at spring
equinox the error in the observed declination has the opposite sign of  the error in
the time. Thus, for example, the fall equinox of —146 occurred roughly 6h earlier
than reported by Hipparchus, so that at the observed time the Sun's declination
was nearly —0;6°. Similarly, the following spring equinox occurred about 911 after
it was observed, so that at the observed time the Sun's declination was R.,' —0;9°.
14 A s  may be seen from Table 2.2 column I I ,  any value for the systematic error
in declination between —0;6.9° and —0;8.5° wil l  leave all the residuals less than
0;3° except for the observations of  —161 and —142.
15 Fotheringham's initial least-squares determination [1918, 482] o f  the system-
atic error in declination (AS) and of the Sun's acceleration (Se) from the errors
in Hipparchus' equinoxes determined from Newcomb's tables was

=  +1.0" ±  0.18"
DS =  —0;7.6° ±  0;0.46",

a result virtually identical with the elements used here.
On the assumption that  Hipparchus 'would not be the man we assume him

to have been i f  his equator at the latter dates had not been considerably better
than his mean equator for the whole range of  dates, Fotheringham [1918, 415]
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Except for the equinoxes of  —161 and —142, (and perhaps also —158
and —157), then, Hipparchus' reported observations form a consistent se-
ries which exhibit a systematic error in declination of N —0;7°, but which
otherwise appear accurate to the nearest fraction of a day that Hipparchus
could have observed.' I n  contrast, Ptolemy's three equinox-observations
show a systematic error in time but not in declination, since the errors in
declination of his spring and fall equinoxes differ by nearly a degree.

Hipparchus' observations and solar parameters

Before turning to the questions raised by Ptolemy's errors, let us first con-
sider how the systematic error in Hipparchus' observations may have arisen.
While the error of —0;7° might have been purely accidental, i t  is remark-
able that this is precisely the error which would lead to an interval between
spring and fall equinoxes of 187 days.17 Thus, i f  Hipparchus thought that
the length of this interval was 187 days before he made his observations,
he could have adjusted the equator of  his meridional armillary to yield
this result.

Such a procedure would reduce the uncertainty inherent in any attempt
to determine fundamental alignments by direct measurements, a problem
Ptolemy [Alm. i i i  1: Toomer, 134] notes when discussing the alignment of
equatorial rings. More importantly, this procedure would also ensure that
the average error in the times of accurately observed individual equinoxes

subsequently obtained, after eliminating the three earliest observations,

S, =  +1.95" ±  0.27"
AS =  —0;6.4° f  0;0.8'f

Within these l imits, any value o f  the secular acceleration deduced from these
observations will clearly depend on the assumptions made about weights and the
methods of  combining the observations.
16 Th i s  is somewhat surprising in view of  the apparent discordance between the
fall equinoxes of  —158, —157, and —146, and the long run of  spring equinoxes
consistent wi th a year of 3651/4 days. In  18 years the time of  the equinox moves
forward nearly 4 hours.
17 I n  —145 the actual interval between spring and fall equinox was 186 days 8.8
hours, or 15.2 hours less than that found by Hipparchus. Since a systematic error
of —0.7° in declination would make the observed times o f  the spring equinoxes
early by an average of  7 hours and the times o f  the fall equinoxes late by the
same amount, the observed interval between the two types of equinoxes would be
almost exactly 187 days.
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would be only half as great as the error in the length of the interval between
spring and fall equinoxes. Hence, i f  Hipparchus assumed that the interval
from spring to fall equinox was 187 days to within 1/4 day, he could have
expected the times of individual equinoxes which reproduced this interval to
be accurate, on the average, to within half this amount. Such a procedure
would have been especially advantageous if, as Ptolemy suggests [Alm. i i i
1], Hipparchus was particularly concerned with whether the year-length was
constant, for  determining this would require that the times of successive
equinoxes of the same type be accurately observed.'

Thus, one explanation for both the systematic declination error and the
relative accuracy of the times of Hipparchus' equinoxes is that they were
determined by measuring the Sun's declination on an instrument whose
equator was adjusted to yield a predetermined interval between spring and
fall equinoxes. T h i s  would have been a  perfectly rational observational
procedure, which would have served to control the errors in the times of
individual equinoxes. Still, it requires us to assume that at least one of Hip-
parchus' solar parameters was not determined from his own observations.

This seems probable, since the 187-day value for the interval from fall to
spring equinox is attested in a solar scheme described by Geminus [Man-
itius 1898, 211] and attributed to Callippus (ca. —340), which gives the
number of days which the Sun spends in each zodiacal s ign . '  A s  Aaboe

18 Ptolemy [Alm. i i i  1] addresses the first part  of his discussion of  the length of
the year to the question of  whether i t  varies. He tells us [Toomer, 132] that 'the
inequality [in the length of the year] revealed by successive observations disturbed
Hipparchus', and he indicates that  part of Hipparchus' work, On the Changes of
the Solstitial and Equinoctial Points, discusses th is  problem. S t a t i n g  further
that Hipparchus tried to resolve this question by means of eclipses, Ptolemy cites
two eclipses ( -145  Apr  21 and —134 Mar 21) from which Hipparchus found the
longitude of Spica to be Virgo 231/2° and Virgo 243/4°. Theon [Rome 1931-1943,
826-830] gives further details o f  the eclipse o f  —134 and Hipparchus' procedure.
These eclipses are cited as examples o f  the maximum observed deviation, and
Hipparchus is said t o  have concluded [Alm.  i i i  1 :  Toomer,  135] t ha t  the in-
equality, i f  it existed, was no greater than +3/4 day [see 14n2, above]. Ptolemy
concludes that no such inequality exists, and attributes the observed irregularities
to observational and computational errors. H e  also notes [Alm. i i i  1: Toomer,
136] that  Hipparchus' solar model included only one inequality.

Hipparchus' concern about the existence of a second solar inequality may have
been founded upon the irregularity of the appearances of the equinoxes on equa-
torial rings due to refraction, since he notes [Alm. i i i  1: Toomer, 133] that  the
inequality may be observed on the ring in the Square Stoa at Alexandria.
19 Th is  scheme is included in  the calendar attr ibuted to  Geminus. T h e  dates
of the Sun's entry into each of the signs are explicitly ascribed to Callippus. For
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and Price [1964, 13] have pointed out, this rough value might easily have
been determined by means of the skaphe sundials known from about —300.
Indeed, the value is fairly close to the average which one would find using
an accurate dial of this sort, since in the majority of instances the shadow
at one equinox or another would be significantly affected by refraction in
such a way as to make the apparent interval longer than it actually is [cf.
Table 2.5]. Whatever the case, the assumption that 187 days separated
the two equinoxes clearly antedates Hipparchus, and there is no reason to
attribute this parameter to him.

In summary, the general accuracy of Hipparchus' equinox-observations
appears to result from observations made with a meridional armillary from
which the Sun's declination could be estimated to perhaps 1/10°, and which
may have been adjusted to yield an interval between fall and spring equinoxes
of 187 days. Such a procedure would explain not only the individual sys-
tematic errors, but also the symmetry of the errors at the fall and spring
equinox. In addition, it would have given Hipparchus a sound method for
detecting any significant second inequality in the Sun's motion.

Ptolemy's observations

Ptolemy's observations raise different problems than those of Hipparchus.
Whereas Hipparchus found the times of the equinoxes rather accurately,
and the interval from spring to fall equinox less accurately, Ptolemy finds
the same result as Hipparchus for the interval from spring to fall equinox,
while the times Ptolemy gives for the equinoxes (and solstice) are badly
in error. Furthermore, as already noted, this error could not have arisen
solely from a systematic error in the declination of his equatorial ring, since
such an error would have made the spring equinoxes appear too early by as
much as it made the fall equinoxes too late. We may ask, therefore, whether
the equinox times Ptolemy reports could have resulted from actual obser-
vations, or whether these reports can only be understood as calculations
based on Hipparchus' solar model using one of his equinoxes as epoch.

The apparent advantage of using an equatorial ring rather than a merid-
ional armillary is that the ring is a null-reading device which marks the
moments of the equinoxes with much greater precision than direct mea-
surements on any scale of modest size would yield. This apparent advan-

a discussion of Callippus' authorship of this scheme, see Manitius 1898, 281n34;
Boeckh 1863, 27-28, 46. Aaboe and Price [1964, 10-11] note that the interval
of 187 days from spring to fall equinox appears in this scheme cited by Geminus.
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tage, however, is more than offset by two serious difficulties which Ptolemy
mentions and which any user of such a ring could hardly have avoided.

The first difficulty is that an equatorial ring must be accurately ori-
ented not only with respect to the altitude of its north-south diameter,
but also with respect to the level of its east-west diameter. Furthermore,
unlike the meridional armillary, an equatorial ring does not allow the ob-
server to check its alignment directly by means of a plumb-line. Ptolemy's
statement [Alm. iii 1: Toomer, 134] that such instruments require careful
adjustment (`positioning') at the time of the actual observations suggests
that he was aware of the difficulties of aligning an equatorial ring by direct
measurement, without indicating how he accomplished it.

The second and more serious shortcoming of the equatorial ring is that
its results are very sensitive to the effect of refraction. On  a meridional
instrument this effect is both small and constant, but on an equatorial ring
the effect of refraction on its apparent lighting is both significant and highly
variable, since the effect depends on the time of day at which the actual
equinox occurs.20

To understand how refraction affects observations made with an equato-
rial ring, consider first the apparent declination of the equator as a function
of hour-angle. In Figure 2.1, NS represents the eastern horizon seem from
due west, CD the true equator, C'D' the apparent equator (that is, the
locus of points at which a body located at each point of the true equator
would be seen due to refraction), SDD' the meridian, t h e  co-latitude of
the place of observation, P some point on the true equator with altitude
h(t) at hour-angle t, and P' the point on the apparent equator at which
a body located at P would be seen due to refraction. Finally, r(h) is the
refraction and 6`(t) the declination of P'.

20 I n  Mediterranean latitudes the spring equinox should appear on a meridional
armillary about ha l f  an hour before i t  occurs due to  refraction, while the fall
equinox should appear half an hour after i t  occurred. See Table 2.3.

Manitius [1898, 427n21] remarks that refraction would make a spring equinox
appear on such a ring before i t  occurred. He  also explains the double equinoxes
mentioned by  Ptolemy and the two times reported for  the spring equinox o f
—145 [Alm. i i i  1: Toomer, 135-136] as due to the variation o f  refraction during
the day. Thus, he implies that both the latter observations were made on the same
ring. Rome [1937, 231-232] discusses the effect o f  refraction and the resulting
appearance o f  double equinoxes in  more detail, bu t  some o f  his statements are
misleading and incorrect. T h u s ,  speaking o f  spring equinoxes he says tha t  ' in
order to register one false equinox and one true one, the Sun must rise at  least
12 hours before it passes the vernal point.' This is incorrect, as may be seen from
Figure 2.2. Neither Rome nor Manitius describes the general effect o f  refraction
at both equinoxes in detail.
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Figure 2.1

Since r(h) is small, we may put

(t) =  r(h) • sin a, (1)

where a is the angle between the altitude-circle through P and the equator
as shown. Furthermore, since

cosq
sin a =

we have

cos h(t)

r(h) cos 0
Si@ c o s  h(t)

Finally, h(t) is determined from the formula

(2)

(3)

sin h(t) =  sin .;t. cost. ( 4 )

To find the error in the apparent time of an equinox observed on the ring,
we first observe that, near the equinoxes, the Sun's true declination changes
at very nearly ±0;1' per hour. '  Thus, if the equinox occurs at some time

21 Near fall equinox the Sun's declination changes at a rate of —0;0.98° per hour,
while at spring equinox the rate of change is +0;1.03° per hour.
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T'
(midnight epoch)

Altitude
h(T')

Refraction
r(h)

61(21 =  AT
(0;1° or hours)

5;57.4h 18; 2.6" —0;33.9° 0;34,54° 17.95
5;58 18; 2 —0;25.7 0;33,12 17.1
6; 0 18; 0 0; 0.0 0;28,52 14.9
6; 4 17;56 0;51.5 0;22,44 11.7
6; 8 17;52 1;43.0 0;18, 6 9.3
6;12 17;48 2;34.5 0;14,48 7.6
6;16 17;44 3;25.9 0;12,32 6.5
6;20 17;40 4;17.3 0;10,40 5.5
6;30 17;30 6;25.4 0; 7,40 3.96
6;40 17;20 8;34 0; 5,58 3.11
6;50 17;10 10;42 0; 4,52 2.54
7; 0 17; 0 12;49 0; 4, 6 2.16
8; 0 16; 0 25;24 0; 2, 1 1.14
9; 0 15; 0 37;32 0; 1,16 0.81

10; 0 14; 0 47;52 0; 0,52 0.67
11; 0 13; 0 54;55 0; 0,41 0.61
12; 0 12; 0 59; 0 0; 0,35 0.583

Table 2.3. Apparent Declination, 6'(T'), of the Sun on the
Equator T' Hours after Midnight

T, but appears on the ring at the time T', the Sun's true declination at T'
will be equal to T (T — T') • 0;1°/1; i f  T and T' are expressed in hours. (Here
and below, the upper sign applies to spring equinox and the lower sign to
fall equinox.)

At T' the Sun's negative declination is just offset by its apparent elevation
due to refraction. I t  follows that

AT  T  — =  ±(51(T'), (5)
where AT  is the error in (correction to) the time of the apparent equinox
and S'(T') is the apparent declination at time T' due to refraction as given
in (3). Strictly, <5' (T' ) should be determined from (3) using the apparent
altitude h', instead of  the true altitude h; bu t  since h '  is not as easily
computed, I  have used the approximation given by (5). This approximation
will affect the times of apparent equinoxes near dawn by a few minutes,
but i t  will not otherwise affect the results discussed below.
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Table 2.3 shows values of h, r(h), and 5'(T'), computed for 0 =  59;0°
for different times during the day. Since ±S'(7'') is the error in the time
of an equinox which appeared at T', it is also the error in the time of an
equinox which occurred at T' lb '  (T'). Thus, the error in the observed time
of an equinox, as a function of the time at which it occurred, can easily
be computed for

T = T' 5 ' ( T ' ) ,  ( 6 )
and found by interpolation for other T.

Figure 2.2 shows the error in the time at which an equinox would be
observed' as a function of the time at which it actually occurred. Since
the error in the time of a spring equinox is the reflection, about noon, of
the error in the time of a fall equinox, two time scales have been used.
The upper one, which begins at midnight and reads from left to right,
is for fall equinoxes, while the lower one, which also begins at midnight
but which reads from right to left, is for spring equinoxes. The sign of the
error (correction to the observed times) is positive for spring equinoxes and
negative for fall equinoxes.

In Figure 2.3, the times (T') at which equinoxes of both types would be
observed are plotted against the time (T) at which they occurred. As in
Figure 2.2, the time scales for spring and fall equinoxes are the reverse of
each other.

These graphs show that multiple appearances of an equinox on a well-
aligned equatorial ring are common rather than exceptional. Thus, at
fall equinoxes occurring between midnight and noon, the shadow crosses
the ring twice, first in the correct direction and, then, near Sunset in the
opposite direction. At  fall equinoxes occurring between 12h (noon) and 15"
(3 p.m.), the shadow crosses the ring three times: once shortly after the
equinox occurs, once again before Sunset, and a third time shortly after
Sunrise on the following day. Here again the shadow crosses the ring in
the wrong direction on its second appearance, but the third crossing, at
dawn, is in the proper direction.

After 15h at fall equinox, refraction causes the apparent declination of
the Sun to increase more rapidly than the Sun's true declination decreases.
Fall equinoxes occurring after 15h, therefore, do not appear on the ring
that day, but rather they appear the following morning, near Sunrise, when
the shadow crosses the ring in the correct direction. Similarly, at spring
equinox, 'double equinoxes' appear when the equinox occurs between 12"

22 I n  speaking of  the 'observation o f  an equinox' on an equatorial ring, I  mean
merely that  the shadow is observed to cross the ring, regardless of which direction
it moves.
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Figure• 2.2. Error in an Equinox Observed on an Equatorial Ring

(noon) and the following midnight; whereas 'triple equinoxes' appear when
the equinox occurs between 9h and 12h, and single equinoxes appear when
the equinox occurs between midnight (Oh) and 9h.

That the Sun's shadow may cross the ring two and even three times
at a single equinox is only one of the problems encountered in using an
equatorial ring to determine the equinoxes. Another difficulty is that even
if the second and third appearances of equinoxes were ignored, equinoxes of
the same type would still appear at very irregular intervals [cf. Bruin 1976].
Furthermore, although one should see (and would expect to see) only two
successive equinoxes of the same type followed by two years in which these
equinoxes occurred at night, both equinoxes would appear on an equatorial
ring every year with the shadow moving in the correct direction.

For example, a fall equinox occurring between 711 and 14h would be ob-
served only slightly (R,' 3/411) after its occurrence, while those occurring after
15h and before 711 would all appear near Sunrise. Thus, a fall equinox ob-
served in the middle of the morning would be followed by one which would
not be observed until Sunrise of the day after that which the 1/4-day surplus
would lead us to expect. This equinox, furthermore, would be followed by
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Figure 2.3. Apparent Time (T') of an Equinox Occurring at T
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two more which would appear at almost exactly the same time of day at
intervals of 365 days. The same problem would be encountered at spring
equinoxes, with the difference that an equinox observed in mid-afternoon
just before it actually occurred would be preceded by one observed near
Sunset on the day before it should have appeared, and so on.

To illustrate the behavior of the shadow more clearly, Table 2.4 gives
the times of the true equinoxes during the period for which Ptolemaic
observations are preserved, together with the times at which the Sun's
shadow would appear centered on an accurately aligned ring." The times
in parentheses denote the cases in which the shadow would move in a direc-
tion opposite to that characteristic of the type of equinox in question. The
times of the apparent 'correct' equinoxes—i.e., those at which the shadow
first crosses the ring in the proper direction at fall equinox and last crosses it

23 T h e  times o f  the true equinoxes are computed from Schoch's elements and
serve merely t o  illustrate irregularities due to  refraction. T o  reduce the times
at which the equinox occurred to  the elements derived in appendix 1, add 1.2h.
The times of  the apparent equinoxes can then be obtained from Figure 2.3.



Table 2.4. True and Apparent Times of Spring and Fall Equinoxes

Spring Equinoxes Fall Equinoxes

Year Month True Time Apparent Time Month True Time Apparent Time

Day Hour Day Hour Day Hour Day Hour Day Hour Day Hour Day Hour

+125 Mar 22 0 ;  5 21 17;43 Sep 24 11;32 24 12; 8 (24 17;42)
+126 Mar 22 5 ; 5 5 21 17;58 Sep 24 17;22 25 6 ;  2
+127 Mar 22 11;44 22 11; 5 (22 6;21) 21 18; 2 Sep 24 23;11 25 6 ;  4
+128 Mar 21 17;33 21 16;15 (21 6; 3) Sep 24 23;11 25 6 ;  4
+129 Mar 21 23;31 22 17;40 (21 5;58) Sep 24 10;48 24 11;26 (24 17;45)
+130 Mar 22 5 ; 1 0 21 15;57 Sep 24 16;37 25 6 ;  1
+131 Mar 22 11; 0 22 10;22 (22 6;29) 21 18; 2 Sep 24 22;27 25 6 ;13
+132 Mar 21 16;49 21 15;47 (21 6; 4) Sep 24 4 ; 1 6 24 6 ; 4 9 (24 17;59)
+133 Mar 21 22;38 22 17;37 (21 5;59 Sep 24 10; 5 24 10;40 (24 17;48)
+134 Mar 22 4 ; 2 7 21 7 ; 2 5 Sep 24 15;54 25 6 ;  1
+135 Mar 22 10;16 22 9 ; 3 2 (22 6;34) 21 18; 1 Sep 24 21;43 25 6 ; 1 0
+136 Mar 21 16; 6 21 15;15 (21 6; 6) Sep 24 3 ;33 24 6 ;41 (24 17;59)
+137 Mar 21 21;55 22 17;32 (21 5;59) Sep 24 9 ; 2 2 24 10; 3 (24 17;50)
+138 Mar 22 3 ; 4 4 21 7 ; 1 5 Sep 24 15;11 21 17;54
+139 Mar 22 9 ; 3 3 22 8 ;41 (22 8; 9) 21 18; 1 Sep 24 21; 0 25 6 ;  9
+140 Mar 21 15;22 21 14;37 (21 6; 7) Sep 24 2 ; 4 9 24 6 ; 3 3 (24 18; 0)
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at spring equinox—have been used to compute the intervals between spring
and fall equinox and the lengths of the 'year' between successive equinoxes
of the same type. Table 2.5 shows these intervals, and also that the average
apparent time from spring to fall equinox is very nearly 187 days.

These two tables illustrate the grave deficiencies of even a perfectly
aligned equatorial ring due to refraction. T h e  erratic behavior of the
Sun's shadow also explains why Hipparchus noted that the inequality in
the length of the year could be seen on the ring at Alexandria. The max-
imum difference between the apparent lengths of two successive years is
very nearly 18h, or 3/4 day [see Table 2.5, column B], which agrees with
Hipparchus' limit for the inequality of the year-length. Thus, although
Ptolemy says that this limit was derived from observations of lunar eclipses,
Hipparchus could have found confirmation of this estimate in reports of
equinoxes observed on the ring at Alexandria.24

Ptolemy's discussion of the sources of errors in such observations and his
unequivocal rejection of a second solar inequality show clearly that he was
satisfied that observational errors caused these irregularities. In particular,
he seems to attribute the appearances of double equinoxes to errors in
the alignment of the rings on which they were observed. Furthermore, he
remarks that such errors were likely to occur if the instruments were not
set up and adjusted for each actual (set of) observations, implying that he
succeeded in eliminating these errors in some fashion.

It is difficult to see how Ptolemy could have done this, since no single
alignment of his equatorial ring would eliminate the irregularities due to
refraction. A deviation in his ring's altitude from the altitude of the equator
at Alexandria would not affect the behavior of the shadow when the Sun
was near the horizon, and so would not affect the appearances of multiple
equinoxes. Similarly, an error in the level of the east-west diameter of the
ring would not prevent double equinoxes from appearing when the Sun was
near the horizon, while accentuating the irregularity of the appearances of
equinoxes occurring at different times during the day. Thus, correcting
any error in the alignment of such an instrument would not alleviate the
difficulties described above.

Nor could Ptolemy have aligned his ring so that equinoxes of both types
would appear at the times expected from Hipparchus' observations and the

24 According to Ptolemy [Alm. iii 1: Toomer, 135], Hipparchus was unwilling to
accept errors of this sort as decisive evidence of the existence of an inequality
in the length of the year and had more confidence in measurements made during
lunar eclipses. Since Hipparchus [Alm. iii 1: Toomer, 136] did not include a
second inequality in his solar model, however, it seems that he, as well as Ptolemy,
eventually concluded that these irregularities were due to observational errors.
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Year

A
Apparent Time

SE to FEa

B
Apparent Year Length (365d +  Ah)

from SE
A A z

from FE
A A z

+125 186d 18.4h 0;15h +16;52h 18;10h —17;52h
+126 187 12.1 17; 7 —11;57 0;12 +0;40
+127 186 19.1 5;10 —3;45 0;52 +3;26
+128 186 14.9 1;25 —1; 8 4;20 14;15
+129 186 17.8 0;17 +16; 8 18;35 —18;23
+130 187 12.1 16;25 —11; 0 0;12 +0;24
+131 186 19.9 5;25 —3;35 0;36 +3;18
+132 186 5.0 1;50 —1;32 3;54 +15;24
+133 186 17.1 0;18 +15;19 19;18 —19; 9
+134 187 12.1 15;37 —9;54 0; 9 +0;22
+135 186 20.6 5;43 —3;26 0;31 +2;51
+136 186 15.4 2;17 —1;59 3;22 +16;36
+137 186 16.5 0;18 +14;29 19;58 —19;50
+138 187 12.1 14;47 —8;51 0; 8 +0;16
+139 186 21.5 5;56 0;24
+140 186 15.9

a Mean: 186d 22.3h T r u e :  186d 11.45h

Table 2.5

length of  the tropical year. T h i s  may be seen by considering the align-
ment errors necessary to produce the observed times of the three equinoxes
which Ptolemy reports, and which agree almost exactly with Hipparchus'
observations of —146 and —145 [Alm. i i i  1: Toomer, 134-135].

As shown in Figure 2.4, any (small) deviation from the plane of  the
equator in a ring's alignment may be considered the result of independent
rotations about the ring's east-west and north-south diameters. L e t  m
denote a rotation about the east-west axis and n  a  rotation about the
north-south axis. L e t  both angles be positive in the direction shown in
Figure 2.4, and let t1 equal the hour-angle of the Sun when an equinox
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Figure 2.4a Figure 2.4b

appears on the ring.25 Then, if (57,2(e) is the declination of P' due solely to
m, and 6 „(e) is the declination of P' due solely to n, we have

tan 6,,(e) = tan m cost'

and

tan 6,i(e) = tan n • sin e

If both m and n are small, (7) and (8) may be replaced by

6,,i(tl ) = m cos tl

and

) = n sin e.

Thus, the declination of P' due to the combined rotations is

b(t') = m cos tl n  sin e.

For an equinox to appear on the ring, the Sun's apparent declination
(affected by refraction) must just equal the declination of P'. Thus, if 6 is
the Sun's true declination and 6' is the apparent increase due to refraction,
an equinox will appear to occur when

= m cos t' n  sin tl. ( 1 2 )

25 i s  positive when the Sun is west of the meridian and negative when the Sun
is east of the meridian. The time at which an equinox appears expressed in hours
after midnight is T' = 12h -4- -1715.
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Conversely, given T', 8(T'), and 6'(T'), we can determine m and n from the
times (T ' )  at which any two equinoxes are said to have been observed.

Applying (12) to the three equinoxes reported by Ptolemy taken in pairs,
we find:26 from the fall equinoxes of +132 and +139,

m =  —0;48° and n =  +0;19°;

from the fall equinox of +132 and the spring equinox of +140,

=  +1;13° and n =  —2;400;

and from the fall equinox of +139 and the spring equinox of +140,

m =  —0;19° and n =  +0;27°.

Clearly, all three equinoxes could not have been (accurately) observed
on a ring with the same alignment, and in general Ptolemy could not have
so observed the times of both the spring and fall equinoxes which he would
have expected from Hipparchus' observations and length of  the tropical
year. O n  the other hand, Ptolemy could have aligned his ring so that
equinoxes of  one type or the other would appear at the expected times,
although these would have been followed by appearances of  equinoxes of
the same type which he would have expected to occur at night.

This may be seen from Table 2.6, which shows that pairs of equinoxes of
both types would be expected in the morning and shortly after noon. Since
at these times the effect of refraction is relatively small (1-2h) and nearly
the same [cf. Figure 2.2], a ring set up so that one such pair appeared would
also produce appearances of the following pairs of the same type.

It is evident that Ptolemy's equinox-observations should not be under-
stood as independent observations affected by an inadvertent systematic
error, or  even as consistent observations designed to verify Hipparchus'
solar parameters. I n  view, however, of Ptolemy's explicit statements con-
cerning the two fall equinoxes which he reports, particularly that of +132,
it is also difficult to conclude that he did not observe the equinoxes at all.
Furthermore, such a conclusion fails to explain Ptolemy's evident familiar-
ity with the difficulties encountered in such observations. Nevertheless, i t
seems that at best Ptolemy could have set up his equatorial ring to show
only one of  the equinoxes expected from Hipparchus' solar model, and

26 Given T',t ' is computed from the relationship shown in 34n25, above. 51(71
can be found from Table 2.3, and S is obtained from modern theory. See Table 2.2.
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Spring Equinoxes
Date T i m e

Fall Equinoxes
Date T i m e

127 Mar  23 18;15h 127 Sep 26 8;10h
128 Mar  22 14;10 128 Sep 25 14; 5
131 Mar  23 7;55 131 Sep 26 7;50
132 Mar  22 13;50 132 Sep 25 13;45a
135 Mar  23 7;35 135 Sep 26 7;30
136 Mar  22 13;30 136 Sep 25 13;25
139 Mar  23 7;15 139 Sep 26 7;10b
140 Mar  22 13;10c 140 Sep 25 13; 5

MODELS A N D  PRECISION

a Ptolemy: 14h bPtolemy: 7h 'Ptolemy: 13h
Table 2.6. Observable Equinoxes Computed from Hipparchus'

Fall Equinox of —146 and Spring Equinox of —145,
Assuming a Tropical Year of 365;14,48 Days

then found that the following pair of equinoxes of the same type occurred
at roughly the times predicted for them.

Such a procedure would hardly have provided any significant evidence
to confirm Hipparchus' solar model, and Ptolemy would still have had to
ignore the appearances of double equinoxes, of equinoxes which should have
occurred at night, and of discordant equinoxes characteristic of the other
season from that for which the ring was set up. Furthermore, such a proce-
dure is hardly consistent with Ptolemy's assertion [Alm. iii 1: Toomer, 139]
that he confirmed Hipparchus' solar parameters by his own observations.

Although the conclusion that Ptolemy's equinox-observations can scarcely
have been more than the results of computations is unsatisfying, I can find
no other explanation of the errors in his reported times and their agree-
ment with Hipparchus' observations and year-length. On the other hand, i f
Ptolemy set out to determine the times of the equinoxes using an equatorial
ring, he could not have avoided the difficulties and irregularities described
above. S o  he might easily have concluded that he could make no secure
improvement on Hipparchus' solar parameters. Furthermore, since not only
his observations of planetary oppositions, but all observations made with
his armillary astrolabe, require knowing the longitude o f  some celestial
body for use as a  reference point, Ptolemy could not have observed the
longitudes of any other celestial body without a solar model . '  Thus,  he

27 Ptolemy reports three observations of planets he made with an armillary as-
trolabe which antedate his earliest reported equinox-observation (+132). The
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might well have adopted Hipparchus' solar parameters in order to proceed
with other observations.

Finally, i t  is quite possible that Ptolemy was aware of the errors in his
equinox-'observations', but  chose to  accept a  poor equinox and tropical
year-length to avoid undermining his (correct) conclusion that the year-
length was constant and not subject to  a second solar inequality. H i p -
parchus apparently left this an open question, while reporting at least two
older observations which supported his determination of the tropical year-
length. Accordingly, i f  Ptolemy had accurately observed the equinoxes and
consequently found a  nearly correct year-length from comparisons wi th
Hipparchus' equinox-observations, he would either have had to show that
the year-length derived by Hipparchus' was in error or accept a variation
in the length of the year. I t  is probable that Ptolemy lacked a sufficient
number of early equinox-observations to demonstrate such an error; and it
is quite possible that no such observations existed, since Hipparchus appar-
ently mentions only solstice-observations prior to his own time. Lacking
reliable early observations of  tropical phenomena to settle the question,
Ptolemy may well have chosen to sacrifice the accuracy of his equinox for
theoretical clarity.

Ptolemy's solar tables

Whatever the explanation of Ptolemy's reported observations of the Sun,
it is clear that he needed both mean and true solar positions and, thus,
solar tables, long before he observed the equinoxes and solstice in +139
and +140. These are the observations which he cites to justify accepting
Hipparchus' values for the lengths of the year and the seasons. Since both
Ptolemy and Hipparchus used the same values for the mean motion, ec-
centricity, and apogee of the Sun, i t  is natural to ask i f  Ptolemy's solar
tables were identical with Hipparchus. The little evidence there is suggests
that they were not.

earliest of these is an observation of an opposition of Saturn on +127 Mar 26
[Alm. xi 5: Toomer, 525]. The others are an opposition of Mars in +130 Dec
15 [Alm. x 7: Toomer, 484] and of Mercury's greatest elongation as an evening
star in +132 Feb 2 [A/m. ix 7: Toomer, 449].

In such observations i t  is necessary to know the longitude of some reference
body in order to align the longitude ring of the armillary astrolabe in the plane of
the ecliptic. Ptolemy would thus have needed to know at least the longitude of a
few reference stars to make these observations. To  determine these longitudes
or even to check provisional longitudes derived from Hipparchus' observations,
Ptolemy would have needed solar tables.
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Date
T i m e  (since epoch)

Mean Solar Anomaly
(Tables)

—127 Aug 5
619d 314y 17;50h

64;59°

—126 May 2
620d 219y 18;20h

331; 7°

—126 Jul  7
,

620d 286" 4h

36;34°
Solar Longitude (°)

Hipparchus Leo 8 1/2 1h2a Tau 7 1/2 1/126 Can 11 — V i e
Ptolemy Leo 8;20 Tau 7;45 Can 10;40
Recomputed Leo 8;22 Tau 7;44 Can 10;42

Tables: Hipparchus —0;13° —0; 1° —0;12°

MODELS A N D  PRECISION

a 8 ; 3 5 °  I . =  7;450 c =  10;54°

Table 2.7. Comparison of Hipparchus' Computed Solar Longitudes
with Values Computed by Ptolemy and Values Recom-
puted from Ptolemy's Tables

Ptolemy quotes three observations of the elongation of the Moon which
Hipparchus made at Rhodes [A/m. v 3, 5: Toomer, 224, 227, 230]. In  each
Hipparchus reports the computed solar longitudes which he used to find
the Moon's elongation (possibly with an instrument similar to Ptolemy's
armillary astrolabe, since the elongations are given directly in longitude).

Table 2.7 shows these longitudes compared with those Ptolemy com-
puted for the same times, and also with longitudes accurately computed
from Ptolemy's tables for the times of  Hipparchus' observations. These
comparisons show discrepancies of 1/5° in two cases and close agreement
for the second of the three observations. Ptolemy [Alm. iv  11: Toomer,
211-216] also cites four computations of  the Sun's progress in longitude
during the intervals between eclipses,28 which Hipparchus used to obtain
erroneous values for the Moon's eccentricity. As Ptolemy remarks, each of
these intervals of longitude differs significantly those he himself computed
for the same eclipses. Since the actual solar longitudes are not given, i t
is impossible to deduce the values of the solar equation that would account
28 The eclipses are:

(1) —382 Dec 23 ( 2 )  —381 Jun 18 ( 3 )  —381 Dec 12
(4) —200 Sep 22 ( 5 )  —199 Mar 19 ( 6 )  —199 Sep 12

The possibility that only the solar longitude for the middle eclipse of each triad is
in error is excluded, since such an error would produce equal errors with opposite
signs in each pair of successive intervals. The actual errors, however, are as shown
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Solar Progress in Longitude between Eclipses

Eclipses Hipparchus Ptolemy A

(1) and (2) 172;52,30° 173;28° +0;35,30°
(2) and (3) 175; 7,30 174;44 +0;36,30
(4) and (5) 180;20 180;11 —0; 9
(5) and (6) 168;33 168;55 +0;22

for the observed discrepancy. Nevertheless, i t  is clear that some of those
values must have differed from Ptolemy's.

All these discrepancies can be explained, of course, by assuming that Hip-
parchus was a poor computer. A  more plausible explanation, however, is
that Hipparchus' correction for the solar inequality differed from Ptolemy's.
If so, his tabular mean solar longitude should also have differed."

Whatever the case, i t  appears unlikely that Ptolemy's solar tables are
merely copies or extensions of  Hipparchus' tables, even though they are
based upon identical parameters and reproduce almost precisely Hipparchus'
fall equinoxes of —145 and —146 [cf. Table 2.8]. I n  view of the fact that
Ptolemy could hardly have waited until +140 or even +132 to construct his
solar tables, it is quite possible that he first rigorously recomputed the solar
inequality from Hipparchus' parameters, and then determined the epoch of
the mean motion to agree with Hipparchus' fall equinox of either —145 or
—146. This would have given him a set of provisional tables to work with
in order, for example, to determine the opposition of Saturn in +127.

In summary, i t  seems impossible that the errors in Ptolemy's equinox-
observations arose either from a systematic error in independent observa-
tions or from procedures designed to confirm Hipparchus' parameters. I t
does appear, however, that Ptolemy's solar tables are not identical with
Hipparchus' despite the identity of the underlying parameters, and that
Ptolemy must have at least recomputed the values for the solar inequality
and, hence, the epoch of the Sun's mean motion.

below.

For extended discussion of these data and Hipparchus' solar model, see Jones 1991.
29 Hipparchus' determination of the Sun's mean longitude at any equinox must
have depended on his value for the Sun's inequality at that time. Thus, the
observed discrepancies cannot be viewed as solely due to an error in Hipparchus'
equation. Unfortunately, I can find no plausible scheme which would account for
the discrepancies which appear.
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HIPPARCHUS

Type Date T i m e '  E r a
Nabonassar

Computed Solar
Longitudeb

A L
(Comp. — Obs.)

FE —161 Sep 27 1 8 "  584Y 359d 6 " 180;41,47° +0;41,47°
FE —158 Sep 27 6  5 8 8  359 18 180;12,25 +0;12,25
FE —157 Sep 27 1 2  5 8 9  360 0 180;12,37 +0;12,37
FE —146 Sep 27 0  6 0 0  362 12 179;59,47 —0; 0,12
SE —145 Mar  24 6  6 0 1  175 18 0; 1, 8 +0; 1, 8
FE —145 Sep 27 6  6 0 1  362 1 8 179;59,59,42 —0; 0,  0,18
FE —142 Sep 26 1 8  6 0 4  363 6 179;45,34 —0;14,26
SE —134 Mar  24 0  6 1 2  178 12 0; 3,16 +0; 3,16
SE —127 Mar  23 1 8  6 1 9  180 6 0; 4,37 +0; 4,37

PTOLEMY

FE +132 Sep 25 1 4 h  879y 66d 2 h 180; 0,24° +0; 0,24°
FE +139 Sep 26 7  8 8 6  6 7  1 9 179;59,18 —0; 0,42
SE +140 Mar  22 1 3  8 8 6  246 1 0; 0,39 +0; 0,39
SE +140 Jun 25 2  8 8 6  340 1 4 90; 2,42 +0; 2,42

MODELS A N D  PRECISION

° Observed local apparent time, midnight epoch. bFrom Ptolemy, Alm. iii
Table 2.8. Spring and Fall Equinoxes Observed by Hipparchus

and Ptolemy. Comparison with Ptolemy's Tables

In view of his need for an adequate solar table for other observations,
and the difficulties he must have encountered in whatever observations he
made on the equatorial ring, i t  is not surprising that Ptolemy did not
attempt to  improve on Hipparchus' solar model but  only on the tables
derived from it. Indeed, considering the irregularities he must have found
with his equatorial ring, it is perhaps more surprising that he did not accept
the false conclusion of a second inequality in the Sun's motion. Instead, his
remarks in Alm. iii 1 [Toomer, 136] suggest that he excluded this possibility
because a second solar inequality would destroy the agreement of his lunar
model at syzygy with the observed times of eclipses.

The errors of Ptolemy's solar model

Since Ptolemy's solar model forms the basis—directly or indirectly—for
the reduction o f  all his longitude-observations o f  other celestial bodies,
it is convenient to  determine here the corrections to  Ptolemy's tabular
longitudes which bring them into agreement wi th modern theory. T h i s
error has two components. One is a secular error in Ptolemy's mean solar
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longitude resulting from the error in his mean motion and epoch. T h e
other is a nearly periodic error due to the inaccuracy of his eccentricity
and apogee, which changes slowly with the motion of  the Sun's apsidal
line. I n  the following discussion, symbols with primes (') denote Ptolemy's
elements while symbols without primes denote modern elements.

The error in Ptolemy's mean solar longitude. The  mean longitude of the
Sun according to Ptolemy may be expressed as

L' =  330;45° +  (100" + 0;19,42,8°)T1 (13)

where T1 is the number of Julian centuries from Ptolemy's epoch, —746 Feb
26, noon [Alm. i i i 7: Toomer, 183]. From the elements derived in appendix
1, we find for the the same epoch,

L =  328;13,58° +  (100' +  0;44,20.6°)Ti +  0;0,2.1°T12. ( 1 4 )

Thus, the error in Ptolemy's mean longitude of the Sun is

L — Li =  —2;31.0° +  0;24.63°Ti +  0;0, 2.1°T12. ( 1 5 )

If T is the number of Julian centuries from 0 AD, January 0, the error is30

L — Ls =  +0;30.7° +  0;25.15°T + 0;0,2.1°T2.
30

(16)

From Schoch's elements [P. V.  Neugebauer 1929, i  35], the error in Ptolemy's
mean longitude for 0.0 AD, is

LSchoch =  +  0;34.1° +  0;24.80°T + 0;0,2.6°V

From Newcomb's elements [1898, 1], which do not include the Sun's secular ac-
celeration, the error is

LNewcomb — =  +  0;25.5° +  0;25.74°T + 0;0,1.1°V

The latter error is nearly identical with the error found by Ideler [1806, 107].
In T140 the errors in Ptolemy's mean solar longitude according to Schoch and

Newcomb are:
Schoch

—140 — 0 ; 1 °
+140 + 1 ; 9 °

Newcomb
—0;10°
+0;58°.

Thus, for any reasonable assumption about the magnitude of the Sun's accelera-
tion, Ptolemy's mean solar longitude is very nearly accurate in —140 and roughly
1° in error in his own time.
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Figure 2.5. Error in Ptolemy's Mean Solar Longitude

This error is plotted in Figure 2.5. I t  is zero in —122, and +1;5° at
+137.5, the epoch of Ptolemy's star catalogue. By 1500 the error is nearly
+7° (+6;56°). For Schoch's (Tuckerman's) elements the error is zero in
—138 and 1;8° at Ptolemy's epoch.

The error in Ptolemy's solar inequality. Figure 2.6 shows Ptolemy's solar
model. The Sun at S moves on a circle A'SP' with uniform motion about
its center C, which coincides with the center of the zodiac. The observer at
0 sees the Sun at L' =  L' g ' ,  where g' is the angle OSC. (As shown
here, g' is negative.) A '  and P' denote the Sun's apogee and perigee, a'
(= L' — A') the Sun's mean anomaly, and a' (= L' —A') its true anomaly. In
Ptolemy's model the longitude of the apogee is 65;30° and the eccentricity,
e' (= OC), is 0;2,30, where R =- CS = 1.

For uniform eccentric motion, the equation (g') may be expressed as

_gl = a' — =  —el sin a' + 1 —e,2 sin2a — 1 —e sin3a1 ,  ( 1 7 )2 3
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Aries 0°

Figure 2.6: Ptolemy's Solar Model

where the powers of  the eccentricities are expressed i n  radians or their
equivalents in degrees [see appendix 3]. In  undisturbed elliptic motion, the
corresponding equation is31

1 5  1 1
g =  a — a =  —(2e — 4e3) sine./ + (4e2 — 24 e4)sin2a

— (11.32e3) sin 3-Ct + . . . .
(18)

31 For a development of this expression for the inequality in undisturbed elliptic
motion, see Brown 1896, 30 if.
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Since for our purposes accuracy of 0;1° suffices, for the Sun we may ignore
powers of e and e' greater than 2. Thus, (17) and (18) become

and

- I  — e '  •  - I  1  2 I 2  •  -g' =  a' — a =   s i n  a +  — e s i n  2a1

5 ,
g =  a — a =  —2e sin a + —4e- sin 2a.

(19)

(20)

To compare (19) and (20) we must first determine the relationship be-
tween the Sun's actual mean anomaly (a) and Ptolemy's mean anomaly
(a'). F r o m  Newcomb's Tables o f  the Sun [1898, 1], we find for the year
0 AD

A =  68;43,12° +  1;42,7°T, ( 2 1 )

and, thus, that the error in Ptolemy's apogee (A' =  65;30°) is32

A — A' =  3;13.2° +  1;42.1°T (epoch, 0 AD). ( 2 2 )

Finally, from (22) and (16) above, we obtain for the error in Ptolemy's
mean anomaly

a — =  —2;42.5° — 1;17.0°T (epoch, 0 AD). ( 2 3 )

From (19), (20), and (23), we can now determine the error in Ptolemy's
solar equation (g') as a function of his mean solar anomaly (a'). Lett ing
a — a' =  B(T), we obtain

g — g' =  -  2e sin (a' +  B) + e' sin a' + —5 5 ± 24 2  e2 sin (2a1 + 2B) — s i n  2a1,
et 2

=  — (2e cos B — ei) sin a' + (-45e2 cos 2B — 2  )  sin 2a'

— 2e sin B cos a' + —5 e2 sin 2B cos 2as.

32 For the years ±  140, the errors in Ptolemy's apogee are:

+140 A  =  71; 5° A  — A'  = +5;35°
—140 A  =  66;19° A  — A'  = +0;49°.

(24)

Ptolemy's apogee is correct for —188.
Note that the error in Ptolemy's mean anomaly differs from that in his apogee

due to the error in his mean longitude. The date at which Ptolemy's mean anom-
aly is accurate, which is the date at which the errors in his inequality are due
solely to the error in his eccentricity, is —210 [cf. Aaboe and Price 1964, 14].
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33 Fo r  +135, these are:

2e =  +2; 0° acc. =  1;59,58° [Newcomb 1898, 1]
e2 =  + 0 ;  1,3
e' =  +2;23 acc. =  2;22,45 for e '  =  0; 2,29,30"

acc. =  2;23,13 for e '  =  0; 2,30

Introducing numerical values for e, e', and B(T),33 w e  find for the time
of Ptolemy's own observations (ca. +135)

g — =  +0;23.4° sin a' — 0;1.2° sin 2Ets +  0;9.2° cost ' . . . .  ( 2 5 )

Error (Correction to Ptolemy): 0;1°

60'

40'

—20'

—40'

—60'

)0
0

_ 0,o

0  — 6 0 0
•  + 1 3 5
A, + 1 5 0 0  P

f  -
Q A  -/  -

A

0 3 0  6 0  9 0  1 2 0  1 5 0  1 8 0  2 1 0  2 4 0  2 7 0  3 0 0  3 3 0  3 6 0

Ptolemy's Mean Solar  Anomaly  l a  =  X — 65;30°)

Figure 2.7. Error in Ptolemy's Solar Equation

This error is shown in Figure 2.7. I t s  amplitude is roughly +0;25° (at
=  70° and 245°and i t  is zero at a' =  160° and 337° ( L '  =  225° and

32°). Such an error could produce discrepancies of nearly an hour between
computed and observed times of lunar eclipses. This error is substantially

e'2= + 0 ;  5,57
B =  —4;27.
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Date sin a' sin 2Eil cos a' cos 2O,'

—600 +0;22.5° —0; 1.3° —0;11.5° +0; 0.2°
—210 +0;23.0 —0; 1.2 0; 0 0; 0
—140 +0;23.0 —0; 1.2 +0; 1.1 0; 0
+135 +0;23.4 —0; 1.3 +0; 9.3 —0; 0.2

+1500 +0;30.0 —0; 1.5 +0;39.6 —0; 1.1

offset at syzygy, however, by the Moon's annual equation," s o  that the
apparent error in Ptolemy's computed times of  eclipses due to his solar
model would be considerably smaller.

Since B  changes w i th  time, the coefficient o f  each term in  (25) also
changes. Table 2.9 shows the coefficients of each term for different dates.
The amplitude of the error remains nearly constant throughout the period
for which Ptolemy reports observations (-720 to +141). The phase of the
error, however, shifts about 50° in  the interval from —600 to +135, and
at the time of Hipparchus the error is very nearly in phase with the Moon's
annual equation.

Table 2.9. Coefficients of the Terms in the Error in Ptolemy's
Solar Equation

For later dates, and particularly in the medieval period, the error is sig-
nificantly out of phase with the Moon's annual equation and is considerably
larger than at Ptolemy's time. Thus, the error in the times of eclipses com-
puted from Ptolemy's tables in +1000 could amount to nearly 1112h from
the error in his solar inequality alone.35

In summary, for  the period o f  Ptolemy's own observations (+125 to
+140) the correction to his tabular longitudes of the Sun is (±0;3°)

L — L' =  +1;5° + (g — gl)+135,

while for the time of Hipparchus (ca. —140), the error is

L — L' =  —0;4° +  (g — g')-14o•

(26)

(27)

Either directly or indirectly, Ptolemy determines the longitudes of  all
other celestial bodies with reference to the Sun. Consequently, we would

34 The correction for the Moon's annual equation at syzygy is +0;14,3° sin a.
Thus, it will be very nearly in phase with the error in Ptolemy's solar inequality,
when B(T) = 0 in roughly —210.
35 Cf. al-BattanT [Nallino 1903-1907, i 56-57].



Observations of Solar Position 4 7

expect to find at least the secular component of the error in his solar model
in all of his observed longitudes and, thus, in all of his other models. We
should also expect his star positions to reflect this same error, since he tells
us [Alm. vi i  2: Toomer, 328] that he found the longitudes of  the bright
stars along the ecliptic by measurements with reference to the Moon and,
hence, indirectly to the Sun.



Lunar Observations in the Almagest:
Errors in the Observations and Derived Data

The Almagest reports thirty-seven dated observations of the Moon in de-
tail. Twenty-six of them (19 eclipses and 7 occultations) involve only de-
termining the time at which some phase of an event occurred (together
with the magnitude in the case of partial eclipses). A l l  the others, ex-
cept for  Ptolemy's determination [Alm. v  13] o f  the Moon's parallax,'
entail measuring the distance from the Moon to another body at a specific
time. Ptolemy [Alm. v 12: Toomer 247] also describes his determination of
the Moon's greatest northern latitude without mentioning the date of the
observations,' and he refers [Alm. i i i 1: Toomer, 135] to two lunar eclipses

1 The observation was made on +135 Nov 1. Ptolemy finds the Moon's parallax
on the meridian at  Alexandria to be 1;7° and the Moon's distance from the
center of the Earth to be 39;45 Earth radii. Since the Moon was actually near
its mean distance, Ptolemy should have found its parallax to be P.,' 0;45°, so that
his observation was in error by roughly 0;20°. I t  is interesting that from this
observation Ptolemy deduces a mean distance of the Moon at syzygy, 59 Earth
radii, which agrees very well with the modern value, 60.3 Earth radii.
2 A  date for this observation can be inferred from Ptolemy's statement [Aim.
v 12] that the Moon was simultaneously near the summer solstice (90°) and also
near the northern limit of  its orbit. To  satisfy these conditions, the Moon's
ascending node must have been near Aries 0°.

For Ptolemy's time the condition is satisfied in +126 and in +145, the best date
for the observation being +126 Aug 3. On this day the Moon culminated about 2
hours before noon with a longitude of 88°, while the position of its ascending node
was Aries 0;1°. The observation could have been made a month or so on either
side of this date, but the longitude of the Moon at culmination would have been

48



Lunar Observations in the Almagest 4 9

observed by Hipparchus without reporting any details of the observations
except the longitudes of Spica which Hipparchus derived from them.'

I have limited the following discussion to the dated observations of lunar
eclipses, occultations, and elongations, since these observations are com-
pletely described, and since Ptolemy's determination of the Moon's paral-
lax is a unique observation which does not fit into any of the other groups. I
consider first the eclipses and occultations, which several astronomers have
already compared with modern theory and which enable us to evaluate the
accuracy of two groups of ancient time-determinations. Then ,  I  discuss
the errors in the observations of elongations which involve measurements
of both time and arc. These errors have not been investigated previously.

In comparing the lunar observations with modern computations, my ob-
jective is to determine, first, the accuracy of the observations which Ptolemy
had available to him and, then, the errors in the data Ptolemy uses to de-
termine or demonstrate specific features of his models. The two problems
are not quite identical, partly because Ptolemy introduces additional errors
in reducing the observations, and partly because the reports themselves are
often sufficiently ambiguous to allow several interpretations; indeed, a few
of them contain inconsistencies which raise considerable doubt as to their
proper interpretation. In  general, these difficulties arise only in connection
with the observations made by Ptolemy's predecessors and, in particular,
the eclipses and occultations where (a) either the time of a specific phase
may be uncertain, or  (b) the phase associated wi th a stated t ime may
be uncertain.

The first type of uncertainty can arise either from the vagueness of the
time-reference (e.g., 'after rising' in the case of the eclipse of  —719 Sep
1 [A/m. iv  6: Toomer, 192]) or from an over-determined and inconsistent
time-designation (e.g., the occultation of Spica observed by Timocharis in
—282 Nov 9 [Alm. vi i  3: Toomer, 336], where the designation '91/2 hours
[after Sunset]' and 'just as the Moon was rising' differ by more than an
hour). There is also some ambiguity in the meaning of the phrases 6pas
etpxop.bis and etipas knyoixrqs, which are frequently applied to times des-
ignated in seasonal hours. The question is whether such times should be
understood as 'near the beginning' or 'towards the end' of the given hour,
or 'at '  the beginning or end of the hour. Fotheringham [1915a, 280] has
discussed the alternatives and interprets the adjectives, cipxop.thirls and kg-
yoions, as referring to the first and last thirds of the stated hour. He then

less satisfactory. This is the earliest date of an observation made by Ptolemy
[cf. Alm. iv 9: Toomer, 206n54].
3 See Rome 1937-1938, 6; 1931-1943, iii 828, for discussion of these eclipses.
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uses the midpoints of these intervals as the observed time-data. Ptolemy,
on the other hand, understands such designations to mean the beginning
or end of the hour, and this interpretation was followed by Newcomb [1878,
35].

Another source of uncertainty in the reported times is the occasional am-
biguity of the units in which time-intervals are given and of the times of day
to which these intervals are referred. Three systems for measuring time are
used in describing the observations in the Almagest. The most convenient
of these, and the one Ptolemy always uses to describe the times of his own
observations, states the number of equinoctial hours (lh =  1/24 day) be-
tween noon or midnight and the time of the observation. Times given in this
system thus require no seasonal correction except for the equation of time.

A variation of this system (historically its predecessor) is encountered in
Babylonian astronomical Diaries.4 Here the time of an event (e.g., Moon-
rise or the beginning of an eclipse) is given in terms of an interval measured
in equinoctial units with respect to Sunset or Sunrise. The Babylonian
units of time were the u§, equal to 1/6,0 days, or 4 minutes, and the DANNA
(KAS.BU) or barn, equal to 30 u§ or 2 equinoctial hours.' Times given in
this system thus require a seasonal correction, equal to the variation in the
time from Sunrise or Sunset to noon (or midnight), as well as the equation
of time, in order to reduce them to a uniform system. One observation in
the Almagest [iv 9: Toomer, 208] which explicitly gives the time in this
system is the Babylonian eclipse of —501 Nov 19/20, which 'took place
when 61/3 equinoctial hours of the night had passed'. Here the unit of mea-
surement is Ptolemy's hour, 1/24 of a day, so that the original Babylonian
report has been partially modified at least.

The third system of time-measurement, local civil time, was used for
reporting nearly all the pre-Ptolemaic observations. I n  this system the
unit of time is the seasonal hour (s.h.), defined as 1/12 of the interval from
Sunrise to Sunset (or Sunset to Sunrise) of the day on which an event
occurs.' I n  this system, the time of an event is the interval between the

4 C f .  Sachs 1948, 285, for  a  definition and description o f  the Babylonian as-
tronomical Diaries. K u g l e r  [cf., e.g., 1907-1924, i  76-77] calls these Beobach-
tungstafeln. Diaries from —651 to +165 have been published in Sachs and Hunger
1988-1989.
5 Fo r  discussions of these units, cf. Kugler 1907-1924, i 25, 272; i i  58-60, 68-71:
0.  Neugebauer 1955, i 39.
6 Fotheringham [1932a, 338] and van der Waerden [1951, 20] have discussed evi-
dence of Babylonian computations which seem to use a 'quarter-watch, equivalent
to ls-h-, as a unit of time. Both  conclude that seasonal hours were used in Baby-
lonian astronomy. This is a hazardous inference from very uncertain evidence.
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event and Sunset or Sunrise (expressed in seasonal hours). Times in this
system, therefore, require a twofold correction in addition to the equation
of time in order to reduce them to uniform time, one in the variation in
the length of  the seasonal hour and the other for the time of Sunset or
Sunrise. Ptolemy understands the times of all observations made by others
than himself as given in this system, except for the eclipse of +125: A p r
57 and the Babylonian eclipses of —522 Jul 16 and —501 Nov 19/20. He
generally describes such times in ordinal hours and fractions thereof, and
he always explicitly designates these units as seasonal hours in discussing
the reductions of these observations.

It is curious that most of the times of the Babylonian eclipses were re-
duced to this cumbersome system. The  reduction serves no astronomical
purpose, and it would have been far easier to convert the units given in the
Babylonian reports or records directly into equinoctial hours. Since not
all of the eclipse-times were reduced to this system, we may ask whether
Ptolemy was mistaken in  assuming that the times of  some of the obser-
vations were given in seasonal hours. For  this reason I  have occasionally
included calculations o f  the errors of  the observed times, based on the
assumption that the times given refer to equinoctial hours after Sunset,
although Ptolemy understands seasonal hours.

Still another uncertainty, which affects several eclipse-observations, arises
from Ptolemy's occasional assumption that the report he is citing refers to
the midpoint of an eclipse when it says that an eclipse 'took place' at the
given time. Instances of this include four of the Babylonian eclipses (-719
Mar 8, —522 Jul 16, —501 Nov 19/20, and —490 Apr  25) and the eclipse
of +125 Apr 5. Nevil l  [1906, 2] and, following him, Cowell [906, 523] and
Fotheringham [1920a, 578-579] have interpreted all times but that of —719
Mar 8 as specifying the beginning of the eclipse. Since there is at least
one case, —381 Dec 12, in which Ptolemy takes the same vague description
to refer to the beginning of the eclipse, and since the Babylonian diaries
generally state the time of the beginning, but not the midpoint, of eclipses,
I shall consider the possibility that Ptolemy may have been mistaken about
the phase in these instances.

7 The earliest observation in the Almagest which Ptolemy explicitly claims to
have made himself is his observation of an opposition of Saturn on +127 Mar 26.
Since his observation of the Moon's extreme latitude probably antedates this [see
49n3 above], and since the time reported for this eclipse is given in equinoctial
hours relative to midnight, it is quite possible that he himself observed the eclipse
of +125 Apr 5 [Alm. iv 9: Toomer, 206]. He says only, however, that the eclipse
was observed in Alexandria.
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Finally, I  should note that throughout this discussion the term 'error'
(alternatively, A) denotes simply the difference between a datum calculated
from modern theory and that reported by Ptolemy, always in the sense of
a correction to Ptolemy's datum. Thus, the term embraces all sources of
error in a given datum such as errors of measurement, recording, reduction,
transmission, interpretation, and so on, in addition to any error in the
modern theory on which the calculation is based.

ECLIPSE-OBSERVATIONS

In this section I consider Ptolemy's reported eclipse-observations individu-
ally in chronological order. Table 3.1 contains the following computed data
used to determine the errors of these observations:

col. 1  J u l i a n  civil date when the midpoint of the eclipse occurred.
col. 2  L o c a l  apparent time (midnight epoch) of eclipse-midpoint for:

Babylon (2;58h) E: 32;30° N
Alexandria (2;0h) E: 31;12° N
Rhodes (1;53h) E: 36;24° N.

For eclipses nos. 1 through 15, the times are taken from P. V.
Neugebauer [1934, 13]; the times of eclipses nos. 16 through
19 are from Newcomb [1878, 42].

col. 3  H a l f -duration of the eclipse, for eclipses 1 through 15 from
P. V.  Neugebauer [1934]; for eclipses 16 through 19 from
Cowell [1906, 526]. Cowell's computed durations are nearly
identical with Newcomb's when the latter are corrected for
the error in Hansen's argument of latitude.

col. 4  Correction to the mean tabular elongation at the time given
in col. 2 which is needed to reduce the tabular elongation
to my elements. For eclipses nos. 1-15 and 16-19, these are
from appendix 2, Table A2.1 and Table A2.3, respectively.

col. 5  Veloci ty  of the Moon's elongation at the time of the eclipse
in seconds of arc per minute of time, as computed from New-
comb [1878, 41].

col. 6  Correction to the tabular time in col. 2 obtained by divid-
ing col. 4 by col. 5. (The sign of the correction is positive,
since the negative correction to the elongation at tabular
eclipse-midpoint means the Moon must still travel A D  to
reach eclipse-midpoint.)

col. 7  Corrected local apparent time (midnight epoch) of eclipse-
midpoint (col. 2 + col. 6).



Table 3.1. Data for Comparing Eclipses

No. 1
Date and Place

2
T'(M)

3
Dur.

4
AD

5
1-!-?

6
AT

7
T(M)

8
T(B)

9
T(E)

10
re, Ls

11
1/2N

12
Mag.

1 -720  M a r  19 Babylon 21.5h 1.9h -555" 29.1"/ ' +0;19h 21;49h 19;55h 351.5° 6; 9h 10.2d
2 -719  Mar  8 B a b y l o n 23.6 0.7 -555 27.1 +0;20 23;56 23;14 340.7 6;20 1.5
3 -719  Sep 1 B a b y l o n 20.0 1.2 -555 35.4 +0;15 20;15 19; 3 159.9 5;30 6.1
4 -620  Sep 22 Baby lon 5.25 0.85 -510 27.2 +0;19 5;34 4;43 24.4 5;35 2.1
5 -522  Ju l  16 B a b y l o n 23.65 1.35 -465 27.6 +0;17 23;56 22;35 106.6 4;58 6.1
6 -501  Nov 20 Babylon 0.1 0.8 -460 27.0 +0;17 0;23 23;35 231.9 6;51 2.1

7 -490  A p r  25 Babylon 22.75 0.65 -455 31.4 +0;14 22;59 22;20 28.5 5;32 1.7
8 -382  Dec 23 Babylon 0.0 0.9 -410 34.8 +0;12 8;12 7;18 267.0 7; 6 3.0
9 -381  Jun  18 Baby lon 21.15 1.35 -410 27.5 +0;15 21;24 20; 3 22;45h 80.5 4;57 5.9

10 -381  Dec 12 Babylon 23.05 1.75 -410 35.5 +0;12 23;15 21;30 256.2 7; 5 18.2
11 -200  Sep 22 A lexand r i a 18.9 1.5 -340 28.7 +0;12 19;12 17;42 20;42 176.0 5;56 8.5
12 -199  M a r  20 Alexandr ia 0.8 1.8 -340 32.0 +0;11 0;59 23;11 355.4 6; 5 16.0
13 - 1 9 9  Sep 12 A lexand r i a 2.35 1.85 -340 32.3 +0;11 2;32 0;41 165.0 5;45 19.3
14 -173  May  1 A l e x a n d r i a 1.8 1.3 -330 35.4 +0; 9 1;57 0;39 3;15 35.7 5;26 7.4
15 -140  Jan 27 Rhodes 21.65 0.85 -320 35.6 +0; 9 21;48 20;57 304.5 6;49 2.8
16 +125 A p r  5 A l e x a n d r i a 20.75 0.77 -260 32.2 +0; 8 20;53 20; 7 14.3 5;52 1.8
17 +133 May 6 A l e x a n d r i a 22.93 1.77 -257 28.2 +0; 9 23; 5 21;19 44.2 12.9
18 +134 Oct 20 A lexandr ia 22.93 1.57 -256 29.0 +0; 9 23; 5 21;31 206.3 10.1
19 +136 Mar  6 A l e x a n d r i a 3.37 1.35 -254 34.6 +0; 7 3;29 2; 8 344.6 5.5
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col. 8  Corrected local apparent time of the beginning of the eclipse,
i.e., col. 7 — col. 3.

col. 9  Corrected local apparent time of the end of the eclipse, for
those for which Ptolemy gives the time of the end, i.e., col. 7+
col. 3.

col. 10 Approximate longitude of the Sun from Newcomb [1878, 41].
col. 11 H a l f  the length of the night in equinoctial hours, computed

accurately from Ptolemy, Alm. ii 8 for the latitudes assumed
above in col. 2. For  the apparent half-length of the night,
subtract 2 '  from these values to correct for refraction.'

col. 12 Magnitude of the eclipses: nos. 1 through 15 are from P. V.
Neugebauer [1934]; nos. 16, 18, 19 are from Fotheringham
[1909c, 668]; and no. 17 is from Oppolzer [1962].

The precision of the times from P. V. Neugebauer is ±0;3h, excluding
the uncertainty of the secular accelerations. I f  we assume an uncertainty
of ±0.3"T2 in the secular acceleration of the mean elongation used in the
comparison, the corresponding errors in the eclipse-times would be P-1 T0;6h
at —600 and T0;4h at —100. Further, the uncertainty in the argument of
latitude can increase the error in the time of an initial or terminal phase
by ±0;2k Finally, the error in the computed time of Sunrise or Sunset is
estimated to be +0;2h. The probable error of a computed time, therefore,
will be roughly ±0;6.5k

Eclipse 1. —720 Mar 19 A l m .  iv 6: Toomer, 191

1 Mardokempados: 29/30 Thoth'

The eclipse began, [the report] says, well over an hour after Moon-
rise, and was total.

8 Fotheringham [1915a, 381] and Schoch [1926, 32] understand 'Sunrise' and
`Sunset' to mean the appearance or disappearance of the Sun's upper rim, in
which case the half-length of the night should be further reduced by 0;1h. I  cannot
determine on what basis they make this assumption, and I have assumed rising
or setting to refer to the center of the body in question.
9 To  be read as 'year 1 of the reign of Mardokempados, on the night between
Thoth 29 and Thoth 30: Ptolemy uses a continuous Egyptian calendar, the epoch
of which is Thoth 1, Nabonassar 1 (= —746 Feb 26, JDN 1488638). The number
of days between an event and this epoch can be obtained by first finding the
number of intervening Egyptian years (each of 365 days) from Ptolemy's List of
Reigns [Ginzel 1906-1914, i 139] and then adding the number of days between
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Lunar Eclipse-Data Computed' Ptolemy A

Sunset (Babylon) 17;53h 1 8 ;  Oh —0; 7h
Moonrise (Babylon)b 17;40
Beginning (Babylon) 19;55 1 9 ; 3 0 +0;25
Midpoint at Babylon 21;49 2 1 ; 3 0 +0;19

Alexandria 20;51 2 0 ; 4 0 +0;11
Magnitude 18.2d ( 2 1 . 6 ) d (-3.4)"

I Thoth VII Phamenoth
II Phaophi VIII Pharmuthi

I I I Athyr IX Pachon
IV Choiak X Payni
V Tybi XI Epiphi

VI Mechir XII Mesore.

a A l l  computed times are given in the local appar-
ent time (midnight epoch) of the place indicated. The
times of risings and settings refer to the center of the
body indicated and are corrected for refraction.
b Newcomb, following Zech [1851, 13], puts Moonrise
at 17;53h mean time. This is consistent with 17;40h
local apparent time when refraction is taken into ac-
count.

Eclipse No. 1: —720 Mar 19

Ptolemy assumes the night at Babylon was 12h long and that the eclipse
began 1112h after Sunset 1;45h after Moonrise. He also assumes the eclipse
was central and computes the duration as 4h."

The time given for this eclipse has caused substantial difficulties for mod-
ern investigators. Nevertheless, there is general agreement that Ptolemy's

Thoth 1 and the date of the event. The order of the months is:

Each has 30 days and Mesore is followed by 5 epagomenal days. In computing the
number of days since Thoth 1, it must be remembered that Thoth 1 counts as day
zero. Furthermore although Ptolemy's calendar assumes a midnight epoch, he
uses noon on Thoth 1, Nabonassar 1 as the epoch of his mean motion tables. This
has the advantage that all observations made at night can be reduced on a uniform
basis without considering whether they were made before or after midnight.
10 Indeed, according to Manitius [1912-1913, i 433n28], the duration computed
from Ptolemy's tables, assuming a central eclipse, is 3;59,45h. See also Toomer,
191n30.
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estimate of the elapsed time since Moonrise, 1 l
/2 hours, is the maximum

time consistent with the description well over one hour, although Ptolemy

applies this interval to Sunset rather than Moonrise. Newcomb [1878, 35-

36] assumes that the report indicates an interval of between 1 Y* and 1 1
/2

hours after Moonrise, and finds the difference between the observed and

computed time to be:

Lunar Datum Computed Observed A

Time since Moonrise 2;15
h

l;22
h

+0;53h

On the other hand, if we follow Ptolemy’s interpretation applied to accurate

Sunrise, the error (A) is +0;32h.

Kugler [1907-1924, ii 68] has suggested that the time accepted by Ptolemy

can be explained by assuming that the original report said only that the

eclipse occurred in the first watch and that its total phase ended before the

end of the first watch; this would require the eclipse to have begun less

than l;40h after Sunset. Although Kugler correctly remarks that the unit,

l
h = Y24 day, is not a Babylonian unit [see 50n6, above], his explanation

still does not account for the description Ptolemy quotes. An alternative

explanation is that whoever transmitted this report mistakenly translated

1 KAS.BU (DANNA = double hour) into ‘well over one hour’. If so, the time,

1 double hour after Moonrise, would agree very closely with the computed

time. If Ptolemy’s report more or less accurately represents the Babylon

account, however, the error is nearly an hour.

Eclipse 2. —719 Mar 8 Aim. iv 6: Toomer 192

2 Mardokempados: 18/19 Thoth

The [maximum] obscuration, [the report] says, was 3 digits from the

south exactly at midnight.

Kugler [1907-1924, ii 69] assumes that the original report may have indi-

cated that the greatest phase occurred when the Moon was on the meridian,

and notes examples from other texts to demonstrate this possibility. Since

the eclipse was of short duration (l;24
h
), determining the time by reference

to the meridian would make the observation’s probable error much less than

we might otherwise expect from the somewhat vague description.
11 In any

11 Newcomb [1878, 36] assumes a probable error of ±40”] equal to half the

duration of the eclipse. As a result, he gave the eclipse very little weight in his

subsequent analysis.
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Lunar Eclipse-Data Computed Ptolemy A

Midpoint at Babylon 23;56h 2 4 ;  Oh —0; 4"
Alexandria 22;58 2 3 ; 1 0 —0;12

Magnitude 1.5d 3 . 0 d —1.5d

Lunar Eclipse-Data Computed Ptolemy A

Moonrise (Babylon) 18;24"
Sunset (Babylon) 18;23 1 8 ; 3 0
Beginning (Babylon) 19; 3  1 9 ;  0 +0; 3"
Time since Moonrise 0;39 0 ; 3 0 a +0; 9 '

Sunset 0;31 0 ; 3 0 +0; 1
Midpoint at Babylon 20;15 2 0 ; 3 0 —0;15

Alexandria 19;17 1 9 ; 4 0 —0;25
Magnitude 6.1d [ 8 . 0 d ] [-1.9d]

case, the stated time agrees very well with the computed time if we assume
that the observed time referred to mid-eclipse.

Eclipse No. 2: —719 Mar

Eclipse 3. —719 Sep 1 Alm. iv 6: Toomer, 192

2 Mardokempados: 15/16 Phamenoth

The eclipse began, [the report] says, after Moonrise, and the [maxi-
mum] obscuration was more than half from the north.

Ptolemy concludes that the eclipse began at least half but less than one
(equinoctial) hour after Moonrise, implying that a smaller or greater in-
terval would have been specifically mentioned. H e  then adopts half  an
(equinoctial) hour after Sunset (P-2. 0;40h after Moonrise) as his beginning
time. Newcomb [1878, 36] assumes 0;25h after Moonrise as most probable.
Ptolemy computes the duration to be 3 hours, equivalent to  an assumed
magnitude of 8d by his tables. Ptolemy's assumption that the eclipse began
half an hour after Sunset is in excellent agreement with the computed time.

a With Newcomb's estimate of 0;25h, the error is +0;14h.

Eclipse No. 3: —719 Sep 1
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Lunar Eclipse-Data Computed Ptolemy A

Sunset (Babylon) 18;27h 1 8 ; 1 0 h
Beginning at Babylon 4;43 ( 4 ; 5 2 ) a ( -0 ;  9)h

5s1" af ter  midnight 4;38 +0; 5
4;50s.h. after midnight 4;27' +0;14

Midpoint at Babylon 5;34 5 ; 5 0 d —0;16
Alexandria 4;36 5 ;  0 —0;24

Magnitude 2.1d 3 . 0 d —0.9d

Eclipse 4. —620 Apr  22 A l m .  v 14: Toomer, 253

5 Nabopolassar: 27/28 Athyr

at the end of the eleventh hour in Babylon, the Moon began to be
eclipsed; the maximum obscuration was one quarter of its diameter
from the south.

This report is notably more precise than those preceding it. Ptolemy takes
5s.h. after midnight as the time of beginning and 6s-h- after midnight (i.e.,
5;50h) as the time of mid-eclipse [cf. Manitius 1912-1913, 307na; Toomer,
253n56].

a As Ptolemy's reduction implies. b  Computed.
c According to Fotheringham's assumption.
d Given 6s-h. accurately computed, mid-eclipse (Babylon)
is at 5;33h and the error is +0;1h.

Eclipse No. 4: —620 Apr 22

Eclipse 5. —522 Jul 16 A l m .  v 14: Toomer, 253

7 Cambyses: 17/18 Phamenoth

one hour before midnight in Babylon, the Moon was eclipsed from
the north half of its diameter.

This is the only eclipse Ptolemy reports which is also mentioned in  an
extant cuneiform text [Strm. Kambys. 400 rev.]. T h i s  text, which was
published by Kugler [1907-1924, i  71], differs from the general form of
Babylonian astronomical Diaries [cf. Sachs 1948, 271 ff.] and,  as Kugler
remarks [1900, 65], seems to contain both computed and observed data
concerning the Moon and planets. Kugler translates the description of the
eclipse as follows:
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Lunar Eclipse-Data Computed Ptolemy Babylonian A

Sunset (Babylon) 19; 4h
Beginning at Babylon 22;35 22;24h +0;11h

lh before midnight 23; Oh —0;25
Is'''. before midnight 23;11 —0;36

Midpoint at Babylon 23;56
lh before midnight 23; 0 +0;56
1 s'h' before midnight 23;11 +0;45

Midpoint at Alexandria 22;58 22;10 +0;48
Magnitude 6.1d 6.0d ( r -e. 11.0d) +O.ld

Year 7, month IV,  night of  the 14th, 12/3 double hours after the
beginning of the night a lunar eclipse; the whole course is visible;
it was eclipsed from the north more than one half.

According to Professor A. Sachs (private communication), a correct reading
of Kugler's transcription is:

Year 7, month IV, night of the 14th, 12/3 double hours in the night
a 'total' lunar eclipse took place [with only] a little remaining [un-
eclipsed]. The north wind blew.

Eclipse No. 5: —522 Jul 16

Ptolemy assumes that the time which he quotes refers to mid-eclipse,
and in subsequent calculations he takes 'hour' to mean an equinoctial hour.
Fotheringham [1932a, 338] and van der Waerden [1951, 25] draw attention
to the discrepancy between the time stated by Ptolemy and that given
in the Babylonian text, and both offer the explanation that the time was
converted to seasonal hours in Babylon in accordance with a crude scheme
for the length of daylight (or night) based on the ratio 2:1 for the lengths of
the longest and shortest day. By this explanation the time, the unit of time,
and the phase described by Ptolemy are all incorrect. However, the dis-
crepancy between the observed magnitude in the Babylonian text and that
given by Ptolemy (which agrees very well with the computed magnitude)
makes it difficult to draw any secure conclusions from this text alone.

The phase assumed by Ptolemy and the magnitude reported in the Baby-
lonian text are clearly incorrect, while the Babylonian and computed times
for the beginning of the eclipse are in good agreement. Such close agree-
ment may well be fortuitous, since the same text describes another eclipse
(-521 Jan 10) as follows (translated by A. Sachs):
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Lunar Eclipse-Data Computed Babylonian A

Sunrise (Babylon) 7; 1h
Beginning (Babylon)
Magnitude

3; 2  2 ;  1"
22.1d T o t a l

+1; 1h

Lunar Eclipse-Data Computed Ptolemy A

Sunset (Babylon) 17;11h (17;15h) ( -0 ;  7h)
Beginning (Babylon) 23;35 2 3 ; 3 1 a +0; 4
Midpoint at Babylon 24;23 2 3 ; 3 5 " +0;486

Alexandria 23;25 2 2 ; 4 5 +0;40
Magnitude 2.1d 3 . 0 d —0.9d

Month X, night of the 14th, 21/2 double hours of the night remaining
to dawn, a total lunar eclipse took place. Dur ing i t  the south and
the north wind blew.

From P. V.  Neugebauer [1934] we find, with the corrections from appendix
2 (below):

All in all the Babylonian text raises more problems than i t  solves. We
may conclude only that Ptolemy's description of the magnitude and the
Babylonian time of beginning agree with modern theory, and that the time
Ptolemy uses in his computation is badly in error.

Eclipse 6. —501 Nov 19/20 A l m .  iv 9: Toomer, 208

20 Darius I: 28/29 Epiphi

The eclipse, which Hipparchus also used, occurred ... when 61/3
equinoctial hours of the night had passed. A t  this [time] the Moon
was obscured from the south one quarter of its diameter.

As in eclipse no. 5, Ptolemy assumes that the time refers to mid-eclipse.
Here too the errors strongly favor the assumption of a mistaken phase.

a Assuming a mistake in Ptolemy's interpretation of
the phase, and 6;20h after actual.

The time given is Ptolemy's datum: 6;20h from. ac-
tual sunset equals 23;31h. The error is thus 0;52h.

Eclipse No. 6: —501 Nov 19/20
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Lunar Eclipse-Data Computed Ptolemy A

Sunset (Babylon) 18;30h
Length of seasonal hour 0;55
Beginning (Babylon) 22;20
Midpoint at Babylon 22;59 2 3 ; 3 0 h  a —0;31h a

Alexandria 22; 1 2 2 ; 4 0 —0;30"
Magnitude 1.7d 2 . 0 d —0.3d

Eclipse 7. —490 Apr 25 A l m .  iv 9: Toomer, 206

31 Darius I: 3/4 Tybi

at the middle of the sixth hour. I t  is reported that at this eclipse
the Moon was obscured 2 digits from the south.

Ptolemy again assumes that mid-eclipse is meant, and takes half an hour
before midnight as his datum. The only assumption that would reconcile
this report w i th  the computed times is the unlikely one that the times
refer to  the end o f  the eclipse, i n  which case the error would be +0;81'.-
In describing this eclipse (but not eclipse nos. 5 or 6) Ptolemy seems to
indicate that the report explicitly gives the time of maximum phase, so we
should probably accept this phase.

a 23;32h using 5;30s-h. accurately computed; the error
is —0;33h.

Eclipse No. 7: —490 Apr 25

Eclipse 8. —382 Dec 23 A l m .  iv 11: Toomer, 211-212

Archonship of Phanostratos: Month of Poseidon

a small section of the disk of the Moon was eclipsed from the [north-
east], when half an hour of night was remaining. He (Hipparchus)
adds that i t  was still eclipsed when it set.

This is the first o f  three eclipses which Ptolemy notes that Hipparchus
selected from those 'brought over from Babylon and [which] were observed
there'. T h e  fact that these eclipses are dated according to the Athenian
calendar [cf. Toomer, 211n63], and the further difficulty that this eclipse
would have been difficult i f  not impossible to observe in Babylon, led Op-
polzer [1881, 32] to assume that all three were observed in Athens and the
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times erroneously reduced to Babylon. Van der Waerden [1958] discusses
this question and shows that there is no evidence to support Oppolzer's
improbable assumption. Nevill [1906, 2] assumes that only the first was
observed in Athens, which makes even less sense. I t  seems reasonable to
conclude that the eclipses were known to astronomers in Athens, which
suggests that at least these three eclipses were known in Greece before
Alexander the Great.

Ptolemy assumes that the eclipse began 51/29'1• after midnight and that
the duration could have been no greater than 1;30h.

Several early investigators' considered this eclipse to be the most critical
of those reported by Ptolemy for determining the secular acceleration of
the Moon, since a substantially larger acceleration is required to make it at
all visible at Babylon.13

Newcomb [1878,43], in discussing a correction to Hansen's acceleration
similar to that deduced above, comments that

The question whether eclipse no. (8) was really seen is a very serious
one.... the serious point is not simply that no. (8) gives a negative
result, for this might arise from accidental errors of observation, but
that a positive correction to the time will render the eclipse abso-
lutely invisible at Babylon. In fact, the account says that there was a
small eclipse (not simply that the eclipse was beginning) half an hour
before Sunrise. At  this time however, the twilight would have been
so bright, and the altitude of the Moon so low, that the eclipse could
not be seen for a number of minutes after its commencement....

We have therefore this dilemma: either there is a mistake about
the eclipse of —382, December 23, having really been observed at
Babylon, or the seventeen good observations of phases cited by
Ptolemy are systematically in error by nearly half an hour. I  can-
not hesitate to accept the former as the most probable alternative.
The occurrence of the eclipse being expected, i t  is quite possible
that observers may have thought they saw the Moon eclipsed in
the increasing daylight when there was really no eclipse; or, under

12 E.g., Dunthorne [1749, 169] and Lalande [1757, 429]. The year of this eclipse
according to Dunthorne is misprinted as 313 BC. Lalande fails to notice this error.
Bernoulli [1773, 183] and Lagrange [1773, 50] give the correct date. Dunthorne's
error is merely a misprint, as may be seen from his computations.
13 P. V. Neugebauer [1934] also makes it questionable whether this eclipse was
visible at Babylon. For it to have begun half an hour before sunrise at Babylon
would require a correction to Schoch's acceleration of the Moon's mean elongation
(1900) of +3"T2.
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Lunar Eclipse-Data Computed Pto lemy A

Sunrise (Babylon) 7;  4 h  a 7;12h —0; 8h
Beginning (Babylon) 7;18 6;36 +0;42
Beginning assuming

0;30 s ' h • f rom computed Sunrise 6;28 +0;50
0;30h f rom computed Sunrise 6;34 +0;44

Midpoint at Babylon 8;12 6;30 +0;52
Alexandria 7;14 6;30 +0;44

Magnitude 3.0d F:-% 2.0d

the unfavorable circumstances they may have been deceived by a
dark region of the lunar disk being near the Moon's l imb... .  On the
whole, I think that this eclipse should be rejected, since, if we regard
it as a real observation, the results from the other eclipses must be
regarded as all wrong.

a Apparent Moonset at 7;5h.

Eclipse No. 8: —382 Dec 23

Newcomb's argument fairly states the difficulties with this eclipse. I t  is
also possible that all three anomalous observations were in fact computa-
tions by the Babylonians, perhaps misinterpreted in transmission.'

Eclipse 9. —381 Jul 8 A l m .  iv 11: Toomer, 212

Archonship of Phanostratos: Month of Skirophorion

[the Moon] was eclipsed from the [northeast] when the first hour was
well advanced.... And since the duration of the whole eclipse was
reported as three hours, ...

Ptolemy assumes that the eclipse began half a seasonal hour (0;24h) after
Sunset. There is some uncertainty among translators as to the meaning
of Trpockrihevtas. Newcomb [1878, 38], apparently relying upon Halma's
translation [1813-1816, i  277], cleja passee, gives ' the first hour having

14 See Aaboe and Sachs [1969, 19-20] for examples of calculated times of  so-
lar eclipses for —474 to —456, none of which were observed. These calculations
apparently antedate (and in any case do not reflect) the procedures of the fully
developed Babylonian lunar theory, and are subject to errors of several hours.
Nevertheless, they suggest the opportunities for misinterpretation of 'observa-
tional' reports.
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Lunar Eclipse-Data Computed Ptolemy A
Sunset (Babylon) 19; 511 (19;12h) (-0; 7h)
Beginning (Babylon) 22; 3 1 9 ; 3 6 +0;27
Beginning assuming

0;505'h' f rom computed Sunset 19;46 +0;17
Duration 2;42 3 ;  0 —0;18
Midpoint (Alexandria) 20;26 2 0 ; 1 5 +0;11
Magnitude 5.9d

passed'. Toomer, Manitius [1912-1913, 248], and Ptolemy, however, take
the report to mean that the first hour had not passed. I  shall assume
0;50s.h• as the time indicated by the report. Since the actual time from
Sunrise to beginning was Re, 0;58" or 1;12s.h-, better agreement would result
from assuming either that the time should have been understood to mean
equinoctial hours or that Halma's interpretation is correct.

Eclipse No. 9: —381 Jun 18

Eclipse 10. —381 Dec 12 Alm. iv 11: Toomer, 213

Archonship of Euandros, Month of Poseidon

[the Moon] was totally eclipsed, beginning from the [northeast], after
four hours had past.

It should be noted that Ptolemy here speaks of cardinal rather than ordinal
hours, which he generally uses when he mentions seasonal hours. Manitius
again translates the time as 'late in the fourth hour', as in the case of eclipse
no. 9, but (as noted by Toomer, 213n68), TrapariXvOuL6v seems to indicate
that 4 hours had gone by. Ptolemy understands 31/2'h- after Sunset as
the time of beginning, which is consistent with his 4;12 equinoctial hours
(accurately, 4;71). Thus, we are invited to assume that in this case the time
is given in equinoctial hours. Alternatively, i f  we assume that 4s•1' were
meant, the time should be closer to 4;42" after Sunset. Ptolemy estimates
the duration to have been 4 hours.

The errors offer no basis for choosing between the alternative systems
for reckoning time. T h e  extreme alternatives, i.e., '4 equinoctial hours
having passed' (LS, =  0;33") and 'the fourth seasonal hour having past'
(A = —0;9h), both give results within the plausible limits of error. At best,
all we can say of eclipses nos. 9 and 10 is that the underlying observation
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Lunar Eclipse-Data Computed P to lemy A

Sunset (Babylon) 16;57" 1 6 ; 4 8 h —0; 9h
Beginning (Babylon) 21;30 2 1 ;  0 +0;30
Beginning assuming

4; Oh after computed Sunset 20;57 +0;33
3;308'h' af ter  computed Sunset (Ptolemy) 21; 4 +0;26
4; 08'h '  af ter  computed Sunset 21;39 —0; 9

Duration 3;30 4 ;  0 —0;30
Midpoint (Alexandria) 22;17 2 2 ; 1 0 +0; 7
Magnitude 18.2d T o t a l

Lunar Eclipse-Data Computed P to lemy A

Sunset (Alexandria) 18; 6"  1 8 ;  Oh (+0; 61)
Moonrise 18; 2
Beginning (Alexandria) 17;42 1 7 ; 3 0 a +0;12

from computed Moonrise 17;32' +0;10
Midpoint (Alexandria) 19;12 1 9 ;  0 +0;12
End (Alexandria) 20;42 2 0 ; 3 6 +0; 6
Duration 3; 0  3 ;  4 —0; 4
Magnitude 8.5d

(or computation) could have been quite accurate, but the ambiguity of the
reported time imparts an uncertainty of roughly ±2011 to the report.

Eclipse No. 10: —381 Dec 12

Eclipse 11. —200 Sep 22 Alm. iv 11: Toomer, 214

54 Callipic Period II: 16 Mesore

the Moon began to be obscured half an hour before i t  rose and its
full light was restored in the middle of the third hour.

Both the time reported for the observed phase (end) and the estimated (or
computed?) duration agree extremely well with the computation.

a Estimated value.

Eclipse No. 11: —200 Sep 22
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Lunar Eclipse-Data Computed P to lemy A

Sunset (Alexandria) 17;57h 1 8 ;  Oh
Beginning (Alexandria)

Mar  19 23; 1 2 3 ; 2 0 —0; 9h
from computed Sunrise, Mar  20 23;17 —0; 6

Midpoint (Alexandria) Mar 20 0;59 1 ; 2 0 —0;21
Magnitude 16.0d T o t a l

Lunar Eclipse-Data Computed P t o l e m y 0

Sunset (Alexandria) 18;17h (18;15h)
Beginning (Alexandria) 0;41 0 ; 4 0 +0; i h
Beginning 6;40s'h' af ter

computed Sunset 0;38 +0; 3
Midpoint (Alexandria) 2;32 2 ; 1 5 +0;17
Duration 3;42 3 ; 1 2 +0;30
Magnitude 19.3d T o t a l

Eclipse 12. —199 Mar 19/20 A l m .  iv 11: Toomer, 214

54 Callipic Period II: 9 Mechir

[the eclipse] began when 51/3 hours of the night had passed, and
was total.

Ptolemy assumes the duration to be 4 equinoctial hours,and his subse-
quent computation confirms that here TrpocX0oucr6U) must mean 'had passed'.
Again, the reported and computed times agree very closely.

Eclipse No. 12: —199 Mar 19/20

Eclipse 13. —199 Sep 12 Alm. iv 11: Toomer, 215

55 Callipic Period II: 5 Mesore

[the eclipse] began when 62/3 hours of  the night had passed, and
was total.

Ptolemy accepts 3;205.h. as the duration, a figure which he ascribes to Hip-
parchus. The principal error seems to have been in the reported duration.

Eclipse No. 13: —199 Sep 12
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Between
Eclipse

Numbers
Days

Ptolemy
with

Equation of Time

Ptolemy
without

Equation of Time
Hipparchus

Ptolemy — Hipparchus
without

Equation of Time

8 and 9 177 13;35h 13;45h 13;45h 0; Oh
9 10 177 2; 0 1;55 1;40 +0;15

11 12 178 6;50 6;20 6; 0 +0;20
12 13 176 0;24 0;5[5] 1;20 —0;25

In his reductions of nos. 8-13, Ptolemy compares his time-intervals be-
tween successive pairs of eclipses with those used by Hipparchus. Ptolemy's
and Hipparchus' values for these intervals are taken without his correction
for the equation of time. I f  the latter is included, all four intervals differ,
and the amount of the difference is increased in each case. (Thus, i t  ap-
pears that Hipparchus did not apply a correction for the equation of time
in his reduction of these eclipses.) See Table 3.2 for the intervals found
by Ptolemy and Hipparchus.

I can f ind no  consistent explanation o f  these differences. F r o m  the
agreement between Ptolemy's and Hipparchus' values for the interval from
eclipses nos. 8 to 9, it seems that Hipparchus also assumed that no. 9 began
0;30s.h- after sunset. Ptolemy does not state what duration Hipparchus as-
sumed for eclipse no. 10. Thus, the discrepancy in the interval from no. 9 to
no. 10 could be due to Hipparchus' having assumed 3;30h for the duration
of no. 10 instead of 4;0h as Ptolemy assumes.

Unfortunately, no such assumption will mitigate the discrepancies found
for the last two pairs. Not only are the times of these eclipses reported with
greater precision than times for the three earlier eclipses, but the duration
is stated for each except no. 12. Thus, i f  the discrepancy in the interval
between nos. 11 and 12 is attributed to different estimates of the duration
of no. 12, the discrepancy in the time of eclipse no. 13 becomes 0;551! O n
the whole, it seems most likely that, as Ptolemy suggests, the discrepancies
are due to errors in Hipparchus' reduction of the observations.

Whatever the case, these intervals offer no secure information beyond
that given in the reports themselves and in Ptolemy's reduction of them,
for they evidently depend on computations by Hipparchus.

Table 3.2
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Lunar Eclipse-Data Computed Ptolemy A

Sunset (Alexandria) 18;36" (18;24h) (+0;12")
Beginning (Alexandria)

(A) 0;39 0 ; 5 4 —0;15
(B) 1; 3 —2; 4

End (Alexandria)
(A) 3;15 3 ; 3 6 —0;21
(B) 3;27 —0;12

Duration (Alexandria)
(A) 2;36 2 ; 4 2 —0; 6
(B) 2;24 +0;12

Midpoint (Alexandria) 1;57 2 ; 2 0 —0;23
Magnitude 7.4d 7 . 0 d +0.4d

Eclipse 14. —173 May 1 A l m .  vi 5: Toomer, 283

7 Philometor: 27/28 Phamenoth

from the beginning of the eighth hour to the end of the tenth in
Alexandria, there was an eclipse of the Moon which reached a maxi-
mum obscuration of 7 digits from the north.

Ptolemy computes the midpoint of the eclipse as 2;20 equinoctial hours
after midnight (ls•h• =  0;54h). I n  the following comparison, I  alternately
assume, (A)  that the times refer to the beginning and end of the stated
hours (accurately computed), and (B) that the times refer to the middle of
the first and last third of these hours. Assumptions (A) and (B) lead to
durations respectively greater and less than the computed duration. Since
the mean error of the two phases is the same in either case, the agreement
is not improved by assumption (B).

Eclipse No. 14: —173 May 1

Eclipse 15. —140 May 1 Alm. vi 5.: Toomer, 284

37 Callipic Period III: 2/3 Tybi

At the beginning of the fifth hour [of night] in Rhodes, the Moon
began to be eclipsed; the maximum obscuration was 3 digits from
the south.
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Lunar Eclipse-Data Computed Ptolemy A

Sunset (Rhodes) 17;13h ( 1 7 ;  Oh) (+0;13")
Beginning (Rhodes) 20;57 2 1 ; 4 0 —0;43
Beginning 4;0°1' after

computed Sunset 21;44 —0;47
Midpoint (Rhodes) 21;48 2 2 ; 1 0 —0;22
Magnitude 2.8d 3 . 0 d —0.2d

Ptolemy assumes that the eclipse began 2s.11- (2;20h) before midnight (half
the night at  Rhodes =  7;0h), bu t  in  computing the eclipse-midpoint he
takes the duration to have been only 1;0h 15

Several previous investigators have remarked upon the substantial error
in the time reported for the beginning of this eclipse," and Zech [1851, 19]
has assumed that there is an error of one hour either in the time reported
or in the phase ascribed to the observed time. Ptolemy too probably had
difficulty with this eclipse, since he obtains exact agreement with his tables
only by assuming that the duration was half as great as his tables give. On
the assumption that the stated time should have referred to the eclipse-
midpoint, the error becomes only +0;111. I f  we assume that the hour stated
is incorrect, the resulting error is +0;20h.

Eclipse No. 15: —140 May 1

Eclipse 16. +125 Apr 5 Alm. iv 9: Toomer, 206

9 Hadrian: 17/18 Pachon

the second eclipse... [was] observed in Alexandria... 33/5 equinoc-
tial hours before midnight. A t  this eclipse too the Moon was ob-
scured 1/6 th of its diameter from the south.

Ptolemy assumes that the time refers to the midpoint of the eclipse. The
comparison with the computed times gives somewhat better agreement, on
the assumption that the time refers to its beginning; but the difference is
insufficient to conclude that Ptolemy misinterpreted the report. There is
no direct evidence that Ptolemy himself observed this eclipse, and Toomer
[206n54] conjectures that i t  was observed by Theon who gave Ptolemy

15 Manitius [1912, i 450n44] finds the half-duration to be 0;5811 from Ptolemy's
tables. See also Toomer, 284n23.
16 Cf. Fotheringham's summary in 1920, 379.
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Lunar Eclipse-Data Computed Ptolemy A

Beginning (Alexandria) 20; 7h 2 0 ; 2 4 h  a —0;17h
Midpoint (Alexandria) 20;53 2 0 ; 2 4 +0;29
Magnitude 1.8d 2 . 0 d —0.2d

Lunar Eclipse-Data Computed Ptolemy A
Beginning (Alexandria) 21;19"
Midpoint (Alexandria)
Magnitude

20; 5 23;15h
Re. 12.9d T o t a l

—0;10h

MODELS A N D  PRECISION

some planetary observations. In view of the frequency of errors in reducing
observed times to eclipse-midpoint, it is possible that as much as half of
this error arose from this source.

a Assuming that the time stated is for the beginning
of the phase.

Eclipse No. 16: +125 Apr 5

Eclipse 17. +133 May 6 Alm. iv 6: Toomer, 198

17 Hadrian: 20/21 Payni

from those very carefully observed by us in Alexandria.... We com-
puted the exact time of mid-eclipse as 3/4 of an equinoctial hour
before midnight. I t  was total.

Eclipse No. 17: +133 May 6

Eclipse 18. +134 Oct 20 Alm. iv 6: Toomer, 198

19 Hadrian: 2/3 Choiak

We computed that mid-eclipse occurred 1 equinoctial hour before
midnight. [The Moon] was eclipsed 5/6 of its diameter from the
north.'

17 Newcomb [1878, 40] misreading Halma's somewhat obscure translation [1813-
1816, i 255] gives the magnitude 'one third of its diameter'. Cowell [1906, 527]
repeated Newcomb's error; Fotheringham [1909, 666] noticed and corrected it.
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Lunar Eclipse-Data Computed Ptolemy A

Beginning (Alexandria) 21;3111
Midpoint (Alexandria) 23; 5  2 3 ;  0h +0; 5h
Magnitude 10.1d 1 0 . 0 d +0.1d

Lunar Eclipse-Data Computed Ptolemy A

Beginning (Alexandria) 2; 811
Midpoint (Alexandria) 3;29 4 ;  Oh —0;31"
Magnitude 5.5d 6 . 0 d —0.5d

Eclipse No. 18: +134 Oct 20

Eclipse 19. +136 Mar 6 Alm. iv 6: Toomer, 198

20 Hadrian: 19/20 Pharmuthi

We computed that mid-eclipse occurred 4 equinoctial hours after
midnight. [The Moon] was eclipsed half its diameter from the north.

Eclipse No. 19: +136 Mar 6

The error of half an hour in Ptolemy's time is the largest found among the
Alexandrian eclipses.

Errors in the eclipse-observations and data

Errors in observed eclipse-times and phases. The ambiguity of some of the
times reported for the earlier eclipses, the probability that some of  the
times and phases are mis-stated, and the opportunities for misinterpreting
some of Ptolemy's reports of these eclipses make any estimate of the general
accuracy of these observations somewhat uncertain. Nevertheless, since the
times of fourteen of the twenty-one recorded phases are reasonably secure,
an estimate of their general accuracy is possible.

In comparing the errors of different groups of  observations, I  have as-
sumed that times reported in seasonal hours were appropriately reduced
from the original data of the observations, and thus that these were not
merely mistaken for equinoctial hours. This is clearly the case for the early
Alexandrian observations, for otherwise the errors in eclipses nos. 12, 13,
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and 14 are significantly increased. F o r  the Babylonian observations the
evidence is less conclusive. The  errors of eclipses nos. 1, 3, and 9 are not
significantly different under either assumption, while the errors of nos. 4,
7, and 10 are increased by assuming that equinoctial hours were meant.
Thus, i t  seems best to  assume that the observed data were converted to
seasonal hours at some point in their transmission to Ptolemy.

In the few cases (eclipses nos. 4, 14, and 15) where a phase is said to have
been observed at the beginning or end of an hour, I have assumed that the
exact beginning or end of the hour was meant. Fotheringham's assumption
that such times refer to the middle of the first or last third of the hour re-
sults in generally larger errors, and unnecessarily add another uncertainty.

To estimate the general accuracy of the observations i t  is convenient to
divide them into two groups: ( A )  those for which the reported times are
unambiguously stated and where an error in the phase or in the reported
hour seems precluded, and (B) the remaining observations. I  have included
eclipse no. 5 in the first group on the evidence of the Babylonian report.

Table 3.3 shows the errors of both groups. Column 1 contains the errors
of the unambiguous observations in group A.  For the uncertain eclipse-
observations in  group B, column 2 gives the errors from what seems the
most plausible interpretation of the report, and column 3 records the er-
rors derived from Ptolemy's interpretations of the reported times. Finally,
column 4 shows the errors which arise from less likely but st i l l  possible
interpretations of the reports.

Using the average of the errors of the two phases reported for eclipses
nos. 11 and 14, the times reported for the more certain observations (A)
show a mean error of  —0;3.4h ±  0;3.5h (epoch =  —285), which may be
considered negligible. T h i s  error could be eliminated by a further small
reduction in the secular acceleration of the Moon's mean elongation," b u t
it also virtually disappears (-0;0.9") if the data from column 2 are included
in the average. Furthermore, the positive and negative errors in the twelve
relatively secure times (A) are evenly distributed (6-6), and the apparent
systematic error arises almost entirely from eclipses nos. 7, 14, and 19. On
the average, therefore, the secure Ptolemaic eclipse-times agree well with
the accelerations which I  have adopted; and only eclipse no. 8 is clearly
incompatible with these accelerations.

Excluding no. 8, the errors in the remaining uncertain observations nos.
1, 3, 6, 19, 10, and 15 can all be brought to within ±0;20h by  different
assumptions of varying plausibility. I n  nos. 1 and 3, the time is specified
only by noting that the eclipse began after some event (the passage of an

18 The correction would be —0.23"T2. Cf. Newcomb 1912, 205-206.
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No. Date P l a c e
A B

1 2 3 4

1 —720 Mar 19 B a b y l o n + 0 ; 4 5 h  a + 0 ; 1 5 h  b

2 —719 Mar 8 B a b y l o n —0; 4h
3 —719 Sep 1 B a b y l o n +0; 9h —0; 9
4 —620 Apr 22 B a b y l o n +0; 5
5 —522 Jul 16 B a b y l o n +0;11' +0;45
6 —501 Nov 19/20 Babylon +0; 4d +0;52
7 —490 Apr 25 B a b y l o n —0;33 +0; 8d
8 —382 Dec 23 B a b y l o n +0;50
9 —381 Jun 18 B a b y l o n +0;17 +0;34

10 —381 Dec 12 B a b y l o n —0; 9 +0;26
11a —200 Sep 22 A l e x a n d r i a +0;10
l l b —200 Sep 22 A l e x a n d r i a +0; 6
12 —199 Mar 20 A l e x a n d r i a —0; 6
13 —199 Sep 12 A l e x a n d r i a +0; 3
14a —173 May 1 A l e x a n d r i a —0;15
14b —173 May 1 A l e x a n d r i a —0;21
15 —140 Jan 27 R h o d e s —0;48 ld{+0 ;

+0;20'
16 +125 Apr 5 A l e x a n d r i a +0;29
17 +133 May 6 A l e x a n d r i a —0;10
18 +134 Oct 20 A l e x a n d r i a —0; 5
19 +136 Mar 6 A l e x a n d r i a —0;31

73

a

b

A. Observations Secure in Reported Time and Phase
1 E r r o r s  in Times

B. Uncer ta in  Observations
2 E r r o r s  in Most Plausible Times
3 E r r o r s  in Ptolemy's Interpretation of Times
4 E r r o r s  in Possible Alternative Interpretations of Report

0;32h from Sunset: 0:45h from Moonrise, assuming 11/2h.
Assuming report meant 1 double hour.
From Babylonian report. d  Assuming error in phase.
Assuming error in stated hour.

Table 3.3. Errors in Observed Eclipse-Times
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Number of
Observations

Probable
Error

Babylonian Eclipses 9 a ± 0 ; 1 2 h

Early Alexandrian Eclipses 6 ±0; 8
Late Alexandrian Eclipses 4 ±0;17

Tot al 19 ±0;10.6

hour or Moonrise). Ptolemy and most modern investigators have assumed
half an hour to be the upper l imit  to the time which could have passed
without being specified. In  eclipse no. 3, the estimate of half an hour after
Sunset agrees very well with the computed time of the phase. I n  eclipse
no. 1, however, more than an hour appears to have elapsed after the passing
of the first hour, so that here we must either loosen this assumption or
postulate a significant error in the reported time. As noted, this error could
have arisen from a misinterpretation of the Babylonian unit corresponding
to two equinoctial hours. The time of eclipse no. 6 seems almost certainly
to be referred to the wrong phase, an assumption strengthened by the
evident error in the reported phase of no. 5. Eclipses nos. 8-10 have been
discussed at length. W i th in  the l imit of the uncertain designation of the
times, the most probable errors for nos. 9 and 10 seem to be +0;17h and
—0;9h respectively. Finally, an error in either the phase or the time of no.
15 would bring the reported time into reasonably good agreement with the
computed time; since both are explicitly stated, however, we must consider
this eclipse an anomaly along with no. 8.

Omitting nos. 8 and 15, and taking the most probable interpretations
of the remaining uncertain eclipses, we find the following probable errors
(i.e., average deviations) for individual observations:

a The average deviation of the four secure Babylonian
observations is ±0;1311

The late Alexandrian observations, at least three of which Ptolemy made
himself, exhibit a slightly larger average error than the Babylonian obser-
vations and nearly twice the error of the early Alexandrian observations.
Taking into account the small number of these observations, the even dis-
tribution of the signs of their errors, and the fact that two of  Ptolemy's
observations agree very closely with the computed times, this difference
does not seem significant. I n  general, we may assume that the probable
error of an observed time of an eclipse-phase was on the order of ±0;11h.

Errors in Ptolemy's data. Numerous errors occur in Ptolemy's reductions
of these eclipse-times and also in his use o f  the observations. These in-
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No. Year
Correction to Ptolemy's Value for

Estimated Error
3

Observed Time
1

Time of Eclipse-Middlea
2

1 —720 +0;25h +0;11h +0;32"
2 —719 —0; 4 —0;12 —0; 4
3 —719 +0; 3 —0;25 +0; 9
4 —620 —0; 9 —0;24 +0; 5
5 —522 +0;56 +0;48 +0;11
6 —501 +0;48 +0;40 +0; 4
7 —490 —0;31 —0;39 —0;33
8 —382 +0;42 +0;44 +0;50
9 —381 +0;27 +0; 9 +0;17

10 —381 +0;30 +0; 7 —0; 9
l l a —200 +0;12 +0;12 +0;10
l l b —200 +0;12 +0; 6
12 —199 —0; 9 —0;21 —0; 6
13 —199 +0; 1 +0;17 +0; 3
14a —173 —0;17 —0;23 —0;15
14b —173 —0;29 —0;21
15 —140 —0;43 —0;22 —0;48
16 +125 +0;29 +0;29 +0;29
17 +133 —0;10 —0;10 —0;10
18 +134 +0; 5 +0; 5 +0; 5
19 +136 —0;31 —0;31 —0;31

dude apparent errors in Ptolemy's interpretation of some eclipse-reports,
errors in converting from seasonal to equinoctial hours, and errors in his
reductions to the meridian of Alexandria.

In Table 3.4, column 1 shows the errors of  Ptolemy's interpretations
of the observed times of these eclipses, and column 2 gives the errors in
the times which he finally adopts for eclipse-midpoint on the meridian of
Alexandria. For comparison, column 3 gives my estimates of  the errors in
the observations from Ptolemy's reports.

a A t  Alexandria.

Table 3.4. Errors in Ptolemy's Interpretations of Eclipse-
Observations and Final Data
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Number of
Observations

Observed Times
(Ptolemy)

Concluded
Data

Babylonian Eclipses 10 +0;18.7h +0; 5.9h
Early Alexandrian Eclipses 7 —0;10.4 —0; 7.4
Late Alexandrian Eclipses 4 —0; 1.8 —0; 1.8

Tot al 21 +0; 5.1 +0; 0.3

Number of
Observations

Observed Times
(Ptolemy)

Concluded
Data

Babylonian Eclipses 10 ±0;19h ±0;21h
Early Alexandrian Eclipses 7 ±0;11 ±0;14
Late Alexandrian Eclipses 4 ±0;17 ±0;17

All Observations 21 ±0;18.6 ±0;17.9

MODELS A N D  PRECISION

The mean systematic errors from columns 1 and 2 are:

Interestingly, Ptolemy's error in the difference in longitude between Alexan-
dria and Babylon' served to reduce the systematic error in his Babylonian
data, and this error was further reduced by errors in his reductions of these
observations.

The probable non-systematic errors in a single datum in each group are:

As might be expected from the uncertainties and inconsistencies of the
reports, the Babylonian observations have the largest errors by Ptolemy's
interpretation. The errors of the early Alexandrian eclipses are again small-
est, although greater than those found for the observations themselves. In
general, we may conclude that the probable non-systematic error of an
eclipse-time used by Ptolemy is roughly +0;18h.

Comparison of eclipse-magnitudes. Table 3.5 shows the computed magni-
tudes of the partial eclipses in column 1, Ptolemy's reported magnitudes in
column 2, and the error in Ptolemy's magnitudes in column 3. In general,
the Babylonian reports overestimate the magnitudes. In these observations
the mean systematic error is nearly 3/4 digit, and the average deviation
roughly 1/2 digit. I n  contrast, the later observations show a negligible
systematic error (P.-2, —0.1d), and an average deviation of 1/4 digit. The
latter agrees well with what we would expect from accurate estimates of
eclipse-magnitudes to the nearest digit.

19 Ptolemy assumes a longitude difference between Alexandria and Babylon of
0;50.h According to P. V. Neugebauer [1929, ii 133] the difference is 0;58.41:



Lunar Observations in the Almagest 7 7

No. Computed Observed A
rument o

A Lagtitude(' f

2 1.5d 3.0d -1.5d 90
3 6.1 > 6.0 NM 187
4 2.1 3.0 -0.9 170
5 6.1 6.0 0.1 352
6 2.1 3.0 -0.9 170
7 1.7 2.0 -0.3 168
8 3.0 SMALL 358

Average: -0.7d ±  0.4d (7 obs.)

14 7.4 7.0 +0.4 187
15 2.8 3.0 -0.2 9
16 1.8 2.0 -0.2 169
18 10.1 10.0 +0.1 185
19 5.5 6.0 -0.5 350

Average: -0.1d ±  0.25d (5 obs.)

a Approximate value: cf. Newcomb 1878, 41.

Table 3.5. Comparison of Eclipse-Magnitudes

OBSERVATIONS OF  OCCULTATIONS

In Alm. vii 3, Ptolemy reports lunar occultations of the Pleiades, Spica, and
Scorpionis, which were observed by Timocharis in Alexandria, Agrippa

in Bithynia, and Menelaus in Rome. For the observed times of the occulta-
tions Ptolemy computes the apparent positions of the Moon and, hence,
the positions of the occulted stars. From these positions he shows that the
latitude of each star remained constant, while the longitude increased at
a rate of 1° per century or 36" per year.

Although Ptolemy does not use these observations to establish his lunar
model," I  have included a discussion of them for several reasons. O n e
is that they illustrate the quality of  some of the older, non-Babylonian,

20 I n  Alm. i v  1 [Toomer, 173] Ptolemy remarks that such observations should
not be used to establish a lunar model, since they require a prior knowledge of
the Moon's parallax. In general, this can only be determined when the variation
of the Moon's distance from the Earth and, hence, the lunar model, is known.
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From Occultations of Total
Precession Interval Annual

Precession

The Pleiades 3;45° 375Y 36.0"
Spica 3;55 391 36.05
Spica 3;45 379 35.6
/3 Sco 3;55 391 36.05

observational material at Ptolemy's disposa1,21 thus providing another in-
dication of the accuracy of time-measurements in antiquity. Furthermore,
the errors which they exhibit and the ambiguity of some of the reports
exemplify some of the problems which Ptolemy must have encountered in
attempting to use such material.

Secondly, these observations illustrate a problem which also arises in
connection wi th Ptolemy's lunar model—namely, that the values of  pre-
cession which Ptolemy finds from these observations are both better and
more consistent than we should expect from random observations of the
same general accuracy. From different pairs of occultations, Ptolemy finds:

Not only do these agree among themselves, but the value of precession, 36"
per year, agrees almost exactly with the value Ptolemy should have found
given the error in his mean motion of the Sun and, hence, of the Moon."
This value is 34.8" per year or 0;58.0° per century, so that the systematic
error in Ptolemy's determinations of each of the longitude-intervals shown
above is only 0;8? Furthermore, these intervals are mutually consistent to
within ±0;2.5°, o r  to within the nearest ± 5  minutes of  time. Since the
errors of both the observations and Ptolemy's lunar model are much larger
than this, i t  is evident that these are not random observations. Thus, we
may also ask how Ptolemy could have achieved such good agreement and
whether he must not have had a considerably larger number of observations
to choose from.

21 Except for the solstice observed by 'the school of Meton and Euctemon' in
—431 [A/m. i i i 1: Toomer, 143], for which no details of the observation are given,
the occultations observed by Timocharis (-294 to —282) are the earliest Greek
observations recorded in the Almagest.
22 Despite the fact that Kepler [1627, 120], Lalande [1766, 467], Laplace [1756,
421], Ideler [1806, 107], Dreyer [1918, 346], and Fotheringham [1915a, 378; 1918,
421] have observed that the error in Ptolemy's star positions and, hence, the
error in his value of precession, is due to the error in his mean motion of the Sun,
it is still common to find references to Ptolemy's 'erroneous value of precession'
which imply that this arose from an independent error in his determinations of the
positions of the stars. See, e.g., Newcomb 1878, 279 and Manitius 1912, ii 399n3.
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Occultation
Number

Correction to Mean
Lunar Longitude

1 +0; 6.6°
2 +0; 6.6
3 +0; 6.5
4 +0; 6.5
5 +0; 5.3
6 +0; 5.3
7 +0; 5.3

Finally, these observations have significantly influenced modern determi-
nations of  the Moon's secular acceleration. A l l  of  the occultations were
first discussed by Schjellerup [1881], who showed that several of the times
and phases Ptolemy describes disagree significantly with those computed
from Hansen's tables. Later, Fotheringham [1915a, 1923] reinvestigated the
circumstances of each occultation to determine the Moon's sidereal acceler-
ation. A f t e r  weighting the observations according to his estimates of the
likely sources of error in each, he concluded that the occultations were best
represented by a lunar acceleration of (10.3" ±  0.74")T2. 23 Finally, Schoch
[1926] derived his value for the Moon's acceleration (11.09"T2) from one of
these observations, —282 Nov 8, and from this recomputed the errors in
the times which Ptolemy reports.

Each of these previous studies points out large discrepancies between the
observed and computed circumstances of several of the occultations, regard-
less of the value assumed for the Moon's acceleration. The discussion which
follows, therefore, reiterates some of the findings of these previous investiga-
tions. I t  seemed desirable, however, to reduce the results of Fotheringham
and Schoch to a consistent basis and to show that the elements derived
in appendix 1 produce a satisfactory distribution of errors.

In the following discussion I draw on Fotheringham's investigation [1915a,
1923] for the positions of the stars at the times of the observations and for
provisional positions of the Moon [see Fotheringham 1915a, 384-385; 1923,
370-371]. I  then corrrect Fotheringham's computed apparent longitudes of
the Moon to bring these into agreement with my elements,' and  also to

[1915a, 395] was 10.8"T2. Subsequently
comparison of occultation no. 7, which

23 Fotheringham's initial determination
[1923, 370], he discovered an error in his
yielded a revised acceleration of 10.3"71
24 To  reduce Fotheringham's computed
have applied the correction, A L  =  5.8"
each observation, the correction is:

longitudes to the adopted elements, I
+ 11.9"T + 1.6"T2 (epoch 1900). For
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Occultation
Number

Correction to
Observed Times

Correction to
Computed Longitude

1 0' 0; 0°
2 —11 —0; 4.7
3 +11 +0; 4.5
4 0 0; 0
5 —15 —0; 6.7
6a 0 0; 0
6b +13 +0; 5.4
7 +13 0; 6.2

compensate for Fotheringham's assumption that dipag cipxo0vris and etipas
Xrryolorig refer to the middle of the first and last thirds of the designated
hour." The results shown, therefore, are the apparent positions of the
Moon at the exact beginning or end of the hours reported by Ptolemy (ex-
cept in the case of —282 Nov 8 where the time is reported more precisely).
Since in computing the positions of the Moon Fotheringham includes only
terms with coefficients greater than 0;3° the resulting longitudes are un-
certain by roughly this amount. Finally, for each observation I include a
diagram showing the computed apparent position of the Moon and the di-
rection of its motion at the indicated time and also the position of the Moon
relative to the star(s) which Ptolemy assumes in reducing the observation.

Occultation 1. —294 Dec 21 Alexandria A l m .  vii 3; Toomer, 337

36 Callipic Period I: 25 Poseidon

Timocharis, who observed at Alexandria, says that ... at the [very]
beginning of the tenth hour, the Moon appeared to occult [reach]
the northernmost (8) of the stars in the forehead of Scorpius very
precisely with its northerm rim.

25 The corrections to Fotheringham's interpretations of the observed times and
the corresponding corrections to his computed longitudes are:

Except for no. 5, where a small additional correction is made for the longitude of
Bithynia, these are corrections to the beginning or end of a seasonal hour, where
Fotheringham has used the first or last third of the hour. The differences between
the times given by Schjellerup [1881] and Fotheringham [1915a] are due mainly
to this assumption by Fotheringham, and to the fact that Schjellerup's times are
computed from true rather than apparent sunset.
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Occultation-Data Computed P t o l e m y

Apparent Time (Alexandria)
Longitude of Q Sco
Apparent Lunar Longitude
Difference in Longitude
Latitude of S c o
Apparent Lunar Latitude
Moon's Semi-Diametera
Apparent Lunar Velocity

in Longitudeb
Correction to Observed Time

3;30h 3 ; 2 4 "
211; 9.2° 212; 0°
210;32.6 2 1 2 ;  0

0;46.6 0 ;  0
+1;17.9 + 1 ; 2 0
+0;53.8 + 1 ;  5

0;14.9

0.425'
+1;50h

+1;30°

+1;15°

+1; 0°

i3 +0;45°

+0;30°

Fotheringham 1915a, 383.
b Schjellerup 1881, 225. 0 ; 1 °  per min.

13 Sco

211;30° 2 1 1 ; 0 °
I I

210;30° 2 1 0 ; 0 °
X

Occultation No. 1: —294 Dec 21
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The report does not state that Scorpionis was actually occulted, and the
computation indicates that the upper rim of the Moon passed /3 Sco 0;10°
to the south. The longitude of the Moon's center (or cusp) was 3/4° less
than that of the star at the stated time. A n  error in the reported hour
seems likely.'

Occultation 2.-293 Mar 9 Alexandria A l m .  vii 3: Toomer, 335

36 Callipic Period I: 15 Elaphebolion

Timocharis, who observed at Alexandria, records that ... at the be-
ginning of the third hour, the Moon covered Spica with the middle of
the [eastern] edge of its disk, ... and that Spica in passing through,
cut off exactly the northern third of its diameter.

Fotheringham allows 0; 3° for the distance from the Moon's illuminated
disk at which a star of the first magnitude would still be visible. I  accept
this value.

The occultation occurred just at the middle of the Moon's eastern rim, as
reported, but Spica passed almost through the center of the Moon, rather
than two digits to the north. As in occultation no. 1, the Moon had not yet
reached the star at the reported time, the error being very nearly one hour.

Occultation 3. —282 Jan 29 Alexandria A l m .  vii 3: Toomer, 334

47 Callipic Period I: 8 Anthesterion

Timocharis, who observed at Alexandria, records the following.... to-
wards the end of the third hour, the southern half of the Moon was
seen to cover exactly either the rearmost [eastern] third or half of
the Pleiades.

There is considerable uncertainty about Ptolemy's account of the Pleiades
and complete disagreement between the identifications by Manitius [1912, i

26 Ptolemy gives the time as 6pas L' apxokrris du(pLii6s and computes the position of
the Moon for this time. Thus, any error in the reported time of the observation
must have antedated Ptolemy. The simplest explanation is that the original
report gave 6pas• La' or eLpas L13' indicating the beginning of the 11th or 12th
seasonal hour, and that the a or was lost through a scribal error during the four
centuries between Timocharis and Ptolemy. At the beginning of the 12th seasonal
hour, the apparent center of the Moon was 0;11° beyond /3 Sco, equivalent to an
error of ±26 minutes.



Lunar Observations in the Almagest 8 3

Occultation-Data Computed Ptolemy

Apparent Time (Alexandria) 19;52h 20; Oh
Latitude of Spica —1;54.2° —2; 0°
Apparent Lunar Latitude —1;54.8 —2; 0
Longitude of Spica 172; 0.5 172;20
Apparent Lunar Longitude 171;19.1 172; 5
Moon's Semi-Diametera 0;15.0
Arcus visionis 0; 3
Difference in Longitude

from Spica to Moon's R im 0;23.4
Apparent Lunar Velocity

in Longitude 0.408'
Correction to Observed Time +0;57h

Fotheringham 1915a, 384.
b Schjellerup 1881, 227. 0 ; 1 °  per min.

—1;15°

—1;30°

—1;45°

p —2; 0 °

—2;15° F

Ptolemy I Modern

Ptolemy II Spica

172;30° 1 7 2 ; 0 °  1 7 1 ; 3 0 °  1 7 1 ; 0 °

x

Occultation No. 2: —293 Mar 9
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Occultation-Data Computed Ptolemy

Apparent Time (Alexandria) 20;38" 20;40h
Apparent Lunar Longitude 28;37.4° 29;20°

Latitude +31;54.5 +3;35
Moon's Semi-Diametera 0;15.8
Apparent Lunar Velocity

in Longitudea 0.4106
23 Tauri  Longitude 27;59.6°

Latitude +3;43.9
n Tauri Longitude 28;17.1

Latitude +3;49.3
27 Tauri  Longitude 28;38.9 29;30

Latitude +3;41.3 3;40
28 Tauri Longitude 28;40.3

Latitude +3;46.1

MODELS A N D  PRECISION

+4;15°

+4; 0°

1 +3;45°

p, +3;30°

+3;15°

a Fotheringham 1915a, 384.

I I I
29;0° 2 8 ; 3 0 °

b 0;1° per min.

I

•
20

23

I
28;0°
X

Occultation No. 3: --282 Jan 29

•19

•  16

•  17

1 1
27;30°
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45] and by Peters and Knobel [1915, 36] of the three stars in the Pleiades
contained in Ptolemy's star catalogue.27 Manitius identifies 'the closest fol-
lowing end of the Pleiades' (the 32nd star in Taurus according to Ptolemy)
with ri Tauri, as does Schjellerup [1881, 229]. Peters and Knobel identify
this star with 27 Tauri, and Toomer follows Peters and Knobel in all three
identifications. To  complicate matters further, in discussing this occulta-
tion and no. 5 [Alm. vii  3: Toomer, 334-335], Ptolemy assigns a latitude
of +3; 40° to 'the rearmost end of the Pleiades' but gives +3;20° as the lat-
itude in his star-catalogue [Alm. vii 5: Toomer, 45]. Although preserved in
all mss. [cf. Peters and Knobel 1915, 190], the catalogue's value is probably
an error.

In reducing this occultation, Ptolemy assumes the rearmost end of the
Pleiades to be 0;10° east and 0;5° north of the center of the Moon, despite
Timocharis' statement that the occulted stars were covered by the south-
ern half of the Moon. Fotheringham [1915a, 388] identifies 'the following
third or half part' with 28, 27, and ri Tauri, and assumes that these three
stars were covered at the time of the observation. Th i s  interpretation is
consistent with Ptolemy's, if 'the rearmost end of the Pleiades' is identified
with 27 Tauri.

At the stated time, 28 and 27 Tauri were covered by the Moon, while
Tauri was just 0;5° west of the Moon's illuminated rim. Since a star of

magnitude 3 would barely be visible at this distance [cf. Schoch 1926, 2]
the reported time very nearly coincides with the apparent emersion of
Tauri. Since the immersion of 27 Tauri occurred nearly 17 minutes earlier,
the limits of the correction to the observed time are 0;0h to —0;17h.

A possible but less likely interpretation of the report, which Schjellerup
assumes [1881, 229], is that 'the following third or half part of the Pleiades'
refers to a n d  23 Tauri, rather. than 27, 28, and ij Tauri. Fo r  23 Tauri
to have been covered, a correction to the observed time of at least —55
minutes is required.

On either assumption the stars are covered by the southern half of the
Moon as reported.

27 I n  addition to identifying Ptolemy's star 32 Tauri with the modern star 77
Tauri, Manitius identifies Ptolemy's stars 30 and 31 Tauri with modern 16 and
17 Tauri, respectively. Peters and Knobel (followed by Toomer) identify the last
two stars with modern 19 and 23 Tauri. In all cases, the identifications proposed
by Peters and Knobel seem more plausible than those proposed by Manitius.
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Occultation 4. —282 Nov 8 A lexandr ia  A l m .  vii 3: Toomer, 336

48 Callipic Period I: 25 Pyanepsion

[Timocharis] says that ... when as much as half an hour of the tenth
hour had gone by, and the Moon had risen above the horizon, Spica
appeared exactly touching the northern point on [the Moon].

The computation shows that the Moon's cusp passed 0;3° to  the south of
Spica, which agrees very closely with Timocharis' description. T h e  time
of the observation has been debated because o f  the difference between
the t ime of  Moonrise and the time reported for conjunction. I n  reiter-
ating Timocharis' description, Ptolemy says only that the Moon had risen
(ewa-reraXiculas) above the horizon. I n  reducing the observation, however,
Ptolemy notes that the stated time must be corrected, since the Moon 'was
rising' (dv-r€XXE). He then assumes that conjunction occurred at Moonrise,
or at 2;30" by his computation. T h e  discrepancy between the two times
was noted by Schoch, who assumes that conjunction occurred half an hour
after Moonrise. Schoch's value for the secular acceleration of the Moon
rests entirely on this assumption.

My computation places conjunction at 3;35h, local apparent time (Alexan-
dria), or 55 minutes after Moonrise. A t  this time the Moon's apparent alti-
tude was 11;50'; whereas half an hour after Moonrise, i t  was 6;33° Either
altitude seems sufficiently small to satisfy the description that the Moon
`was rising', while neither adequately satisfies Ptolemy's assumption (and
Manitius' interpretation) that the Moon was 'just rising'.28 The reference
to Moonrise, therefore, seems to have been less precise than the observed

28 Manitius' translations [1912, vii 3, 25] of  avaTeraXicaas (having risen) and
aveTEXX€ (was rising) by `eben aufgegagen' (having just risen) and `eben aufging'
(was just rising) seem to be derived from Ptolemy's use of exact Moonrise in his
computation, for there is no textual basis for the qualifying adverb. Furthermore,
even if we assume an ambiguity in the text, the alternatives are either to assume
with Ptolemy that conjunction occurred within a few minutes of Moonrise, or
to take the phrase as merely indicating that conjunction occurred sometime after
Moonrise. The first possibility is excluded, because it would require an implausi-
bly high value for the Moon's sidereal acceleration (R.,' 13.0"T2). Thus, we must
conclude that the phrase meant only that the Moon had risen and was not yet
high in the sky. This qualification places only broad limits on the possible time of
the event, since even at the reported time the Moon's altitude was only 15;20°
Thus, Schoch's assumptions that conjunction must have occurred exactly half an
hour after Moonrise, and that this datum is more certain than those from any
other ancient lunar observations, are wholly gratuitous.
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Occultation-Data Computed Ptolemy

Apparent Time (Alexandria) ( 1 ) 3;52h 3;7.30h a

Approximate Time of Moonrise 2;406 2;30

Time of Spica's Rising' 2;42
Spica's Longitude 172; 9.6° 172;30°

Latitude —1;54.2 —2; 0

Apparent Lunar Longitude at (1) 172;18.4 172;30
Latitude —2;13.8 —2;15

Apparent Lunar Velocity
in Longituded 0.530e

Correction to  Observed Time —0;17h

a The text gives 31/8 hours, which is probably erroneous,
since a t  th is t ime 3  v2s.h. v e s t .az =  37/8. A s  Toomer
[337n75] notes, this could have resulted from calculating
the length o f  daytime instead o f  the nighttime seasonal
hours.

From Schoch 1926, 2, corrected to  apparent time.
Schjellerup 1881, 230.

d Fotheringham 1915a, 384. e  0;1° per min.

—1;45°

—2; 0 °

—2;15°

13 —2;30°

—2;45°

Ptolemy

Modem

173;0° 1 7 2 ; 3 0 °  1 7 2 ; 0 °

x

Occultat ion No. 4: —282 Nov 8

171;30°
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Correction to
Observed Time

Apparent emersion (19, 20 Tau)
Immersion (20 Tau)

0; 0h ±  0; 4 "
—0;51h ±  0; 4 "

time, which agrees reasonably well with the computed time of conjunction.
The time which Ptolemy assumes for conjunction is badly in error.

Occultation 5. +92 Nov 29 B i t h y n i a  A l m .  vii  3: Toomer, 334

12 Domitian: 7  Metroos

Agrippa, who observed in Bithynia, records that ... at the begin-
ning of the third hour of the night, the Moon occulted the rearmost
[eastern], southern part of the Pleiades' with its southern horn.

None of the southeastern stars in the Pleiades (27, 28, ri) were occulted
and the Moon's r im passed more than 0; 20° north of ri Tauri, the closest
of these stars. Even Ptolemy finds that no occultation occurred, and he
places the 'rearmost end of the Pleiades' 0; 5° south of the Moon's southern
rim. Since the Moon did occult 19 and 20 Tauri, Fotheringham [915a, 388]
assumes that Agrippa meant the northwest instead of the southeast part of
the Pleiades. Although this is the simplest explanation, Ptolemy's explicit
statement t o  the contrary should disqualify the observation from being
considered in determining the Moon's acceleration.

The computed place of the Moon is uncertain by :---- ±0;2° due to the
uncertain location of Bithynia. Ptolemy assumes that Bithynia is 20 min-
utes east of Alexandria, but this is impossible, since the entire province of
Bithynia does not extend this far east [cf. Shepherd 1921, 20, 43]. Fother-
ingham [1915a, 381] seems to identify Bithynia with Nicea (1;59" E; 40;30°
N), while Schjellerup [1881, 231] assumes that the observation was made
at Nicomedia (2;Oh E; 40;48° N). Another possible location is the city of
Bithynium, later called Claudiopolis [Shepherd 1921, 20], whose longitude
is 2;7h east of Greenwich and whose latitude is 40;42° N [P. V. Neugebauer
1929, i i  133]. I  have assumed a longitude half way between Nicea and
Bithynium, with a probable error of ±4 minutes.

At the time shown 19 and 20 Tauri were respectively 0;5° and 0;6° from
the Moon's illuminated rim, and thus were just becoming visible [cf. Schoch
1926, 2]. I n  contrast, the immersion of 20 Tauri occurred at t i  18;14h, or 51
minutes earlier. Thus, i f  we assume that the report should have indicated
that the northwest part of the Pleiades (19 and 20 Tau) was covered, the
limits of the error in the stated time are:
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Occultation-Data Computed Ptolemy

Apparent Time (Bithynia) 19; 7h 19; Oh
(Alexandria) 19; 3b 18;40

Apparent Lunar Longitude 33;19.9° 33;15°
Latitude +4;29.6 +4; 0

Moon's Semi-Diametera 0;14.95
Apparent Lunar Velocity

in Longitude' 0.375'

Star Positions' Longitude Latitude

17 Tauri 32;53.8° +4; 0.0°
19 Tauri 33; 3.2 +4;19.5
20 Tauri 33; 9.6 +4;11.9
23 Tauri 33;10.9 +3;46.0
17 Tauri 33;28.6 +3;51.5

27 Tauri 33;50.4 +3;43.5
27 Tauri (Ptolemy) 33;15 +3;40

Fotheringham 1915a, 384-385. b  f  0;411
0;1° per min.

+4;45°

+4;30°

+4;15°

p +4; o.

+3;45° I—

Ptolemy

28
•  27

19

20 •

•  2 3
11 •

16

•
17

34;30° 3 4 ; 0 ° 33;30°
x

Occultation No. 5: +92 Nov 29

33;0°
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—1;30°

—1;45°

—2; 0°

R -2;15°

—2;30°

—1;30°

—1;45°

—2; 0°

R —2;15°

—2;30°

Ptolemy

178;0° 1 7 7 ; 3 0 °  1 7 7 ; 0 °  1 7 6 ; 3 0 °
x

Occultation No. 6a: +98 Jan 11

( 1 0Ptolemy

Modern

Spica

178;30° 1 7 8 ; 0 °  1 7 7 ; 3 0 °  1 7 7 ; 0 °

x

Occultation No. 6b: +98 Jan 11
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Phase 1 Data Computed Ptolemy

Apparent Time (Rome) 4;55h 5; Oh
(Alexandria) 6; 5 6;20

Spica's Longitude 177;24.6° 176;15°
Latitude —1;55.5 —2; 0

Apparent Lunar Longitude 177; 9.0 176;15
Latitude —1;53.4 —2; 0

Moon's Semi-Diameter' 0;15.9

Phase 2 Data

Apparent Time (Rome) 6; 9h
Apparent Lunar Longitude 177;38.4°

Latitude —1;55.2
Apparent Lunar Velocity

in Longitude' 0.403b

Occultation 6. +98 Jan 11 R o m e  A l m .  vii 3: Toomer, 336-337

1 Trajan: 15/16 Mechir

the geometer, Menelaus, says that the following observation was
made [by him] at  Rome....  when the tenth hour was completed,
Spica had been occulted by the Moon (for it could not be seen), but
towards the end of the eleventh hour it was seen in advance of the
Moon's center, equidistant from the [two] horns by an amount less
than the Moon's diameter.

At the earlier of the two reported times Spica was just covered by the Moon,
so that  the computed circumstances agree w i th  those reported. S p i c a
emerged from behind the Moon at 6;13h, or 4 minutes after the end of the
11th seasonal hour, and was, as the report says, just equidistant from the
two cusps. Menelaus says only that Spica was visible and less than a lunar
diameter from the Moon's center at this time. I f  we assume 0;24° ± 0; 4°, or
three quarters of the Moon's diameter, as the probable distance from Spica
to the Moon's center, the error in the second observed time is +0;25h ±0;10h.
A similar error in the first reported time would leave Spica covered and very
nearly in conjunction with the Moon's center, as Ptolemy assumes.

a Fotheringham 1915a, 384. b  0;1° per min.

Occultation No. 6: +98 Jun 11
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Occultation 7. +98 Jan 14 Rome A l m .  vii 3: Toomer, 338

1 Trajan: 18/19 Mechir

Similarly, Menelaus, who observed in Rome, says that ... towards
the end of the eleventh hour, the southern horn of the Moon ap-
peared on a straight line with the middle and southernmost of the
stars in the forehead of Scorpius (7r, 6), and its center was to the
rear [east] of that straight line, and was the same distance from the
middle star (7r) as the middle star was from the southernmost, [and]
it appeared to have occulted the northernmost of the stars in the
forehead (f3), since [it] was nowhere to be seen.

At the stated time the Moon's southern cusp was 0;16° east of the line
between 7r and S Scorpionis, while its eastern rim was 0;23° west of Sco.
Since Menelaus says only that he did not see Scorpio, while he describes
the alignment with 7r and S Sco in explicit detail, I have taken the latter as
the basis for comparison. The error in the time is, therefore, —0;451

Ptolemy assumes that the Moon was in conjunction with Scorpio when
observed, and thus tacitly ignores the alignment reported by Menelaus.29
According to my computation, conjunction occurred roughly 2 hours (1;5111)
after the time reported. Menelaus' estimate (measurement?) t ha t  the
Moon and S Sco were equidistant from 7r Sco was in error by R-.1 0;20°.

Errors in the occultation-observations and data

Errors in the observed times of lunar occultations. Table 3.6 shows the
errors in the observed times as understood by (a) myself, (b) Fotheringham
[1915a], and (c) Schoch [1926]. Al l  of the errors have been reduced to the
elements derived in appendix 1,30 so that the differences between the errors

29 According to Ptolemy's star catalogue, 7r and 6 Scorpionis are on the same
latitude-circle, while Q Sco is 0;40° in longitude further west. Thus, he implicitly
rejects the alignment reported by Menelaus.
30 See 79n24 above, for corrections to Fotheringham's initial results. To correct
the errors in the observations found by Schoch [1926, 2], I have computed the
error in his mean longitude from

AL = +0.13" —2.63"T— 1.46"T2 (epoch, 1900).

From this correction to his mean longitude of the Moon, I have obtained cor-
rections to his errors in the observations, using the apparent lunar velocity at
each occultation. The corrections to Schoch's tabular longitudes and times for
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Occultation-Data Computed Ptolemy

Apparent Time (Rome) 6; 8h 6;10h
(Alexandria) 7;18 7;30

Apparent Lunar Longitude 216; 5.6° 215;55°
Latitude +1;25.4 +1;20

Moon's Semi-Diameter° 0;15.2
Apparent Lunar Velocity

in Longitudea 0.3466

Star Positions Longitude Latitude

0 Sco 216;44.0° +1;16.3°
0 Sco (Ptolemy) 215;55 +1;20
a- Sco 216; 7.2 —1;43.0
ö Sco 216;29.8 —5;12.9
Distance (App. Moon-7r Sco) 3;10
Distance (7r Sco—e5 Sco) 3;30

a Fotheringham 1915a, 384-385; 1923, 370-371.
b 0;10 per min.

+2; 0°

+1;45°

+1;30°

+1;15°

+1; 0°
Ptolemy c , )

co

217;0°

Occultation No. 7: +98 Jan 14
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No. Date
A

Britton
B

Fotheringham
1915a

C
Schoch

1926

1 —294 Dec 21 +1;50" +1;50h +1;50h
2 —293 Mar 9 +0;57 +0;46 +0;46
3 —282 Jan 29 —0; 8 ' —0;19' +0; 2
4 —282 Nov 8 —0;17 —0;17 —0;42
5 +92 Nov 29 —0;25b —0;40b ... c
6 +98 Jan 11 +0;25d +0;43d +0;18
7 +98 Jan 14 —0;45 —0;32 —0; 4

Occultation
Number

Correction
to Times

Correction to
Longitude

1 +0;24" —0;10.8°
2 +0;26 —0;10.8
3 +0;26 —0;10.7
4 +0;20 —0;10.7
5 +0;19 —0; 7.3
6 +0;18 —0; 7.2
7 +0;21 —0; 7.2

MODELS A N D  PRECISION

a ±  0; 9h. b  ±  0;29h

c Schoch [1926, 2] does not give an error for occul-
tation no. 5, stating that the longitude of Bithynia
is uncertain by 0;8h.
d ±0;10h.

Table 3.6. Errors in Observed Times of Occultations

found for the same observation represent either different interpretations
of the times and corresponding phases of the occultations, or differences
in the computed place of the Moon. Since Fotheringham's computations
only include the lunar inequalities in longitude greater than 0;3°, while
Schoch includes all inequalities greater than 4" of arc, discrepancies of up
to ±10" can arise from differences in the computed positions of the Moon.
Unfortunately, Schoch publishes only the results of his analysis, so that it
is impossible either to use his more accurate computations or to check his
results.
each occultation are:
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Investigator Mean Error Probable Error

(a) Britton (6 obs.) —0; 2.2h ±0;25h
(b) Fotheringham (6 obs.) —0; 3.2 ±0;26
(c) Schoch (5 obs.) +0; 4.0 ±0;22

As may be seen by comparing columns (A)  and (B), Fotheringham's
assumption that dipas d.pxoginis and 6pag X-riyakr-ris refer to the middle of
the first and last thirds of the stated hour reduces the error in the times
of occultations nos. 2 and 7 and increases the error in nos. 3, 5, and 6.
Thus, as in the case of the eclipses, introducing this assumption makes no
material difference.

Schoch does not say how he interpreted these times. In  occultation no. 2
he appears to have followed Fotheringham, while the errors of occultations
nos. 3 and 6 suggest that he computed for the exact hour. Perhaps he ac-
cepted the interpretation yielding the smallest error in each case. In  no. 6,
Schoch seems to have assumed a shorter distance from Spica to the Moon's
center than I  have. I  cannot explain the discrepancy between Schoch's
error for no. 7 and mine or Fotheringham's. As for the lunar eclipses, the
signs of  the errors are evenly distributed; this may be taken to indicate
that the adopted elements are in reasonable accord with the observations.

The error of nearly two hours in the time of occultation no. 1 reported by
Timocharis strongly suggests that the reported time is wrong. I f  not, the
average clock-error for this observation amounts to 12 minutes per hour i f
measured from Sunset, and 35 minutes per hour i f  measured to Sunrise.
Similarly, the clock-error in Timocharis' second observation is roughly 22
minutes per hour, measured from Sunset. I n  contrast, the clock-errors in
his two later observations are less than 3 minutes per hour. I f  the reports
of the earlier observations are not in error, then the intervening ten years
must have greatly improved Timocharis' method of  determining time at
night. T h e  clock-errors in Menelaus' observations nearly 400 years later
are ± 4  minutes per hour by my computation, and are negligible by
Schoch's computation.

I f  we exclude occultation no. 1 as an anomaly, the mean and probable
errors in the reported times are:

The probable errors include the uncertainty in the phase of the occultation
described, and in nos. 1 and 2, the effects o f  the imprecision of  Fother-
ingham's computations of the Moon's longitudes. Since the probable error
from Schoch is heavily influenced by his anomalous error for no. 7, we may
assume that the probable error in an observed time of a phase of an occulta-
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Column in
Table 3.7

Source of
Error

Mean Probable
Error Deviation

I Observation +0;14h ±0;66h
II Reduction +0; 5 ± 0 ; 1 4
IV Phase +0;32 ± 0 ; 3 5
V Total Error in Datum +0;51 ± 0 ; 3 1

tion was on the order of ±25 minutes. Thus, the times appear significantly
less accurate than those reported for lunar eclipses.

Errors in Ptolemy's data for lunar occultations. Ptolemy's data contain
three types of errors. First, there are the errors discussed above in the
observed times of the indicated events. Second, there are errors in the re-
ductions of the reported times to apparent Alexandrian time. Finally, there
are what I shall call 'phase errors, which are apparent errors in Ptolemy's
interpretation of the configuration of the Moon and reference body at the
reported times. These are most conveniently understood as errors in (lunar)
longitude, and are readily transformed into additional time-errors.

These errors are shown in Table 3.7. Column I gives the observational
errors from column A in Table 3.6; column II shows the reduction errors;
and columns III and IV give the phase-errors in longitude and time, respec-
tively. Finally, column V gives the total error in Ptolemy's datum—i.e.,
the sum of columns I, II,and IV—expressed in time for each event, while
column VI shows the corresponding errors in longitude. As before, these
errors are to be understood as corrections to Ptolemy's data.

For all seven observations, the mean (systematic) and probable devia-
tions from each source and collectively are:

Clearly, these are far greater than the errors which are characteristic of
the observations themselves. Furthermore, there is a significant systematic
error in the data from all three sources, which is absent from the pure
observational errors. Finally, the three sources of error do not seem to
be independent, since the probable deviation from the total error is only
60% of what one would expect from combining the deviations of the com-
ponent source errors (±0;52h). Indeed, i f  we omit no. 1, the probable
deviation in Ptolemy's data drops to (±0;27h), which is nearly identical to
the corresponding observational error.

The systematic error in Ptolemy's data is puzzling. Since the value of
precession which follows from these occultations corresponds very nearly
to the correct sidereal motion of the Moon, one might expect similar errors
in Ptolemy's data for occultations of the same star. There seems no reason,
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Star I I I I I I IV V VI

1 /3 Sco +1;50h +0; 6h +1;56" —0;51.5°
2 Spica +0;57 —0; 8 +0;49 —0;20.8
3 Pleiades —0; 8 —0; 2 —0;10 +0; 4.1
4 Spica —1;17 +0;44 +0;17 —0; 9.0
5 Pleiades —0;25 +0;23 —0;41° +1;49h +1;47 —0;40.1
6 Spica +0;25 —0;15 +0; 5 +0;13 +0;23 —0; 9.3
7 /3 Sco —0;45 —0;12 —0;38 +1;51 +0;54 —0;1.7

Star Late E a r l y  less y i e l d s
Observation O b s e r v a t i o n  l d s E r r o r

Interval

/3 Sco —0;18.7° +0;51.5° +0;32.8°
Spica —0; 9.3 +0;14.9a +0; 5.6
Pleiades —0;40.1 —0; 4.1 —0;44.2
Average —0;22.7 —0;20.8 —0; 1.9

97

Table 3.7

however, why pairs of occultations of different stars should exhibit similar
errors. In  general, one should expect errors with different signs in different
pairs of occultations, no matter how they were selected.

Furthermore, when we examine the data-errors in the intervals of lon-
gitude for the seven stars we find:

a Average value.

The mean interval-error vanishes for all three pairs, while individual pairs
show interval-errors substantially greater than the error of 0;8° in Ptolemy's
computed intervals. Thus, the errors in Ptolemy's interval-data are largely
offset by the errors in his calculated lunar positions.

To have pairs of occultations show the same predetermined value of pre-
cession, Ptolemy would have had to find observations in which the errors
in the observations themselves, or his reductions of  them, just balanced
the errors in his calculations and lunar equations. The probability of find-
ing such pairs at random is obviously very small, since both the errors in
Ptolemy's lunar equation and the errors in the observations can take on
continuous values with either sign. Thus, no matter how Ptolemy erred in
reducing his observations, he must have had a large number of observations
to work with.
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This number need not have been enormous, however. Ptolemy obtains
agreement partially because some of the later reports can be broadly in-
terpreted, and also because he chose observations for which he introduced
additional errors in reducing the times to the meridian of Alexandria. Thus,
he may have selected some observations because of the ambiguity in their
reports and the corresponding flexibility which this allowed him in reducing
them. Such a basis of selection would increase the likelihood of obtaining a
`fit', although it would still require a considerable number of observations
to choose from.

Whatever the case, i t  is clear that these observations could not have
been selected at random, since the probability is negligible that four ran-
dom pairs, erroneously reduced, should yield the same 'correct', value for
precession. This does not necessarily mean that the observations misrepre-
sent the quality of those available to Ptolemy, for he achieves agreement
at least partially by assuming circumstances which seem at variance with
what was actually observed. Nevertheless, in view of the errors in Ptolemy's
lunar equation [see chapter 4], i t  seems likely that requiring the observa-
tions to yield accordant results would cause Ptolemy to choose observations
having somewhat larger average errors than a random selection of such ob-
servations would have. The difference between the probable error in the
observed times of the occultations (±25 minutes) and the probable error
for eclipses (±11 minutes) may be due to this cause.

While such errors should not be systematic ones, the larger probable
errors for a single observation would increase the chance of having a signif-
icant systematic error in a small group of observations. Thus, although the
six 'good' occultation-observations agree reasonably well with the elements
I have adopted, they are much weaker evidence (mean probable error is
±0;11h) of the value of the Moon's acceleration than are the sixteen 'good'
eclipses reported by Ptolemy (mean probable error is ±0;3h).

In sum, the observations of occultations recorded in the Almagest appear
to exhibit somewhat larger errors than do the observations of eclipses,
which may be related to a requirement that they yield accordant values
of precession. Further, the data Ptolemy accepts show much larger errors
than the observations themselves, which suggests that Ptolemy reported
the observations faithfully. Finally, Ptolemy's use of these observations is
an excellent example of his obtaining both correct and consistent results
from very poor data.
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O B S E R VAT I O N S  O F  T H E  M O O N ' S  E L O N G A T I O N S

Ptolemy reports eleven measurements of the elongation of the Moon from
other celestial bodies. Three of these are Hipparchus' observations of the
elongation of the Moon from the Sun, which are the latest of his known
observations. Ptolemy uses these together with a similar observation of his
own (139 Feb 9) both to demonstrate the correctness of his lunar model
at quadrature and in the octants and also to illustrate his procedure for
determining the magnitude of the second lunar inequality.

The remaining eight observations were made by Ptolemy and used to
determine the longitudes of Regulus and of each of the planets. For  each
planet, Ptolemy measures the Moon's elongation and then determines the
longitude of the planet from this datum and his computed apparent lon-
gitude of the Moon. Each of these observations is accompanied by a direct
measurement of the elongation of the planet from a star of known longi-
tude. Thus,  three observed data are in  effect given for each observation:
the distance' of the Moon from the planet, the distance of the planet from
a star, and implicitly, the distance of the Moon from the star. In  discussing
the errors in these observations, I  shall consider the errors in each of these
data as if they were independent observations.

Ptolemy's eight observations of the distance of the Moon from other celes-
tial bodies are distinct from all his other observations. First  of all, he made
them during the seven months from +138 Dec 16 to +139 Jul 11, and they
are the only observations he reported for this interval. More importantly,
unlike his other observations, each includes an observable datum from
which he could have accurately determined the time of the observation.

For each observation Ptolemy notes the (computed) longitude of the Sun
and states the time of the observation with the remark, 'since [such and
such] a degree was culminating on the astrolabe'. This suggests a procedure
which he may have used generally to determine the time of the observations,
but which he does not mention elsewhere in the Almagest.

In describing how to use an armillary astrolabe [Alm. v 1: Toomer, 218-
219], Ptolemy tells us that the ecliptic-ring on the astrolabe is aligned in the
plane of the ecliptic by setting one of the rings (the outer) perpendicular
to i t  at the known longitude of some celestial body, and then turning the
instrument about the poles of its equator until the reference-body is aligned
with this ring. W i t h  the ecliptic thus properly oriented, the longitude of

31 I n  what follows I shall use 'distance, 'elongation, and 'interval of longitude'
as synonyms, except where otherwise noted.



100 M O D E L S  A N D  PRECISION

the celestial body to be observed can be found directly by aligning it with
the other ring perpendicular to the ecliptic.

Ptolemy does not add that the time of the observation can then be readily
determined by observing the degree of the ecliptic which was culminating.
The culminating degree could easily be read from the intersection of the
meridian-ring and the ecliptic-ring, and the apparent time of the obser-
vation could then be determined from the difference in right ascension
between the culminating degree and the longitude of the Sun.

By following this procedure Ptolemy could have determined the time of
any observation to within at least ±4 minutes, or even to within half this
amount. Moreover, the procedure could be simplified for observations of
elongations such as those described below, where it is not necessary to de-
termine the time of an event over which the observer has no control. Thus,
Ptolemy could compute in advance the culminating degrees for a group
of times, set his astrolabe so that a desired degree culminated, and then
wait until the reference body aligned itself on the ring set at its longitude.
At that moment he could then observe the longitude of any other celestial
body by adjusting only one ring on his instrument.

Ptolemy's reference to the culminating degree in connection with the
time of each of his elongation-observations implies that he employed some
procedure of this sort. Further, the fact that he quotes all the times to
quarter, half, or integral hours suggests that he computed the culminating
degrees for convenient times before making the observations, and thus made
his measurements at predetermined times. Since he had to compute the
culminating degree for each observation in order to determine the Moon's
parallax, this procedure would have involved no additional labor while of-
fering the practical advantage of requiring minimum manipulation of the
astrolabe at the moment of observation.

If Ptolemy determined the times of his observations in this manner—and
it seems probable that he did—then his times, which are quoted to quarters
of an hour, may be regarded as the results of an orderly and rational
procedure for making observations, and not as rough approximations of
the times of his observations. As noted above, by such a method Ptolemy
should have been able to determine the time of an observation to within
at least ±4 minutes.32 Hence, the errors of these observations should be

32 In general, this method can determine the time of an observation with consid-
erably more accuracy than can altitude-measurements of comparable precision.
The error in the time which would result from an error of ±1° in either the culmi-
nating degree or in the computed position of the Sun would always be smaller
than ±4.36 minutes. In contrast, the error in the time which would result from
an error of 1° in a measurement of the altitude of a body whose declination was
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almost entirely due to errors in his measurements of the distance between
the Moon and the reference bodies used in the observations.

The main objective of the following remarks is to determine the average
error of Ptolemy's observations of elongation. I n  computing the Moon's
positions, I  have used P. V.  Neugebauer's lunar tables [1912] corrected to
the elements adopted above. Although these give the longitude of the Moon
to 0.01°, the resulting longitudes are certain only to within +0.1° -= +0;6°.
In general, this uncertainty wil l  not significantly affect the results of the
comparisons.

Elongation 1. —127 Aug 5 A l m .  v 3: Toomer, 224

5133 Callipic Period III: 16 Epiphi

when two thirds of the first hour had passed. 'The speed (8p6p.os)
was [that of  day] 241',34 he says, 'and while the Sun was sighted
[at]35 Leo 8;35°, the apparent position of the Moon was 12;20° Tau-
rus ...

accurately known, and at a place whose terrestrial latitude was also accurately
known, is:

A( t )  =  4 minutes
cos(,o•sinA

For the latitude of Alexandria, therefore, the minimum error in a time determined
from an altitude-measurement in error by ±10 is ±4.68 minutes (Azimuth (A)  =
±90°), while a  similar error in an observed altitude at  ±45° o f  azimuth would
produce an error in the time of more than 6 minutes.
33 C f .  Manitius 1912, i  266na: ' A l l  mss have " in the 50th year',' but  Ideler and
Ginzel (Chron. I I :  410) have shown that one must read "51" .
34 T h e  meaning of 'the 8pOlios was 241, attested in all mss., has been the subject
of much uncertainty and confusion. Halma emends ova' to pkros and thus under-
stands the phrase to  indicate that  the Moon was at  mean distance. Man i t ius
understands 8p011os to  refer to  the anomaly and changes min' t o  eve' (259) in
order to  make Hipparchus' anomaly agree nearly wi th  tha t  found in  Ptolemy
(257;47°). Toomer [244n14], following Alexander Jones [1983], gives a convincing
explanation, which links this description to a table (of Babylonian origin) o f  the
true motion o f  the Moon over 248 days (9 anomalistic months). See A .  Jones
1983, for a detailed discussion of  such tables.
35 Observations nos. 1, 2, and 3 suggest that Hipparchus possessed an instrument
similar to  Ptolemy's, and that  his procedure for the observation was the same
as Ptolemy's. Thus ,  one ring would be set a t  the computed place o f  the Sun,
Leo 8;35°, and the daily circle turned unti l  the Sun was aligned on that ring, at
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Elongation-Data Ptolemy Computed A

Apparent Time (Rhodes) 5;50h 5;50h a

True Solar Longitude 128;20° 128;40° +0;20°
Refraction (Longitude) —0; 6b
Apparent Solar Longitude [128;20] 128;34 +0;14
True Lunar Longitude 42; 5 42; 1
Lunar Parallax (Longitude) 0; 0 —0; 6
Apparent Lunar Longitude 42; 5 ' 41;55 —0;10
Lunar Equation +7;40c,4 7;41 +0; l d
Apparent Elongation of

Moon—Sun 273;45 273;21 —0;24
Measured Angular Distance 86;15' 86;39 +0;24

This observation, like several others, shows excellent agreement between
the equation which Ptolemy obtains and that derived from modern lu-
nar theory, but much poorer agreement between modern theory and the
observed data from which Ptolemy derives his result. T h i s  agreement is
partly because of the error in Ptolemy's solar equation and partly because
he uses an erroneous value for the equation of time.

a Computed using true Sunrise and co (Rhodes) =  36;24°.
b A t  the time of the observation the Sun's true altitude was
8;36° and the angle between the ecliptic and the Sun's altitude-
circle, 160°.

Observed.
d I n  computing the Moon's mean longitude Ptolemy uses
—0;5h for the equation of time instead of the correct —0;16h.
Thus, his observed lunar equation should be 7;45°.

Elongation No. 1: —127 Aug 5

which point the ecliptic would be properly positioned, and the elongation of the
Moon could be directly determined. Such a procedure is supported by Ptolemy's
subsequent reduction of the observation, for he accepts the apparent measured
elongation, —86;15°, while at the same time correcting Hipparchus' computed
position of the Sun to Leo, 8;20° (accurate, 8;22°). Toomer [227n20] presents a
contrary view.
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Elongation 2. —126 May 2 A l m .  v 5: Toomer, 227

197 Death of Alexander: 11 Pharmuthi

Elongation-Data Ptolemy Computed E

Apparent Time (Rhodes) 6;20h 6;23h a
True Solar Longitude 37;45° 37;34° —0;11°
Refraction (Longitude) —0; 2"
Apparent Solar Longitude [37;45] 37;32 —0;13
True Lunar Longitude 351;27, 30 350;47
Lunar Parallax (Longitude) +0;12, 30 +0;15
Apparent Lunar Longitude 351;40' 351; 2 —0;38
Lunar Equation —0;46 —1;23 —0;37
Apparent Elongation of
Moon-Sun 313;55' 313;30 —0;25

Measured Angular Distance 46; 5 ' 46;30 +0;25

Hipparchus records that he observed the Sun and the Moon with
his instruments in Rhodes ... at the beginning of the second hour
[of the day]. H e  says that while the Sun was sighted [at] Taurus
7;45° 36 the apparent position of the center of the Moon was Pisces
21;40°, and its true position was Pisces 21;27, 30° 37

a Computed using true Sunrise and co (Rhodes) = 36;24°.
b The Sun's altitude at this time was 13;30°, so that the total
refraction was 0;4°. The angle between the ecliptic and the
Sun's altitude-circle was X128°
c Observed.

Elongation No. 2: —126 May 2

Elongation 3. —126 Jul 7 A l m .  v 5: Toomer, 230

197 Death of Alexander: 17 Payni

observed by Hipparchus, as already mentioned, in Rhodes ... at 91/3
hours. He says that while at this hour the Sun was sighted at Cancer

36 This agrees with Ptolemy's solar model.
37 Ptolemy accepts Hipparchus' computation of the Moon's parallax, although
elsewhere [Alm. v 19: Toomer, 268] he criticizes Hipparchus' procedure for deter-
mining the components of parallax in longitude and latitude.
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Elongation-Data Ptolemy Computed ZS,

Apparent Time (Rhodes) 16; Oh 1 6 ;  Oh a
True Solar Longitude 100;40° 1 0 0 ; 5 3 ° +0;13°
True Lunar Longitude 148;46 1 4 9 ; 4 0
Lunar Parallax (Longitude) 0; 0  — 0 ;  1
Apparent Lunar Longitude 148;466 1 4 9 ; 3 9 2 +0;53
Lunar Equation +1;26 + 2 ; 2 4 +0;58'
Apparent Elongation of

Moon-Sun +48; 6b + 4 8 ; 4 6 +0;40

MODELS A N D  PRECISION

10;54°,38 the apparent position of the Moon was Leo 29;0°. And this
was its true position too; for at Rhodes, near the end of Leo, about
one hour past the meridian, the Moon has no longitudinal parallax.

a Computed using true Sunrise and co (Rhodes) = 36;24°.
Observed.

c In  computing the mean longitude and elongation o f  the
Moon, Ptolemy does not seem to have applied his correction
for the equation of time (-0;20h), since his computed mean
longitude and anomaly are 0;13° and 0;11° greater than those
which his tables give [cf. Kempf 1878, 27]. Ptolemy should
thus have found the lunar equation (obs.) to be +1;39° instead
of +1;26°. The error in the observed lunar equation, properly
computed, is, therefore, +0;45°.

Elongation No. 3: —126 Jul 7

Elongation 4. +138 Dec 16 A I m .  x 4: Toomer, 474

2 Antoninus: 29/30 Tybi

we observed the planet Venus after its greatest elongation as morn-
ing star, using the astrolabe and sighting i t  with respect to Spica:
its apparent longitude was Scorpio 6;30° A t  that  moment i t  was
also between and on a straight line with the northernmost of the
stars in the forehead of Scorpius [/3 Sco] and the apparent center of
the Moon, and [Venus] was in advance [west] of  the Moon's center
one and one half times the amount i t  was to  the rear [east] o f  [/3

38 Ptolemy finds Cancer 10;40° (modern value, 10;42°). As  in elongation no. 1
he accepts Hipparchus' observed elongation instead of his lunar longitude.



a Computed for 152;30° culminating, so (Alexandria).
Computed, from Tuckerman [1962-1964], and reduced by 0;3°, which is my correc-

tion to the solar longitude.
Peters and Knobel 1915, 62, corrected for precession to +139.0.

d Observed.
e Peters and Knobel 1915, 63, corrected for precession. P.  V.  Neugebauer [1914,
64] makes the longitude of /3 Sco 217;11° in +139.0.
f  To compute the Moon's true longitude, Ptolemy takes the lunar equation to  be
—5;39°; but if accurately computed from Ptolemy's table [Aim. v 9: Toomer, 286], it
is —0;5;52°. Thus, Ptolemy's computed longitude of the Moon should be reduced by
0;13°. In contrast, the lunar equation from modern theory at the time of the observa-
tion was —6;39°. So, the error in Ptolemy's theoretical equation at this observation
is —0;47°, while the error in the equation he uses is —1;0°. This accounts for the
agreement between Ptolemy's lunar longitude and the modern value, which should
differ (on average) by 1 ;6° .
9 A t  the time reported for the observation, the altitudes of Venus and the Moon
were respectively 18;34° and 19;59°; thus, the total refraction of  each was 0;2.5° .
Since the angle between the ecliptic and the altitude-circle through Venus was then
R-2,160°, the refraction in longitude of each (not included in the computed longitudes)
was —0;2°.
h I f  217;11° is the longitude of # Sco, Venus will be 0;7° ahead of # Sco at the time of
the observation, and the Moon will be 0;47° behind the line through Venus and /3 Sco.

Elongation Data Ptolemy C o m p u t e d A

Apparent Time (Alexandria) 4;45h 4 ; 4 6 h  a
Longitude of Venus 216;30 2 1 7 ; 1 8 "
Latitude of Venus (+2;40) + 3 ;  1
Longitude of Spica 176;40° 1 7 7 ; 5 8 °  c +1;18°

Elongation of  Venus-Spica +39;500 d  + 3 9 ; 2 0 ° —0;300
Longitude of /3 Sco 216;20 2 1 7 ; 1 8 e +0;58
Latitude of /3 Sco +1;20 + 1 ; 1 5

True Lunar Longitude 215;45f 2 1 5 ; 4 7
Lunar Parallax (Longitude) +1; 0  + 0 ; 5 1 —0; 9
Apparent Lunar Longitude 216;45 2 1 6 ; 3 8 9 —0; 7
Lunar Latitude +5; 0  + 5 ;  8
Lunar Parallax (Latitude) —0;20 — 0 ; 1 6
Apparent Lunar Latitude +4;40 + 4 ; 5 2 +0;12

Elongation of  Moon-Venus +0;15 — 0 ; 4 0 —0;55
Venus-/3 Sco +0;10 0 ;  Oh —0;10
Moon—Line through
Venus and /3 Sco (Long.) 0; Od — 0 ; 4 0 —0;40h

Elongation of  Moon—Spica +40; 5  + 3 8 ; 4 0 —1;25

Elongation No. 4a: +138 Dec 16 (4;45h)



106

Elongation-Data Computed Ptolemy 0

Longitude of Venus 217;23°
True Lunar Longitude 216;48
Lunar Parallax (Longitude) +0;38
Apparent Lunar Longitude 217;26

Elongation of Venus-Spica +39;25 + 3 9 ; 5 0 ° -0;25°

Elongation of Venus-13 Sco +0; 5  + 0 ; 1 0 -0 ;  5
Moon-Venus +0; 3  + 0 ; 1 5 -0;12
Moon-L ine  through
Venus and /3 Sco (Long.) -0 ;  4  0 ;  0 +0; 4

Elongation of Moon-Spica +39;28 + 4 0 ;  5 -0;37

MODELS A N D  PRECISION

Sco] ... the time was 4;45h after midnight since the Sun was about
Sagittarius 23° and the second degree of Virgo was culminating [on]
the astrolabe.

Elongation No. 4b: +138 Dec 16 (6;35h)

All o f  the Moon-planet observations in this group involve two measure-
ments: the distance from the planet to the reference star (here Spica), and
distance between the Moon and the planet (in this case with reference to
an additional star). These yield a distance between the Moon and the
reference star, which I shall treat as i f  it were an observation.

The difficulty wi th  this observation is not only that al l  the errors are
large, but also that at the time given for the observation the Moon was not
even close to being co-linear with Venus and #  Sco [cf. Figure 3.1]. T h e
computed longitude of Venus should not be in error by more than +0;3° [cf.
Tuckerman 1962-1964, i  6, 12], while the longitude of the Moon is uncer-
tain by no more than +0;6°. To  achieve co-linearity, therefore, the Moon's
acceleration would have to be increased by at least 4.0"T2, a correction
which would leave the eclipses and occultations poorly represented.

The circumstances Ptolemy describes could have been observed shortly
before Sunrise, which occurred at Alexandria at 6;54h, or 2;9h after the time
Ptolemy reports for the observation. T h e  calculations for elongation no.
4b show the situation at 6;35h, which corresponds to an error of exactly one
sign (30°) in the culminating degree.

Thus, i f  the observations were made either 2;Oh (6;46h) or one culminat-
ing zodiacal sign (i.e., at 6;35h) after the time reported, Ptolemy's descrip-
tion of the alignment of Scorpio, Venus, and the Moon would agree very
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well with the computed circumstances [cf. Figure 3.2], for both Venus and
the Moon would then be east of  p Sco. A l so  the errors in the distances
between Venus and Spica and the Moon and Spica would be smaller.

R

+5;0°

+4;0°

+3;0°

+2;0°

+1;0°

Ptolemy

Venus
(Modem)

•

Venus •
_ (Ptolemy)

Modern

to Zenith

•
0 Sco

I I  1  1  1  1
217;30° 2 1 7 ; 0 °  2 1 6 ; 3 0 °

x

Figure 3.1. Elongation No. 4a: +138 Dec 16 (4;45")
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1 1  1  1  1  1
217;30° 2 1 7 ; 0 °  2 1 6 ; 3 0 °
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Figure 3.2. Elongation No. 4b: +138 Dec 16 (6;35")
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Elongation 5. +138 Dec 22 A I m .  xi 6: Toomer, 538

2 Antoninus: 6/7 Mechir

It was 4  equinoctial hours" before midnight, for according to the
astrolabe the last degree of Aries [30°] was culminating, while the
longitude of the mean Sun was Sagittarius 28;41°. A t  that moment
Saturn, sighted with respect to [Aldebaran] was seen to have a lon-
gitude of  Aquarius 9;4°, and was about 1/2° t o  the rear [east] o f
the center of the Moon (for that was its distance from the Moon's
northern horn).

At the time reported for the observation Saturn was behind the Moon [see
Elongation No. 5a, Figure 3.3]. Thus,  like the previous observation, the
circumstances Ptolemy describes could not have been observed at the time
which he reports. Since the Moon set at 20;4h4° i t  is possible that the time
(or rather the culminating degree) reported by Ptolemy was that at which
he observed Moonset and thus the setting of Saturn.

The observed data Ptolemy reports for the distances between the Moon
and Saturn and (implicitly) the Moon and Aldebaran agree very closely
with the computed circumstances 1;0h earlier. See Elongation No. 5b for
the situation at 19;Oh (apparent time, Alexandria).

Elongation 6. +139 Feb 9 A l m .  v 3: Toomer, 223

2 Antoninus: 25 Phamenoth

We sighted the Sun and Moon.. .  after Sunrise,' and 5;15 equinoc-
tial hours before noon. T h e  Sun was sighted in  Aquarius 18;50°

39 Ptolemy seems to  have computed the time (20;0h) from the culmination o f
30;30°, using the position of  the mean Sun as given, instead of the true Sun. The
latter gives 19;56h for the time, the solar equation being +0;58°. In computing the
position of  the Moon, I  have assumed that 30;30° was culminating on Ptolemy's
astrolabe, and thus that the true time of the observation was 19;56k
49 A t  19;56h the Moon's right ascension was 313;9°, its declination was —19;17°,
and its hour-angle was 76;14°. For Saturn the corresponding quantities were right
ascension 313;1°, declination —19;15°, and hour-angle 76;22°. Both bodies set a t
t =  77;47°. Thus, Moonset occurred at  20;2,12h plus 2  minutes for refraction.
Saturn (behind the Moon) set a t  20;1,40h +  0;2h.
41 True  Sunrise occurred at  6;38h, and apparent Sunrise at 6;36k C f .  Ptolemy,
Alm. i i  13: Sunrise =  6;38k
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Elongation-Data Ptolemy C o m p u t e d 0

Apparent time (Alexandria) 20; Oh 1 9 ; 5 6 h
Longitude of Aldebaran 42;40° 4 3 ; 5 2 ° +1;12°
Longitude of Saturn 309; 4  3 1 0 ;  7
Refraction (Longitude) +0;20a
Apparent Longitude of Saturn 309; 4  3 1 0 ; 2 7 +1;23
Latitude of Saturn (-1;21)b — 1 ; 2 5 '

Elongation of Saturn—Aldebaran 266;244 2 6 6 ; 3 5 +0;11
Measured Angular Distance 93;36 9 3 ; 2 5 —0;11
True Lunar Longitude 309;40 3 1 1 ; 1 1
Lunar Parallax (Longitude) —1; 6  — 0 ; 5 7 +0; 9
Apparent Lunar Longitude 308;34 3 1 0 ; 1 4
Refraction (Longitude) +0;19a
Refracted Apparent Lunar Long. (308;34) 3 1 0 ; 3 3 +1;59
True Lunar Latitude (-1;  0)b — 1 ; 1 0
Lunar Parallax (Latitude) (-0;36)1' — 0 ; 1 9
Apparent Lunar Latitude (-1;36)b — 1 ; 2 9 +0; 7

Elongation of Moon—Saturn —0;30d + 0 ;  6 +0;36

Elongation of Moon—Aldebaran 265;54 2 6 6 ; 4 1 +0;47

MODELS A N D  PRECISION

a A t  19;56h the altitude of Saturn was 1;7°. and the altitude of the
Moon was 1;13°. The total refraction of each was, thus, +0;21° and
+0;20°, respectively. A t  this time, the angle between the altitude-
circle through Saturn and the ecliptic was kl19°.
b Cf. Manitius 1912, ii 428-4299n22.

The refraction in latitude of both Saturn and the Moon is +0;6°. I
have not included it, since it does not affect the results.

Observed.

Elongation No. 5a: +138 Dec 22 (19;56h)
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Elongation Data Ptolemy Computed A

True Lunar Longitude 310;35°
Parallax (Longitude) -0;54
Refraction (Longitude) +0; 4a
Apparent Lunar Longitude 309;45
Apparent Longitude of Saturn 310;11'

Elongation of Saturn-Aldebaran 266;24 266;19° -0 ;  5°

Elongation of Moon-Saturn -0;30 -0;26 +0; 4

Elongation of Moon-Aldebaran 265;54 265;53 -0 ;  1

-1;0°

-2;0°

-3;0°

Modern

I I  I  I  I  I
310;30° 3 1 0 ; 0 °  3 0 9 ; 3 0 °

x

Figure 3.3. Elongation No. 5a: +138 Dec 22 (19;56")

a A t  19;Oh the Moon's altitude was 12;40°, Saturn's altitude was
12;15°, and the total refraction was + 0 ; 4 °  for both. The  an-
gle between the ecliptic and the altitude-circle through Saturn
was R.124°. Saturn's 'apparent longitude' includes the correction
for refraction.

Elongation No. 5b: +138 Dec 22 (19;09")
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Elongation-Data Ptolemy Computed A

Apparent Time (Alexandria) 6;45h 6 ; 4 5 h  a
True Solar Longitude 318;50° b 319;23° +0;33°
Refraction (Longitude) —0;12'
Apparent Solar Longitude (318;50) 3 1 9 ; 1 1 +0;21
Lunar Equation —7;40d — 7 ; 3 1 +0; 9
True Lunar Longitude 219;40 2 2 0 ; 5 3
Parallax (Longitude) 0; 0  0 ;  4
Apparent Lunar Longitude 219;40 2 2 0 ; 4 9 +1;19
Elongation of Moon-Sun (Long.) 260;50d 2 6 1 ; 3 8 +0;48
Measured Angular Distance 99;10d 9 8 ; 2 2 —0;48

and as Sagittarius 4° was culminating. T h e  apparent position of
the Moon was Scorpio 9;40° ...

The observation could not have been made more than 8 minutes earlier,
since the Sun would not have been completely above the horizon. F u r -
thermore, even i f  the observation were made just at Sunrise, the change
in refraction would increase the error. Thus, the error shown is very nearly
the minimum possible under any assumption.

a Computed from 244;30° culminating, (Alexandria) =  31;12°.
b Computed: 318;44°.
C At 6;45h the Sun's altitude was 1;40°, the total refraction was 0;18°,
and the angle between the ecliptic and the Sun's altitude-circle was
Pe, 132°.
d Observed.

Elongation No. 6: +139 Feb 9

Despite the large error in the observation, the lunar equation Ptolemy de-
rives is quite accurate. This is largely due to the error in his solar equation,
which is near its maximum (-0;26°), and also to the effect of refraction.

Elongations 7 and 8. +139 Feb 23 A l m .  vii 2: Toomer, 328

2 Antoninus: 9 Pharmuthi

when the Sun was just about to  set in  Alexandria, '  and the last
degree of Taurus was culminating, i.e., 5;30 equinoctial hours after

42 Apparent Sunset at Alexandria (so = 31;12°) occurred at 17;371!
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Elongation-Data Ptolemy Computed A

Apparent Time (Alexandria) 17;30h 17;29h a
True Solar Longitude 333; 3° 333;44° +0;41°
Refraction (Longitude) -0;21"
Apparent Solar Longitude (333; 3) 334; 5 +1; 2
True Lunar Longitude 66;11
Parallax (Longitude) +0; 5
Apparent Lunar Longitude 65;10 66;16 +1; 6
Apparent Elongation of Moon-Sun 97; 7, 30' 92;11 +0; 4

Elongation-Data Ptolemy Computed A

Apparent Time (Alexandria) 18; Oh 17;59h a

Longitude of Regulus 122;30° 124; 3° +1;33°
True Lunar Longitude 66;27
Parallax (Longitude) -0 ;  26
Apparent Lunar Longitude 65;20 66;25 +1; 5
Elongation of Regulus-Moon 57;10' 57;38 +0;28

a Computed from 59;30° culminating, so (Alexandria) =  31;12°.
At 17;30h the Sun's altitude was 1;10°, the total refraction was 0;21.5°,

and the angle between the ecliptic and the altitude-circle through the
S u n  w a s  ̂ ..": 1 0 °.

c Observed.

Elongation No. 7: +139 Feb 23

a Computed from 67;30° culminating, co (Alexandria) = 31;12°.
Ptolemy estimates that the Moon's parallax changes by -0;5°

between the two observations. In fact, it changes by -0;6°.
Observed.

Elongation No. 8: +139 Feb 23
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noon, ... we observed the apparent distance of the Moon from the
Sun (which was sighted at about Pisces 3°) as 92;7, 30! Hal f  an
hour later, the Sun now having set and Gemini 7;30° culminating,
the Moon was sighted in  the same position [with respect to  the
astrolabe ring], and [Regulus] had an apparent distance from the
Moon, [as measured] by means of the other astrolabe [ring], of 57;10°
towards the rear [east] along the ecliptic.

In the first observation [see elongation no. 7], the error due to neglecting
refraction very nearly compensates for the error in Ptolemy's solar equation
(-0;  22°). I n  the second observation [see elongation no. 8], the position
of the Moon is in  good agreement wi th the modern position except for
the systematic error in Ptolemy's equinox (+1;6°). Thus, apart from this
systematic error, the error in the longitude of Regulus arises almost entirely
from the error in Ptolemy's measurement of the distance from Regulus to
the Moon [cf. Kepler 1607, 383].

Elongation 9. +139 May 17 A l m .  ix  10: Toomer, 461

2 Antoninus: 2/3 Ephiphi

We observed the planet Mercury ... by means of the astrolabe in-
strument. I t  had not yet reached its greatest elongation as evening
star. When  sighted with respect to [Regulus], i t  was observed at
a longitude of Gemini 17;3°; and at that moment it was 1;10° to the
rear [east] of  the Moon's center. The  time at Alexandria was 4;30
equinoctial hours before midnight ... since according to the astro-
labe, the 12th degree of Vi rgo '  was culminating, while the Sun was
in about Taurus 23!

Ptolemy's distance from the Moon to Regulus is in good agreement with the
computed distance, but his distance from Mercury to either body is in error
by about 1/2°. Mercury could not have been seen 1;10° ahead of the Moon,
since the Sun set only 1/2h before the time reported for the observation.

43 Toomer and Halma [1813-1816, i i  183] understand 'the twelfth degree of
Virgo', whereas Manitius reads 'Virgo 0;5°. The  first reading is undoubtedly
correct since, according to Ptolemy, Virgo 0;5° would culminate at 18;47h instead
of 19;30h, when Virgo 12;30° culminated.
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Elongation-Data Ptolemy Computed A

Apparent Time (Alexandria) 19;30h 1 9 ; 3 0 h  a
Longitude of Regulus 122;30° 1 2 4 ;  3° +1;33°
True Longitude of Mercury 77;30 7 8 ; 2 8 6
Refraction (Longitude) +0; 4 '
Apparent Longitude of Mercury (77;30) 7 8 ; 3 2 +1; 2

Elongation of Regulus—Mercury 45; Oa 4 5 ; 3 1 +0;31
True Lunar Longitude 77;10 7 8 ; 4 3
Parallax (Longitude) —0;50 — 0 ; 5 2 —0; 2
Apparent Lunar Longitude 76;20 7 7 ; 5 1
Refraction (Longitude) +0; 4 '
Apparent Refracted Lunar Longitude (76;20) 7 7 ; 5 5 +1;35

Elongation of Moon—Mercury —1;10 — 0 ; 3 7 +0;33

Elongation of Moon—Regulus —46;10 — 4 6 ;  8 +0; 2

115

a See 112n42, above.
Computed from Tuckerman [1962-1964, a n d  corrected by —0;3°.
At 19;30h the altitude of Mercury was 13;12° and the altitude of the

Moon was 12;35°. The total refraction was 0;4°, and the angle between
the ecliptic and the altitude-circle through Mercury was 23° .
d Observed.

Elongation No. 9: +139 May 17

Elongation 10. +139 May 30 A l m .  x 8: Toomer, 499

2 Antoninus: 15/16 Ephiphi

three days after the third opposition, ... 3 equinoctial hours before
midnight. The twentieth degree of Libra was culminating according
to the astrolabe, while the mean Sun was in Gemini 5;27° at that
moment. Now when [Spica] was sighted in its proper position [on
the instrument] (176;40°), Mars was seen to  have a longitude of
Sagittarius 1;36°. A t  the same time it was observed to be the same
distance (1;36°) to the rear [east] of the Moon's center.

No error in the time of the observation will significantly alter the error of
nearly a degree in the observed distance from Mars to Spica. This datum is
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Elongation-Data Ptolemy C o m p u t e d A
Apparent Time (Alexandria) 21; Oh 1 2 1 ;  111 a
Longitude of Spica 176;40° 1 7 7 ; 5 8 ° +1;18°
Longitude of Mars 241;36 2 4 2 ;  l b
Latitude of Mars -3;14

Elongation of Mars-Spica 64;56 6 4 ;  3 -0;53
True Lunar Longitude 239;20 2 4 0 ; 2 2 +1; 2
Parallax (Longitude) +0;40 + 0 ; 3 9 -0;  1
Apparent Lunar Longitude 240; 0  2 4 1 ;  1 +1; 1
Apparent Lunar Latitude +3;21
Elongation of Moon-Mars -1;36 - 1 ;  0 +0;36

Elongation of Moon-Spica 63;20 6 3 ;  3 -0;17

curious, since Ptolemy seldom reports measurements made with his astro-
labe to fractions other than multiples of 0;10°. I f  the distance between Mars
and the Moon was estimated, rather than measured, the error of 0;36° is
not unreasonable, since the distance in latitude between the two was more
than 6°.

a Computed from 200;30° culminating, yo (Alexandria) = 31;12°
b Computed from Tuckerman [1962-1964, HI and corrected by
+0;6° to compensate for a correction of -0;3° in the Earth's
heliocentric position.

At 21;0" the altitude of Mars was ,=..-; 27° and the altitude
of the Moon was :::-.: 31°. The total refraction of both was less
than 0;2° and has been neglected here. The angle between the
ecliptic and the altitude-circle through Mars was r.-_, 136°.

Elongation No. 10: +139 May 30

Elongation 11. +139 Jul 11 A l m .  xi 2: Toomer, 520

2 Antoninus: 26/27 Mesore

before Sunrise," i.e., about 5 equinoctial hours after midnight (for
the mean longitude of the Sun was Cancer 16;11° and the second
degree of Aries was culminating according to the astrolabe). A t  that

44 Apparent Sunrise occurred at Alexandria (cp = 31;12°) at 5;0h, and true Sun-
rise at 5;2h.
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Elongation-Data Ptolemy C o m p u t e d A
Apparent Time (Alexandria) 5; Oh 4 ; 5 8 h  a
Longitude of Aldebaran 42;40° 4 3 ; 5 2 ° +1;12°
Longitude of Jupiter 75;45 7 6 ; 3 4 6
Latitude of Jupiter —1;55

Elongation of Jupiter—Aldebaran 33; 5 '  3 2 ; 4 2 —0;23
True Lunar Longitude 74;50 7 5 ; 3 8 +0;48
Parallax (Longitude) +0;55 + 0 ; 4 2 —0;13
Apparent Lunar Longitude 75;45 7 6 ; 2 0

Latitude (-2;10) — 3 ; 2 3

Elongation of Moon—Aldebaran 33; 5  3 2 ; 2 8 —0;37

moment Jupiter, when sighted with respect to [Aldebaran], was seen
to have a longitude of Gemini 15;45° and also had the same apparent
longitude as the center of the Moon, which lay to the south of it.

a Ptolemy takes 5;Oh as his datum, but this must have been
computed using the mean Sun (106;11°) instead of the true Sun
(104;41°). With the Sun at 106;11°, the culmination of 2;30° yields
a time of 4;5911 while the same culminating degree with the Sun at
104;41° yields a time of 5;511 [d. elongation no. 5]. Since the Sun
rose at 5;0h, the actual time of the observation must have been a
few minutes earlier. I  have computed the position of the Moon
for 4;581!

At 5;Oh the altitude of Jupiter was 25° ,  while the altitude of
the Moon was F:123°. The total refraction of each was 0;1°,  which
I have omitted in the computations.

Observed.

Elongation No. 11: +139 Jul 11

At the time of the observation, the center of the Moon had not reached
the longitude of Jupiter, but  the edge of the Moon's disk was south of
the planet.

Errors in Ptolemy's elongation-observations and data

The errors of the observations of elongation discussed above are collected
in Table 3.8. Table 3.8a shows the errors of the observations which involve
only the Moon and some reference body, while Table 3.8b gives the errors
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No. Elongation Observed Observer Average
Error

Number of
Observations

1 Moon-Sun Hipparchus +0;29.6° 3
2 Moon-Sun and Regulus Ptolemy +0;26.6 3
3 Planet-Reference Star Ptolemy +0;29.7 5
4 Moon-Planet Ptolemy +0;27.7 3
5 Moon-Reference Star (Implicit) Ptolemy +0;18.7 3

of the observations which involve the Moon, a planet, and a reference star.
In Table 3.8a, column I  gives the error in the observed distance (<  180°)
between the Moon and the reference body; column I I ,  the error in  the
Moon's positive elongation from the Sun or star; and column III, the error
in the datum which Ptolemy derives from the observation. Except  for
elongations nos. 7 and 8, the errors in column III are the errors in the lunar
equations which Ptolemy obtains from the corresponding observations.

In Table 3.8b, the first three columns give the errors in the observed
distances between (I) the planet and reference star, (II) the Moon and the
planet (or the Moon's position relative to the alignment with the planet
which Ptolemy describes in  elongation no. 4), and ( I I I )  the Moon and
the reference star. Columns (I I ' )  and ( I I I ' )  give the errors in the Moon's
sidereal elongation corresponding to the errors in columns I I  and III.

For elongations nos. 4 and 5, the errors in brackets are those which result
i f  we assume that no. 4 was made at a time corresponding to an error of
one sign in the culminating degree (6;35"), or 1;50h after the time Ptolemy
reports, and that no. 5 was made 1;0h earlier than the reported time. A l -
though there is no evidence that the observations were made at these times,
the circumstances Ptolemy describes could not have been observed at the
reported times, so these are not merely observational errors. Consequently,
I have included only the error in Ptolemy's measurement of the distance
between the planet and the reference star in nos. 4 and 5, in  determining
the average errors.

Disregarding the signs of  individual errors, I  find the following average
errors for different groups of observations:

The uniformity in the average error for each group is striking. I t  is par-
ticularly noteworthy that the mean error in Hipparchus' three observations
is slightly larger than for Ptolemy's comparable observations; thus, there is
no evidence that Ptolemy depended on Hipparchus' superior observations'
in determining the Moon's second inequality.

The relatively small average error in the Moon's implicit elongation from
a reference star is something of an anomaly, since we should expect the av-
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No. Date Place
A A  A

Obs. Angle L u n a r  Elong. P to lemy 's  Datum
I  I I  I I I

1 —127 Aug 5 Rhodes +0;24° —0;24° +0; 1°
2 —126 May 2 Rhodes +0;25 —0;25 +0;37
3 —126 Jul 7 Rhodes +0;40 —0;40 +0;58
6 +139 Feb 9 Alexandria —0;48 +0;48 —0; 9
7 +139 Feb 23 Alexandria +0; 4 +0; 4 +0; 4
8 +139 Feb 23 Alexandria +0;28 +0;28 —0;28

No. Date P l a c e

A
Observed Distance

A
Elongation

Star-Planet Moon-Planet Moon-Star Moon-Planet Moon-Star
I I I  I I I II ' I I I '

4 +138 Dec 16 A l e x a n d r i a —0;30° + 0 ; 4 0 °  — 1 ; 2 5 ° —0;40° — 1 ; 2 5 °
[-0;25] [+0; 4] [ - 0 ; 3 7 ]

5 +138 Dec 22 A l e x a n d r i a —0;11 + 0 ; 3 6  — 0 ; 4 7 +0;36 + 0 ; 4 7
[-0; 5] [+0; 4] [ - 0 ;  1]

9 +139 May 17 A l e x a n d r i a +0;31 — 0 ; 3 3  — 0 ;  2 +0;33 + 0 ;  2
10 +139 May 30 A l e x a n d r i a —0;53 — 0 ; 3 6  — 0 ; 1 7 +0;36 — 0 ; 1 7
11 +139 May 30 A l e x a n d r i a —0;23 + 0 ; 1 4  — 0 ; 3 7 —0;14 — 0 ; 3 7

Table 3.8a. Errors in Single Observations of Lunar Elongation
from the Sun or a Star

Table 3.8b. Errors in Multiple Observations of Lunar Elongation from
a Planet or Star
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Mean and
Probable Error

Number of
Observations

A l l  Lunar Elongation-Observations
excluding Nos. 4 and 5

A l l  Observations excluding Lunar
+0; 1.5° + 0; 20° 12

Observations in Nos. 4 and 5 —0; 2.2 + 0; 20 17

erage error in the result of two independent measurements to be larger than
the average error for only one such measurement. Al though the number
of observations in each group is too small to support a f irm conclusion,
it seems likely that this distance was one of the observed data in at least
some of the observations. I n  particular, i t  seems probable that this was
the case in no. 10, where the distance between the Moon and Spica was
found to be 63;20°, while distances between the Moon and Mars and Spica
and Mars were found to be 1;36° and 64;56°.

Combining these results we find:

Although the signs of the errors in the observed distances are not evenly
distributed, the signs of the corrections to the Moon's positive elongations
are so distributed (6-6). Thus, although Hipparchus' observations all un-
derstate the distance observed, while Ptolemy's tend to overstate it, these
systematic errors do not appear in the errors of  the observed (positive)
elongations. Indeed, from the twelve secure lunar observations the mean
systematic error in the Moon's elongation is only +0;1.5°, which may be
regarded as negligible.' We  may, therefore, take the probable error in an
observation of  the Moon's (positive) elongation from a star, a planet, or
the Sun to be +0;20°.

Ptolemy's reductions of the observations have normal errors of +0;5° in
his computed parallax, and +0;9° due to his neglecting refraction. More-
over, where the Sun is used as the reference body, as in Ptolemy's deter-
minations of the lunar equations from elongations nos. 1, 2, 3, and 6, we
should expect an additional average error of +0;15° because of the error in
Ptolemy's solar equation. Assuming a random distribution of such errors,
we should thus expect the probable error in Ptolemy's concluded data to
be +0;27° from observations involving the Sun and +0;22.5° otherwise.

The errors which we actually find are +0;23° from observations involv-
ing the Sun and +0;20° for all other observations excluding nos. 4 and 5.

45 Due to the relatively large errors in the observations the probable error of this
mean systematic error is +0;5.8° Thus, although the observations are in excellent
agreement with the adopted elements, they are of little value for determining the
Moon's acceleration [see 122n47, below].
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Ptolemy's results from both types of observations are thus slightly better
than what we would expect from the errors of the observations and the
errors in  his reductions. T h e  difference, however, is small and possibly
accidental. I  shall, therefore, assume that the probable error in the data
which Ptolemy derives from such observations is ±0;25°.

Since each of the elongation-observations discussed above yields results
which agree exactly with either those of another observation" or (in the
case of the Moon—planet—star observations) with Ptolemy's computed po-
sition of the Moon, these are probably neither random observations nor the
only ones of their sort which Ptolemy made. Although i t  is possible that
Ptolemy altered the reports of the observations to yield these accordant
results, assuming that he did so fails to explain how he obtained his values
for the second lunar inequality and for precession, which agree closely with
what he should have found. Furthermore, in reducing observations nos.
1, 2, 3, 4, and 6, Ptolemy makes significant mistakes in  computing the
positions of the Sun or Moon, which i f  corrected would destroy the exact
agreement which he appears to find and also reduce the quality of his re-
sults. These errors suggest, therefore, that the observations themselves are
honestly reported.

This is not to say that all of the observations are accurately reported. As
noted above, Ptolemy could not have observed /3 Sco, Venus, and the Moon
in a  straight line at the time he reports in elongation no. 4, and Saturn
was covered by the Moon at the time reported for no. 5. I n  view of the
other evidence, however, it is more plausible to assume that Ptolemy either
mistakenly recorded the culminating degree or used the time of a different
observation on the same night in working up these observations, than to
assume that his reports were elaborate fabrications.

To explain the apparent agreement among Ptolemy's results we need
only assume that he possessed a considerable number of similar observa-
tions and that he selected those which illustrated the point he wanted to
demonstrate. Such agreement need not have been forced, since for a suffi-
cient number of observations the random errors in both the observations
and their reductions should yield a certain number of accordant results.

We have no way of knowing whether the observations Ptolemy reports
reflect the general quality of the observations available to him. The criteria
of selection discussed above, however, should not greatly affect the quality

46 In  the case of the observation of Regulus the result yields exactly the value
of precession which Ptolemy should have found, and which he demonstrated with
observations of lunar occultations and stellar declinations. Furthermore, he says
that he also found the same result from similar observations of the other bright
stars along the ecliptic [Alm. vii 2: Toomer, 15].
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Type of Observation Mean Error Weight
Eclipse-times (16) +0;0.6°±0;1.4° 17.2
Occultations ( 6) +0;1.1 ± 0;5.2 1.2
Elongations (12) +0;1.5 ±0;5.8 1.0

Average +0;0.68± 0;1.9 19.4

of observations chosen. I f  anything, the errors in these observations may be
slightly larger than the errors in a truly random sample, since the results
agree with Ptolemy's solar and lunar models and so to some extent reflect
the errors in these models. O n  the other hand, i f  Ptolemy 'fudged' his
reductions to obtain this agreement, then we have no reason to assume
that the observations are not typical. In either case, it seems doubtful that
the errors found in the observations reported should differ significantly from
the errors of such observations in general.

SUMMARY

Table 3.9 summarizes the average errors found for different types of observa-
tions together with the errors in the data which Ptolemy derives from these
observations.' Where the errors are in the observed time of an event, the
corresponding error in (correction to) the Moon's observed mean longitudes
or elongations is also shown.

In general, these errors are consistent with what we should expect from
careful, naked-eye observations given the precision of the reports of the
different types of observations. The lunar eclipse-reports seldom state the
times with a precision greater than half an hour. I f  these eclipses had
been accurately observed and their times correctly given to the nearest
half hour, we would expect an average error of ±71/2 minutes. Thus, the
average additional error due to 'clock-errors' and to errors in observing the
recorded phases is probably on the order of ±8 minutes. In  contrast, the
times of the occultations are, with one exception, reported in integral hours,
leading us to expect an error of ±15 minutes from the imprecision of the
reported times alone. This would leave an average error from other sources
of about ±20 minutes, or more than twice that which appears characteristic

47 The mean systematic errors and their probable errors for observations of
eclipse-times, occultations, and elongations are:

This error (epoch: —250) corresponds to a correction to the assumed acceleration
in elongation of —0.09" T2 ± 0.17" T2 or to SD' = 2.53 ± 0.17'!



Lunar Observations in the Almagest

Type of Observation No. Errors in the
Observations

Errors in
Ptolemy's Data

Lunar Eclipse-Times' 16 —0;1.3h ± 0;10.6h ±0;18h
(Elongations) (+0;0.6° T 0; 5.6° TO; 9.1°)

Lunar Eclipse-Magnitudes
Babylonian 7 +0.7d ± 0.4d +0.7d ± 0.4d
Alexandrian 5 —0.1d ± 0.25d —0.1d ± 0.25d

Occultations: Times b 6 —0;2.2h ± 0; 25h +11; 1h ± 0; 29h
(Longitudes) (+0;1.1° T 0; 12.7° —0;25° T 0; 12°)

Measurements of Elongation' 12 +0;1.5° ± 0; 20° ±0;25°
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a Mean epoch = —285. b  Mean epoch = —123. M e a n  epoch = +64.

Table 3.9

of eclipses. This larger error is probably to be expected from the difficulty
of seeing stars near the illuminated disk of the Moon, as well as from the
ambiguity of some of the reports.

The probable error found in the elongation-observations Ptolemy reports
is somewhat larger than what we might expect from the precision of ±0;10°
which he claims to attain with his astrolabe. Each of these observations,
however, required two accurate sightings, one of the Moon or body to be
observed, and the other of a reference body. Thus, the probable error in a
single reading of the instrument which corresponds to an error of ±0;20° in
the measured elongation is 0;14°. In view of the difficulties of observing the
centers of the Sun and Moon accurately, such an error is not unreasonable.

In computing the errors in each group of observations, I have excluded
the few observations which seemed so discordant as to suggest that signif-
icant non-observational errors affected their reports. I t  is not surprising
that some of the observations should indicate such errors, in view of the
high probability of either an inadvertence on the part of the observer in
working up his observations at a later time, or, in the case of the pre-
Ptolemaic observations, of scribal errors. Newcomb [1878, 53] encountered
the same problem when analyzing the Arabian observations of lunar and
solar eclipses reported by Ibn Yanus, finding that the errors in roughly
80% of the observations were normally distributed, while the rest were
s̀o far from fulfilling this condition as to show conclusively that the law
in question (normal distribution) does not hold, and therefore that the
arithmetical mean is not the most probable final result'.
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The presence of anomalous errors is thus not unique to Ptolemy's re-
ports, and is probably to be expected in any group of early astronomical
observations. Because such errors disproportionately affect the results of
averaging, excluding them more accurately represents the general quality
of this type of observation.

Such discordant observations, however, were part of the corpus of obser-
vations available to Ptolemy, and they do reflect the quality of the data
with which he worked. Hence, in averaging Ptolemy's errors I have gen-
erally included the errors from such observations. These errors account for
part of the difference between the average errors in Ptolemy's data and
those in the actual observations. Errors in Ptolemy's reductions of the
observations and solar model account for the rest of the increase.

The relatively large errors characteristic of the observations of occul-
tations and elongations strongly supports Ptolemy's preference for using
lunar eclipses wherever possible [Alm. iv 1: Toomer, 192]. Not only were
eclipses free from parallax, but they also gave the Moon's position (relative
to the Sun) with substantially greater accuracy than the other types of
observations. Thus, Ptolemy's rejection of observations other than eclipses
in establishing his lunar model at syzygy was practically, as well as log-
ically, sound.



4

The Errors of Ptolemy's Lunar Parameters
Compared with the Errors of His Observations

The aim of this chapter is to determine whether the accuracy of Ptolemy's
lunar parameters is consistent with the average errors in the observations
which he reports, as found in the preceding chapter. For convenience, I
will divide these parameters into two groups. One consists of the mean
motions of Ptolemy's lunar arguments and the values of these arguments
in Ptolemy's time; the other includes the parameters of the model by which
Ptolemy depicts the inequalities in the Moon's motion.

The parameters in the first group can be compared directly with their
modern equivalents and their errors thus easily determined. To  compare
these errors with what we would expect from the errors of Ptolemy's ob-
servations, I have departed from Ptolemy's actual procedure and assumed
that each parameter was determined independently of the others, and also
that in each determination no error was introduced by errors in the other
parameters. In fact, Ptolemy determines several of his parameters simulta-
neously, so that the errors are not independent. This does not significantly
affect the results, however, since my purpose is to ascertain the minimum
probable errors of such determinations.

The parameters which depict the inequalities in the Moon's motion ac-
cording to Ptolemy's lunar model are more difficult to compare meaning-
fully with modern theory. This is partly because Ptolemy's model is not
formally equivalent to Kepler-motion in an ellipse, so that the errors in his
inequality do not arise from the errors in his parameters alone. Instead, the
limitations of his model, even with optimal parameters, produce periodic
errors which are often greater than the errors due to his parameters. Thus,
one aim in discussing the periodic errors in Ptolemy's lunar model will be
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to distinguish between the errors due to his parameters and those due to
the model which he adopts.

A further difficulty arises in choosing the proper quantities in the modern
lunar theory with which to compare Ptolemy's parameters. I t  is possible
to express the general lunar inequality according to Ptolemy's model as a
trigonometric series and to compare the coefficient of each term with the
coefficient of the term with the same argument in modern theory. Such
a comparison may be found in Biot 1848, 703, and also in Kempf 1878,
35, where the errors in Ptolemy's parameters appear as errors in the co-
efficients of the principal terms of the two largest lunar inequalities [cf. also
Tannery 1893, 213].

The principal shortcoming of such a comparison is, on the one hand, that
it does not accurately reflect the circumstances from which Ptolemy derived
his parameters and, on the other, that the quantities which are compared
with the modern coefficients differ from the quantities Ptolemy actually
determined. This is particularly true of the comparison of the 'principal
elliptic term' with the corresponding coefficient of sine/ in the expansion
of the general inequality according to Ptolemy's model, since the concept
of a general term equivalent to the mean equation of center for all elonga-
tions plays no role in Ptolemy's theory. Instead, Ptolemy first determines
the Moon's equation of center at syzygy and then introduces a further
inequality based on observations at quadrature and octant, which varies
with the Moon's elongation. Thus, an evaluation of Ptolemy's principal
lunar inequality should be made for syzygy rather than for all elongations;
whereas an evaluation of his 'lunar inequality depending on the Sun' [A/m.
v 3: Toomer, 264] should be made for quadrature and octant.

At these synodic configurations many of the higher harmonics in mod-
ern lunar theory take on the arguments of the principal terms and, thus,
should be included in the comparison. These terms are ignored by Kempf
[1878, 31], who compares Ptolemy's lunar equation at these elongations
with the principal terms of Damoiseau's lunar theory [1827]. Although the
neglected terms are small, they do affect the results of the comparisons and,
in particular, the coefficients of the omitted terms at these elongations.1
Consequently, it seems more convenient to make a new comparison of the

1 In general, the contribution of such harmonics to a given coefficient differs for
different synodic configurations. Thus, for example, the coefficient of the annual
equation, whose principal term is —11'10", takes on the values 14'20", 8'1'; and
11'10" at syzygy, quadrature, and octant respectively, due to the inclusion of
terms with arguments a,± 2nD, which appear as terms with argument a, at
these synodic configurations.
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terms in Ptolemy's lunar equation with their modern equivalents taken from
Brown [1919, 8] than to attempt to revise the details of Kempf's analysis.

Detailed descriptions of Ptolemy's lunar model may be found in Delam-
bre 1817, ii 142-239; Biot 1843, 694-703; Kempf 1878, 1-37; Tannery 1893,
211; and 0.  Neugebauer 1957, 193-198 and 1975, i 53-144. I n  order to in-
troduce the terminology and symbols used in the following discussion, let
us here review the principal features of this model.

In Figure 4.1, 0  is the center of the Earth and OS points in the direction
of the mean Sun. Therefore, the relationships shown in Figure 4.1 occur in a
reference system which rotates with direct motion relative to the equinoxes
with a velocity equal to the mean motion of the Sun. T h e  center of the
Moon's epicycle is at C, where LCOS is equal to the mean elongation of the
Moon from the Sun, D. The distance of the center of the Moon's epicycle
from 0  is determined by letting a point F, at a distance el from 0, revolve
in the opposite direction to OC in such a way that LSOF = —D and, thus,
LFOC =  2D. The distance FC is taken to be constant and equal to 1— el .
Thus, the distance, OC = R, may be found from the relationship,

R2 — 2Rei cos 2b — (1 — 2ei) =  0.

At syzygy ( b  =  0°, 180°), R  becomes 1;0, its maximum; but at quadrature
it reaches its minimum, 1 — 2e1.

The Moon at M  moves on an epicycle of radius r in the direction shown.
The Moon's mean anomaly is measured from the line NCH, where N is the
point on the extension of FO which is at a distance el from 0  and in the
opposite direction from F. At  syzygy and quadrature, N C H  coincides with
the line OC, so that the mean anomaly (a) is measured from the apogee of
the Moon's epicycle (A) as seen from 0. A t  other elongations, however,
the prosneusis (k) must be added (algebraically) to the mean anomaly in
computing the lunar equation.

The lunar equation (g) is the difference between the Moon's true elon-
gation from the mean Sun and its mean elongation. For  any given value
of D, the equation may be represented by motion on an epicycle of radius r
and distance R from 0. Th is  is equivalent to eccentric motion on a circle
having a radius of 1;0 and eccentricity e = r IR. I n  discussing the errors in
Ptolemy's lunar equation at syzygy, quadrature, and octant, I  shall use the
term 'eccentricity' ( in reference to Ptolemy's model) as synonymous with
the 'radius of  the lunar epicycle at uni t  distance'. Where i t  is desirable
to distinguish between parameters in Ptolemy's theory and their modern
equivalents, I  have used primes to denote Ptolemy's parameters.

In discussing the errors characteristic of different types of  lunar obser-
vations in chapter 3, I  used the terms 'probable error' and 'average error'
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Figure 4.1. Ptolemy's Lunar Model

interchangeably. In analyzing the observational errors, I have disregarded
the few errors which seemed too large to have been caused solely by errors
of measurement, and take 67.4% of the standard deviation of the rest as
the probable error of the group of observations being considered.
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In what follows, I shall assume that these characteristic errors of observa-
tion obey the usual rule for combining independent errors, namely, that the
probable error (A) resulting from the combination of several independent
errors (Ai) is

(1)

To compare the errors in Ptolemy's lunar model with the errors in his ob-
servational data [cf. chapter 31, I have determined the probable error which
arises from each term in the trigonometric series expressing the error in
Ptolemy's lunar inequality. Assuming that all values of a term's argument
are equally likely, the probable error (i.e., the median error disregarding
sign) of a term, ci sin A1, is2

1Ai = ci sin 45° = —ci;

whereas the composite probable error for the whole expression is3

1A = —

(2)

(3)

2 In  a sinusoidal distribution of errors, the probable error is the same as the
standard deviation s found from

27r= -10 i22rr
2 1  C  sin2A dA 1 / 2 c i 2 .

It seems preferable, then, to use the probable error found in (2) instead of the
(smaller) average error,

=
3 Equation (3) holds for expressions which include terms of the form cisin(nAi)
and cicos(nAi), as well as terms, cisin(nAi), where the arguments are indepen-
dent. This follows from the fact that

and

za f021r(a2sin2Ai b2cos2Ai)dAi =  1/2(a2 b 2 )

fo27(a2sin2Ai b2sin22Ai c2sin23Ai ) d A i  = 1/2(a2 b 2  c 2 ) . . .
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Errors in the mean motions of Ptolemy's lunar arguments

Four lunar arguments are tabulated in the Almagest. These are the Moon's
mean motion in longitude (L'),  anomaly (a'), argument of latitude (F ' ) ,
and elongation (D') .  O n l y  three of these are independently determined,
since the mean motion in longitude is derived from the mean motion in
elongation and the mean motion of the Sun (Vs).

The two arguments, a n d  D', have counterparts in the fundamental
elements of modern lunar theory and, thus, are directly comparable with
the mean motions and the values of these arguments. Ptolemy's arguments
of anomaly (a') and latitude (F') are, however, slightly different from those
used in  modern theory. P to lemy counts the Moon's anomaly from the
apogee of its epicycle, which is equivalent to the apogee of its orbit, whereas
today the anomaly is counted from the Moon's perigee. Thus, i f  L'n, is the
Moon's modern mean longitude, and P  the longitude of its perigee, the
angle equivalent to Ptolemy's mean anomaly is

a =  Lin — P f  180°. ( 4 )

Similarly, Ptolemy's argument of  latitude is measured from the north-
ernmost point of the Moon's orbit, instead of from the ascending node as is
the modern practice. Accordingly, i f  N  is the longitude of the ascending
node, the angle equivalent to Ptolemy's argument of latitude is found from
the fundamental elements used in modern lunar theory by

F  =  Ln, — N 9 0 ° . (5)
The mean motions of Ptolemy's arguments are, of course, equivalent to the
mean motions of their modern counterparts, since the phase-angle disap-
pears on differentiating.

Ptolemy derives D', a', and F' from observations of eclipses in such a way
that these arguments are unaffected by the error in his mean motion of the
Sun. From (4) and (5), however, it is evident that Ptolemy's positions and
mean motions of the Moon's apogee and node are affected by the same error
in the Sun's mean longitude as is the mean longitude of the Moon. Con-
sequently, this error affects only the system of reference in which the Moon
moves and not the arguments from which the lunar inequalities are derived.

Table 4.1 gives the mean (Julian) centennial motions of the fundamental
elements and arguments. Those shown in part I  are from modern theory
[Nautical Almanac Office 1961, 98] for epoch 1900.0, corrected in accor-
dance with the elements derived in appendix 1. I n  part I I ,  the same ele-
ments and the principal arguments derived from them are reduced to epoch
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I. Modern Elements 1900.0

i i (L,„) +1336' 307° 53' 36.89" + 21.52"T +  0.0204"T2
p(Ls) +100r 0° 46' 10.79" + 4 .18 "T
i i (b ) +1236' 307° 7' 26.10" + 17.34"T +  0.0204"T2
it(P) +11" 109° 2' 2.52" — 74.34"T — 0.135 "T2
p(N) —5' 134° 8' 31.23" + 14.96"T — 0.024 "T2

II. Modern Elements AD 0.0

µ(Lm) +1336' 307° 46' 55.38" + 20.74"T +  0.0204"T2
fi(Ls) +100' 0° 44' 51.37" + 4 . 1 8 " T
p(D) +1236' 307° 2' 4.02" + 16.56"T +  0.0204"T2

i i(P) +11' 109° 24' 46.22" — 69.21"T +  0.135 "T2
p(N) —5' 134° 13' 24.13" + 15.87"T — 0.024 "T2
p(d) +1325' 198° 22' 9.16" + 89.95"T — 0.1554"T2

(Fit ) +1342' 82° 0' 19.51" + 4 .87 "T +  0.0444"T2

III. Ptolemy's Mean Motions

µ(Lint) +1336' 307° 21' 37.47"
it(L1.9) +100' 0° 19' 42.76"
p ( & ) +1236' 307° 1' 54.71"
it(et') +1325' 198° 29' 56.27"
p ( P ) +1342' 82° 2' 42.82"

IV. Errors in Ptolemy's Mean Motions

A i t ( k ) +0° 25' 17.91" + 20.74"T + 0.0204"T2
0µ(L_9) +0° 25' 8.61" +  4 .18 "T
Aft( f ) ' ) +0° 0' 9.31" +  16.56"T + 0.0204"T2
Aft(eti) +0° 7' 47.11" + 89.95"T — 0.1554"T2
Ap(F ' ) +0° 2' 23.31" +  4 .87 "T + 0.0444"T2

Table 4.1. Expressions for the Centennial Mean Motions
of the Fundamental Lunar Arguments and for
the Errors in Ptolemy's Mean Motions
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Figure 4.2. Errors in the Centennial Mean Motions
of Ptolemy's Lunar Arguments

AD 0.0. In part III are Ptolemy's mean motions for the corresponding argu-
ments; and in part IV, the corrections which must be applied to Ptolemy's
motions to reduce them to motions from modern theory [cf. Figure 4.2].

The improvement in the accuracy of the mean motions of each of the prin-
cipal arguments (D', a', and F') over that of the Sun's longitude is striking.
Apart from the term due to the Moon's acceleration, about which Ptolemy
of course knew nothing, the difference between his mean motion in elon-
gation and that derived from modern elements nearly vanishes throughout
the whole period for which he reports observations.

For —293, the midpoint between the dates of the two eclipses which
Ptolemy uses to correct his provisional (Babylonian)4 mean motions in
elongations and anomaly [Alm. iv 6], the error in his mean motion in elon-
gation is only —0;0.65° per century. In the 8.5 centuries between these two
eclipses, this amounts to an error of —0;5.6° in the observed motion in elon-

4 C f .  Kugler 1900, 6-8; Aaboe 1955 and 1974; 0 .  Neugebauer 1956 and 1975, i,
309-315; Toomer 1980, for discussions of  the Babylonian origin of the provisional
mean motions of  the lunar arguments which Ptolemy takes from Hipparchus.
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gation, or a total error in the measured interval between the two eclipses of
—12 minutes of time. Since the error in Ptolemy's value for the difference
in longitude between Alexandria and Babylon slightly improves the agree-
ment between his mean motion and the modern value, the total error in
the interval between the two eclipses would have been ± 2 0  minutes, i f
the eclipses had been reduced with the proper longitude-difference.

In chapter 3, I  showed that the probable error in the time of a single
eclipse-midpoint used by Ptolemy was ±18 minutes. Thus, we would expect
an average error of ±25 minutes in measurements of the time between two
eclipses, corresponding to an error in the Moon's elongation of ±0;12.8°.

Although the error in Ptolemy's solar eccentricity is effectively reduced
at syzygy by the Moon's annual equation [see 144, below], the additional
probable error in each determination from this source and neglected terms
is ±0;10.3° or,  for two independent determinations, ±0;14.6°, The total
probable error of an observed interval in elongation should, therefore, be
±0;19.4°. This is more than four times the error of the progress in elon-
gation which Ptolemy obtains from these two eclipses, and roughly twice
the error in the progress which he would have found had he used the cor-
rect longitude-difference between Babylon and Alexandria. Thus, his value
for the Moon's mean motion in  elongation (or, more accurately, o f  the
Babylonian System B value, which Ptolemy accepts) is considerably more
accurate than the value we would expect from a single determination based
on a random pair of eclipses.

Ptolemy's mean motion in anomaly agrees less closely with its modern
equivalent than his value for the mean motion in elongation. F o r  —293,
the effective epoch of Ptolemy's determination, the error is —0;12.2° per
century, which corresponds to an error of —1;44° in  the Moon's progress
in anomaly in 8.54 centuries.

To compare this with the error we would expect from the errors of the
observations and the limitations of Ptolemy's model, I  assumed that the
Moon's motion at syzygy can be described by a simple epicyclic model in
which the radius of the epicycle is e and that of the deferent is 1;0. I  further
assumed that e and the mean longitude (L) are accurately known, and that
the equation (g), which is equal to the difference between the mean and
the true longitude, is directly determined from observation.

Since g is small,

so that

tan g g  =
1 - e  cos a'

—e sin a

Ad — ( 1  e  cos ay
, e  < 1.Og e ( e  c o s  a)

(6)

(7)
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Also, Aa /Pg is a minimum when a =  180°, at which point

Da _ 1 — e
Ag e (8)

Using Ptolemy's value for e, 0;5,15, the minimum error (Ad) which would
arise from an error Ag in the observed equation is

Aa > 10.46.g. (9)
Since Ad/Pg becomes infinite at a =  arccos(—e), the probable error in a
caused by a given error in g will be considerably larger than that shown in
(9). The  average error is difficult to evaluate, however, and the minimum
will suffice for our purposes.

Following the same procedure as we used to obtain the probable error
in a determination of the mean motion in elongation, we find the proba-
ble error in a single observed equation to be ±0;13.7° From (9) such an
error would produce a probable error greater than ±2;22° i n  the mean
anomaly obtained from a single determination. Thus, the probable error in
the progress in anomaly between two observations is greater than ±3;21°,
corresponding to an error of ±0;24° per century. I n  contrast, the error in
Ptolemy's mean motion in anomaly is just half this amount; and his cor-
rection to his provisional mean motion of —0;1,59.5° per century slightly
improves his value for this parameter.

As noted at the beginning of this chapter, the assumptions (except for
that o f  epicyclic motion) from which I  derived the minimum error in  a
as a function of that in g do not exactly correspond to Ptolemy's actual
procedure, since he determines L, a, and e simultaneously from a triad of
eclipses. Since, however, the estimates derived above are for the circum-
stances most favorable for determining the anomaly, Ptolemy's procedure
should lead to  a  substantially larger probable error. I n  any case, i t  is
clear that Ptolemy's mean motion in anomaly is considerably better than
would be expected from a single determination, in view of the errors of the
observations available to him and the imperfections of his solar model.

To determine the correction to his provisional mean motion in the argu-
ment of latitude, Ptolemy selects two eclipses which satisfy the conditions
that:
(a) they be separated by the greatest possible interval of time,
(b) they be of the same magnitude, and
(c) they occur when the Moon is at the same distance from the Earth.

As Ptolemy points out, the Moon will be at the same distance from the same
node in the same direction during two eclipses satisfying these conditions.
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Descending E c l i p t i c
Node

Figure 4.3

The two eclipses Ptolemy chose for this correction occurred in —490 Apr
25 and +125 Apr  5, so that the effective epoch for this determination is
—183. For this date, the error in Ptolemy's mean motion in argument of lat-
itude is —0;2.54° per century, which corresponds to an error of —0;15.6° in
the progress in argument of latitude during the intervening 6.15 centuries.

Figure 4.3 shows the configuration o f  the Moon, the Earth's shadow,
and the descending node at the time of these two eclipses. T h e  error in
F  caused by an error (AM)  in the recorded magnitude will be very nearly

OF O F  ^ 0.2.5AM (*),
tan 5°

(10)

since both O F  and A M  are small.
Since a systematic error in the estimate of the magnitudes will have the

opposite effect of  the error in F,  depending upon whether the Moon has
passed the node or not, we may combine the systematic and random errors
found for the Babylonian eclipse-magnitudes. The  probable errors in the
estimates of the magnitudes then become [cf. Table 3.5]

A M  =  ±1 digit, for Babylonian eclipses, and ( 1 1 )
=  ±0.25 digit for Alexandrian eclipses. ( 1 2 )

Consequently, from the error in the eclipse-magnitudes alone, we should
expect an error in F  from two eclipses of ±0;29.6°. To this must be added
the probable error, ±0;19.4°, due to the uncertainty in the combined times
of the eclipses and to the error in Ptolemy's solar equation as reduced by
his omission of the Moon's annual equation. Thus, the total probable error
in the mean progress in argument of latitude determined from a pair of
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eclipses should be ±0;35°, corresponding to an error in the mean motion
in the argument of latitude of ±0;5.8° per century.

Again, Ptolemy's actual error is less than half the probable error deduced
from the errors of the recorded observations. In this instance, however, his
correction to his provisional motion in argument of latitude, ±0;1.5° per
century, worsens the agreement with the modern value, and accounts for
roughly 60% of the total error in this parameter.

In conclusion, we have seen that, although Ptolemy's mean motion of
the Moon in longitude and the mean motions of the lunar apse and the
node are all affected by the error in his mean (tropical) motion of the Sun,
the mean motions of the lunar arguments which are determined directly
from lunar eclipses are not. Furthermore, the error in the mean motion
of each of these arguments is significantly less than what we would expect
from the average errors found in Ptolemy's data and the errors introduced
into his determinations by failing to take account of the annual equation.

This may, of course, merely reflect the excellence of Ptolemy's provisional
mean motions, since his corrections to them are very small (he makes no
correction to the mean motion in elongation). Indeed, Delambre [1817, i
xxvii] has suggested that Ptolemy's corrections were introduced merely to
increase his readers' confidence in his determinations. This unsupported
assumption is doubtful, however, since the mean motion which Ptolemy
does not correct is the most accurate of the three, and since he also would
have had no reason not to correct the provisional mean motions had he
found significant discrepancies.

Indeed, what is curious is that Ptolemy did not obtain larger corrections
than those which he applied, not because his provisional mean motions
required them, but because from the errors of the observations we would
expect significant deviations in individual determinations. In  general, the
procedures which Ptolemy describes should have led to mean motions less
accurate rather than more accurate than those with which he started. Con-
sequently, it is difficult to avoid the conclusion that either Ptolemy was very
fortunate in his choice of eclipses or he had better reasons than he states
for adopting the mean motions which he did.

Errors in the mean arguments

Although it is possible to attribute the excellence of the mean motions of
Ptolemy's lunar arguments to the accuracy of his provisional mean motions,
it is much more difficult to explain the consistent accuracy of Ptolemy's
mean arguments themselves. Table 4.2a shows the corrections necessary
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Year AL'm A.01 Aa' AP' AL",

-700 -2;18,49° +0; 5,22° +1;29, 7° +0;23,38° -2;24,11°
-600 -1;55,18 +0; 3,45 +1;11,48 +0;20,46 -1;59,30
-500 -1;32,20 +0; 2,24 +0;55,56 +0;17,57 -1;34,44
-400 -1 ;  8,33 +0; 1,19 +0;41,33 +0;15,12 -1 ;  9,54
-300 -0;44,30 -0;  0,30 +0;28,39 +0;12,53 -0;45, 0
-200 -0;20, 4 -0 ;  0, 2 +0;17,14 +0; 9,51 -0;20, 2
-100 +0; 4,44 -0;  0,17 +0; 7,18 +0; 7,27 +0; 5, 1

0 +0;29,50 -0;  0,16 -0;  1, 8 +0; 5, 1 +0;30, 6
+100 +0;55,19 +0; 0, 2 -0 ;  8, 4 +0; 2,40 +0;55,17
+200 +1;21, 8 +0; 0,36 -0;13,30 +0; 0,24 +1;20,32
+500 +2;40,39 +0; 3,58 -0;20,44 -0;  5,54 +2;36,41

+1000 +5; 0,13 +0;15,12 -0;  2,11 -0;12,33 +4;45, 1
+1500 +7;27,42 +0;33,37 +0;55;11 -0;20,50 +6;54, 5

A(L',„)
A(D ' )
AO' )
A(Fl )
A(L13)

+0;29,50° +  0;25,17.91°T +  10.37"T2 +  0.0068"T3
-0;  0,16° +  0 ;  0, 9.31°T +  8.28"T2 +  0.0068"T3
-0;  1, 8° -  0 ;  7,41.11°T +  45.00"T2 +  0.0518"T3
+0; 5, 1° -  0 ;  2,23.31°T +  2.44"T2 +  0.0148"T3
+0;30, 6° +  0;26, 8.61°T +  2.09"T2

Table 4.2a. Errors in Ptolemy's Lunar Arguments, AD 0.0

Table 4.2b. Errors in Ptolemy's Lunar Arguments: Tabular Values

to reduce Ptolemy's mean arguments to those computed from Brown (cor-
rected in accordance with the adopted accelerations of the mean longitudes
of the Sun and Moon), and Table 4.2b records the values of these corrections
for centennial dates from -700 to +1500.

The errors shown in Table 4.2b are plotted in  Figure 4.4. Evidently,
the error in each of the three principal lunar arguments is much smaller
in Ptolemy's time than at the time of the Babylonian eclipse-observations
which he used, together with his own observations, to determine the neces-
sary corrections to the mean motions. Th is  is more than a litt le curious,
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since nothing in Ptolemy's procedure for determining the mean elongation
and anomaly should lead to a more favorable result at his own time than at
the earlier epoch. Indeed, as chapter 3 shows, the three eclipses Ptolemy
observed are in no better agreement among themselves than are the three
Babylonian eclipses (ca. —720) which he uses in this determination.

2°

Error (degrees)

•

- .........
AD

—1  •

— /  _
-  •  A L
-  •

3

•

• /
•

Ptolemy

............

—600 — 4 0 0  — 2 0 0  0  2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

Year

Figure 4.4. Errors in Ptolemy's Mean Lunar Arguments

Even more striking, moreover, is the small error at Ptolemy's time in his
mean argument of latitude. I n  contrast to his procedure for determining
the epoch of the mean elongation and anomaly, he does not use the same
eclipses that he used to correct its mean motion in order to determine the
epoch of his mean argument of latitude. Instead, to avoid making assump-
tions about the relative sizes of the diameter of the Moon and the Earth's
shadow, he uses two other Babylonian eclipses which occurred at —719 Mar
8 (also used in determining the mean elongation and anomaly) and —501
Nov 19. These eclipses were required to satisfy the same conditions as in



The Errors of Ptolemy's Lunar Parameters and Observations 1 3 9

Argument Probable Error from Actual Error
A Single Observation +135 —700

D' ±  0;13.5° +0; 0.2° +0; 5.4°
a' (>) ±  2;20 —0;10 +1;29
F' ±  0;25 +0; 2 +0;24

the determination of the correction to the mean motion, except that they
had to occur at opposite nodes rather than at the same node.5

Apart from this difference—which enables Ptolemy to solve a simple
linear equation in order to find the distance of the Moon from the node—
the procedure (and, thus, the probable error of the determination) is similar
to that used to correct the mean motion in argument of latitude. Since none
of the eclipses used in the two determinations are the same, however, the
epoch established for this parameter at Thoth 1 of Nabonassar 1 [cf. 54119,
above], is not directly connected to any observations in Ptolemy's time.
It is, then, al l  the more remarkable that the argument of  latitude—like
the mean elongation and anomaly—is substantially closer to its modern
equivalent at Ptolemy's time than at the time of the earlier observations
which Ptolemy used to determine it. Also remarkable is the fact that the
errors in Ptolemy's lunar arguments are so small, especially at Ptolemy's
epoch. Comparing the probable error in each argument i f  determined from
a single observation with the errors in arguments in +135 and —700, we
find:

In each case the errors for both +135 and —700 are less than the probable
errors from a determination based on a single observation. For Ptolemy's
time, moreover, the errors in his arguments are all less than the probable
error by more than a factor of  10. Thus ,  the error in  Ptolemy's mean
elongation in +135 is less than 1/6o of what we would expect from a sin-
gle observation,6 wh i le  the errors in the mean anomaly and argument of
latitude are both less than 1/14 of their expected errors.

5 Ptolemy could as easily have used eclipses occurring on opposite sides of the
same node, but not eclipses on either the same side of the same node (such as he
used to correct the mean motion in argument of latitude) or on opposite sides
of different nodes. For  a thorough discussion of  the methods of Ptolemy and
Hipparchus for determining the epoch of the Moon's argument of latitude, cf.
Pedersen 1974.
6 This is somewhat less than the probable uncertainty of the modern value; but
even allowing for this uncertainty, Ptolemy's error should be less than 1/2o of the
probable error for a single determination.
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The smallness of these errors, particularly for Ptolemy's time, cannot be
explained merely by the excellence of his mean motions of these arguments.
Even had he chosen his eclipses to demonstrate values for the mean motions
of his arguments similar to the values of his provisional mean motions, we
would expect to find errors in the mean arguments at the times of both
sets of eclipses similar to the probable errors shown above.

These comparisons show clearly that, apart from Ptolemy's erroneous
value for the mean motion of the Sun, the error introduced into his lunar
model by the arguments and their mean motion is very small over the pe-
riod —750 to +150, and negligible at his own time (the maximum error
due to the error in anomaly is less than 0;1°). Although this speaks well
for Ptolemy's lunar model, it unfortunately raises more questions than it
answers. The principal question, of course, is how Ptolemy obtained these
values, which in all six instances are significantly closer to the modern val-
ues than one would expect in view of the average errors of the observation
which he reports and those introduced by his reductions of these observa-
tions. Not only are all of Ptolemy's mean motions accurate to well within
the observational error over the entire period for which observations were
available, but the values of these arguments in his own epoch are excep-
tionally accurate. Since Ptolemy obtains his mean motions from pairs of
observations, we would expect some compensating errors so that his mean
motions ought to be in better agreement with their modern equivalents
than are the actual values of the arguments themselves. We find just the
opposite, however, since at Ptolemy's time the values of each of his lunar
arguments are in even better accord with the modern values than are his
mean motions.

Excellent agreement between the Ptolemaic and modern values for one
or two of these parameters would not be remarkable, since such agreement
could be accidental. Bu t  the probability of accidentally achieving much
better values for all six parameters seems too small to support the assump-
tion that this accuracy was wholly fortuitous. A  more likely explanation
is that these parameters represent the result of a larger number of deter-
minations. Such procedure would reduce the probable error of a single
determination quite sharply, especially since the errors introduced by the
reduction to the mean arguments would tend to cancel each other.

I shall return to the question of whether Ptolemy might plausibly have
followed such a procedure, after discussing the periodic errors in his lunar
model. Suffice it to note here that, in contrast to his model for the Sun, the
mean motions and values of his lunar arguments are in excellent agreement
with the modern values for his own time and that, in general, they remain
so until well into the medieval period.
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Periodic errors in Ptolemy's lunar model

The symbols and terms used in what follows as well as the characteristics
of Ptolemy's lunar model at different elongations are described at the be-
ginning of this chapter [cf. Figure 4.1]. I n  each comparison, I  have used
the value of the parameters which Ptolemy adopts in his tables.? As above,
subscripted a n d  's' denote quantities pertaining to the Moon and Sun
respectively.

Errors at syzygy. Ptolemy's lunar model at syzygy is formally equivalent
to simple eccentric motion on a circle of radius 1;0 and r  =  e' =  0;5,15.
For eccentric motion, the equation may be represented by8

1 1  1g' =  c' sin a —  2e0 sin 2a — —3e,3 sin 3a + 4—e'4 sin 4a . ( 1 3 )

On substituting for e' =  0;5,15 =  0.0875 and converting from radians to
degrees, we obtain the coefficients shown in Table 4.3, which also presents
the corresponding coefficients from Brown 1919, 8.

The differences in the last column form the coefficients of a new series of
sine-terms which describes the error in Ptolemy's lunar equation. Only the
error in the coefficient of sin a is due primarily to the error in the radius of
the epicycle (e'): the errors of the coefficients on the higher harmonics arise
for the most part from the assumption of eccentric (i.e., epicyclic) rather
than elliptic motion. I f  in (13) we replace e' by 2e (where e is the eccentric-
ity of the Moon's actual orbit), the error in Ptolemy's equation becomes

0'g =  +4.2" sin a — 4'44.4" sin 2et + 26.9" sin 3et — 2.3" sin 4d. ( 1 4 )

Thus, the error shown in  (14) can be attributed to  the limitations o f
Ptolemy's model rather than to  the inaccuracy o f  his value for the lu-
nar eccentricity.

7 These are not always the precise values which Ptolemy finds in computing his
parameters, nor are they the values which result from an accurate recomputation
of the parameters from his data. For  example, he obtains 0;5,13 and 0;5,14 for
the radius of the lunar epicycle at syzygy from the three Babylonian eclipses (ca.
—720) which he uses and from the three eclipses which he observed. Furthermore,
there is an error in his computed longitude o f  the Sun at  the t ime o f  the first
Babylonian eclipse (-720),  the correction of  which would yield yet another value
for the radius of the lunar epicycle. For reasons of consistency, and also because
of the large probable errors in individual determinations o f  such parameters, i t
seemed preferable to use the values Ptolemy adopted in constructing his tables.
8 See appendix 3, for proof.
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rt I I I
Ptolemy B r o w n

II I
A(II-I)

1 —5° 0' 48.2" —5° 3' 15.1" —2' 26.9"
2 +13' 9 . 4 "  + 8 '  58.1" —4' 11.3"
3 —46.1" — 2 2 . 5 " +23.6"
4 +3.1" + 1 . 0 " —2.1"

MODELS A N D  PRECISION

Table 4.3. Coefficients of sin(na) in Lunar
Equation for D =  0° 180°

Subtracting the coefficients of each term in (14) from the errors in the
corresponding terms given in Table 4.3, we obtain for the error in Ptolemy's
equation (which is due to the error in his eccentricity),

Aeg =  —2'31.9" sin a + 33.1" sin 2a — 3.3" sin 3a + 0.1" sin 472 .  ( 1 5 )

Thus, the errors in the coefficients o f  the higher harmonics of a are due
almost entirely to the limitations of Ptolemy's model rather than to the
error in his eccentricity. Since Ptolemy could not have significantly reduced
these errors without changing his model, the optimal value for the radius of
the lunar epicycle is that which would make the coefficient of sin a equal to
5;3, 15°, or

e'optimal =  0;5,17,35 (R = 1). (16)

For this value of e', the equation at a =  ±90° would be T5;2,27°, and the
maximum equation would be T5;3,39.4°.

In accordance with the procedure described above [cf. equation (3)], the
coefficients shown in column II I  of Table 4.3 result in a probable error in a
single computed lunar equation of

Og =  ±0;3.45° ( 1 7 )

The maximum error, which occurs near a =  ±57°, is TO;5.9°.
In addition to the errors discussed above, there are a number of inequal-

ities at syzygy o f  which Ptolemy is unaware, and which thus contribute
to the errors of his computed positions and also to his determinations of
the mean elongation or argument of latitude from observed positions. The
inequalities with coefficients greater than 0;1° are:

(a) Annual equation
(b) Reduction to ecliptic
(c) Miscellaneous
(d) Miscellaneous

+14'19.8" sin a., — 15.9" sin 2a,
—7'52.6" sin 2F
—5'33.2" sin (a,,, + a , )
+3111.7" sin (am +  a,)
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Since the arguments of each of these terms can take on any values inde-
pendently of the others, the probable error of a computed longitude due
to the omission of these terms is, in accordance with equation (3),

±0;12.5°. ( 1 8 )

When the longitude of  the Moon is determined with reference to the
Sun, as is the case i n  eclipses and direct measurements of  the Moon's
elongation, the mean elongation resulting from the application of Ptolemy's
equation will be affected not only by the errors in this equation, including
the contribution from omitted terms, but  also by the error in Ptolemy's
solar equation, which alters the computed place o f  the Sun. A s  shown
previously [cf. 46, above] the latter error is

Ag's =  +23'24" sin a's — 1'9" sin 2als +  9'12" cos a's.

Since for an observed elongation

D L n i d -  g„ — (Lni g „ ) ,  ( 1 9 )

where gm and g, are the actual equations of the Moon and Sun, i t  follows
that

D  =  Dolls ( g m  g f s )  ( A g m f  A g s 1 ) ,  ( 2 0 )

where gin, and g9 are Ptolemy's equations for the Moon and Sun and where
Ag'7,2 and Ag's are the errors in Ptolemy's equations. Accordingly, the
error in the mean elongation of  the Moon determined from an accurate
observation will be

A D  =  Ag's — Ag",n. ( 2 1 )

Since the error due to omitting the annual equation has the same sign as
the principal term in the error of Ptolemy's solar equation, the two errors
will tend to cancel each other. Combining these errors, we find for the
error depending only on the solar anomaly, which I shall call the 'apparent
annual equation',

AD(a's) =  —9'4" sin Et's +  55" sin 2Cz9 — 8'6" cos as, ( 2 2 )

where a!, is  the Sun's mean anomaly according to  Ptolemy, and where
A(a's) has the same sign as the required correction to a computed longi-
tude (hence, the opposite sign from AD) .  The  probable error in a single
determination due to errors depending only on the solar anomaly is, thus,

A(a's) =  ±0;9.2°, ( 2 3 )
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making the total probable error due to neglected terms equal to

AD = ±0;11.2° ( 2 4 )

For eclipses, however, where the reduction to the ecliptic may be neglected,
the probable error from neglected terms becomes

ADed = ±0;9.7°. ( 2 5 )

The combined probable error in Ptolemy's equation during eclipses due to
both neglected terms (25) and to the errors of the particular model which
he assumes (17) is, then, ±0;10.3°, the major part of which is due to the
error in his solar equation.

Taking this error with the average error in elongation found in Ptolemy's
eclipse-data, ±0;9.1°, we should expect the average error in individual de-
terminations of the 'observed' equation to be ±0;13.7°. Under optimal con-
ditions (a ± 9 0 ° ) ,  this would correspond to an error in the radius of
the lunar epicycle of Re. ±0;14 (R = 1;0), although, in general, the error
would be considerably larger than this. As noted in the discussion of the
errors in his argument of anomaly and its mean motion, Ptolemy's actual
determination involves three eclipses and simultaneous solutions for the
mean elongation and anomaly as well as the eccentricity. This procedure,
however, should not greatly affect the probable error of each determination.

It seems, then, that the probable error of a single determination of the
Moon's eccentricity is roughly five times as great as the difference between
Ptolemy's value for this parameter and the optimal value (0;5,17,35). More-
over, the contribution of the latter error to the total error of a computed
longitude is negligible in contrast to the error originating from the use of an
eccentric model and from the omission of inequalities with arguments other
than the mean anomaly. Indeed, Ptolemy's value for the radius of the lunar
epicycle is sufficiently accurate that no improvement upon it would signif-
icantly alter the accuracy of his equation at syzygy, unless accompanied
by both the use of an equant model and the introduction of inequalities
equivalent to the omitted terms listed above.

Errors at quadrature. Ptolemy's lunar model at quadrature [Alm. v 2-4:
Toomer, 259-269] is similar to his model at syzygy except that the distance
of the center of the epicycle from the observer (R) is 0;39,22,(30) instead
of 1;0. Thus, the equation in this synodic situation is identical with that
of an eccentric model with eccentricity e' =  0;8 =  0.1333. Following the
procedure described above, we obtain the coefficients of sin (na), which are



The Errors of Ptolemy's Lunar Parameters and Observations 1 4 5

n
I

Ptolemy
II

Brown
II I

A(II-I)

1 —7° 38' 23.0" —7° 29' 57.9" +8' 25.1"
2 +30' 38.4" +15' 36.3" —15' 2.1"
3 —2' 43.0" —0' 46.7" +1' 56.3"
4 +16.5" +2.8" —13.3"

shown in Table 4.4 together with corresponding values from Brown 1919, 8.

Table 4.4. Coefficients of sin (na) in Lunar
Equation for D =  ±90°

Although the principal coefficient agrees less well with its modern equiv-
alent than in the case of syzygy, the major cause of the error is still the limi-
tations of the eccentric model rather than the effective eccentricity assumed
by Ptolemy. The error in the lunar equation—assuming Kepler-motion in
an ellipse and substituting e', Ptolemy's value for the eccentricity (i.e., 0;8),
for 2e—is

Aig =  +8'9.8" sin a — 4'29.6" sin 2a + 19.8" sin 3a — 1.4" sin 4a . ,  ( 2 6 )

but the irreducible error of the model assuming eccentric motion as well
as the modern value for the eccentricity would be

deg =  +14.2" sin a — 13'50.9" sin 2a + 1'47.2" sin 3a — 12.4" sin 4a ... (27)

The value of the radius of the epicycle which would yield the same coef-
ficient for the principal terms as Brown's at distance R = 1;0 would be

e'optintal =  0;7,51,14,

while the distance R which would yield the same coefficient for r  =  0;5,15
(r is the radius of epicycle) would be

Roptimai =  0;40,6,29 ( e l  =  0;9,56,45).

At quadrature the values of the neglected inequalities are:

Annual equation
Reduction to ecliptic
Miscellaneous
Miscellaneous

+8'0.7" sin a3
—5'50.8" sin 2F
+1'34.2" sin (a„, +  a8)
+1'45.5" sin (a.  +  a8).
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The 'apparent annual equation' [see 144, above], however, is

AD(al,) = —15'23" sin eis + 55" sin 2d, — 9'0" cos as. ( 2 8 )

Taken together, the probable error in a computed longitude due to the
omitted terms is

A D  =  ±0;7.2° ( 2 9 )

if the actual annual equation is included, and

A 'D  =  ±0;13.5° ( 3 0 )

if the apparent annual equation is included.
Since Ptolemy's determination of the magnitude of the lunar equation at

quadrature depends upon the computed position of the Sun, (30) represents
the probable error in a single determination due to the omitted terms and
the error in his solar eccentricity. Furthermore, since Ptolemy seeks to
determine the equation when the mean anomaly is near ±90°, the error in
the coefficient of the term with argument 2a [cf. Table 4.4] would affect his
results very little. Thus,  we need consider only the error in his observed
elongations, i n  addition to that shown in  (30) above, t o  determine the
probable error in a single determination of the equation at quadrature.

In chapter 3, the average error of Ptolemy's concluded data from meas-
urements of lunar elongations was found to be ± 0 ; 2 5 ° .  Taking this as the
probable error of a single observation, we find that the probable error in
a single determination of the equation at quadrature is

Agobs =  ±0;28.4°. ( 3 1 )

In contrast, the error in the principal term of Ptolemy's equation is only
0;8.4°. Once again, Ptolemy's value is significantly more accurate than
would be expected from a single observation, although the disparity is
not as large as in the case of syzygy. Conversely, i f  we assume a normal
distribution of errors, we find that the probability that two observations
should both yield an error in the principal coefficient of less than 0;10° and
with the same sign is on the order of 0.01.

Errors at octant. Ptolemy's lunar model at  octant consists of  an epicy-
cle of radius r  =  0;5,15, whose center is R  =  (0;49,412 — 0;10,192)1/2 =
0;48,36,(1.5). Thus,  the effective eccentricity in these synodic configura-
tions (D =  ±45°, 135°) is e' =  0;6,29 = 0.108023, which value can be used
in the standard expression (13) for the lunar equation in eccentric motion.
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I II I I I IV
n Ptolemy Brown A(II-I) C(ni0Ptoi /cos k

1 - 6 °  3 '  16.1" -6 °  17' 55.9" -14'  39.8" - 6 °  11' 17.1"
2 +18' 19.8" +13' 19.6" -5 '  0 . 2 " +20' 3 . 4 "
3 -1 '  10.2" -37.7" +32.5" - 1 '  26.6"

I I I I I I
n Ptolemy B r o w n A(II-I)

1 T l °  17' 6 . 5 "  T l °  19' 37.9" T2' 31.4"
2 ±8' 8 . 9 "  ± 3 '  35.0" ±4' 33.9"
3 T50.9" T 1 4 . 2 " ±36.7"

In contrast to the situation at syzygy and quadrature, however, the pros-
neusis (k) does not disappear at octant, so that the anomaly is increased by
k(D), where k is positive for D =  45°, 225° and negative for D =  135°, 315°

In consequence, the expression for the equation at octant becomes

=  - e '  sin (a f  k) 2  -1 el2 sin 2(a 3k) -  -1e'3 sin 3(a f  k) . . .

= e' cos k sin a + -2e0 cos 2k sin 2a -  3 e,3 cos 3k sin 3Et .

1 1+  el sin k cos a ± -2 e'2 sin 2k cos 2a 3  e'3 sin 3k cos 3a . . . ,

where the upper signs apply at D  =  45°, 225° and the lower signs at D  =
135°, 315° Since at octant

k =  arcsin e l  =  1;59.3°,
1- e l

the numerical values of the coefficients become those shown in Table 4.5a-b.

Table 4.5a. Coefficients of sin (na) in Lunar Equation
for D =  ±45°, 135°

Column IV  of Table 4.5a shows the values of  Ptolemy's coefficients of
sin (na) which would result i f  the anomaly were not affected by prosneusis.
Thus, the difference between column IV and column I may be taken as the
effect of prosneusis on the principal terms of the equation of center.

Table 4.5b. Coefficients of cos (na)
for D =  45°, 225°
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As shown above for other synodic configurations, the major part of the
errors in the coefficients of the higher harmonics arises from the assump-
tion of eccentric circular motion, and so is due more to the model than
to its parameters. The coefficients of the two principal terms, however,
merit further attention. The coefficient of cos a, which arises solely from
Ptolemy's prosneusis, is analogous to the term known as the evection [cf.
Brown 1896, 128], whose modern coefficient equals 1°16'26" (the difference
between this value and 1°19'37.9" is due to the fact that the latter includes
the coefficients of the sines of other harmonics which become coefficients
of F cos a for D =  ±45°, 225°). Thus, regardless of whether we consider
the evection proper, or its apparent equivalent at octant, it is evident that
Ptolemy's value for the evection is very nearly as accurate as his value for
the radius of the lunar epicycle at sygyzy.9

In contrast to Ptolemy's coefficient corresponding to the evection, that of
the so-called 'principal elliptic term' agrees less well with its modern equiva-
lent. The reason for this is partly the effect of the prosneusis and partly the
fact that Ptolemy's mechanism for increasing the apparent size of the lunar
eccentricity by pulling in the center of the lunar epicycle does not represent
the apparent eccentricity very well except near the extreme distances.

Although the average of the coefficients of sin a at syzygy and quadrature
according to Ptolemy's theory, 6°19'36'; agrees very well with the modern
term, 6°17'56" [cf. Table 4.5a], this mean value occurs neither at D' = ±45°
nor at mean distance (R =  0;49,41), but at a mean elongation slightly
greater than ±45° Without prosneusis, the coefficient of sin a at D'  =
±45° (6°11'17") is roughly 0;8° less than the corresponding modern value;
while with prosneusis this difference roughly doubles, so that the total
difference between the coefficient of sin a at octant and the mean of the
coefficients at syzygy and quadrature is 0;16,20°. 10

9 T h e  'apparent evection' found from Brown 1919, 8  becomes ±  1;13,220 a t
syzygy and quadrature in contrast to  1;19,38° at octant. F o r  Ptolemy, the ap-
parent evection a t  syzygy and quadrature (i.e., hal f  the difference between the
coefficients of sin d) is ±  1;18,45°; whereas the coefficient of  cos d at octant would
be somewhat less than 1;17,6°, if the center of the epicycle were at mean distance
at octant. Thus, Ptolemy's apparent evection exhibits a variation similar to that
found in modern theory, but  wi th precisely the opposite phase. T h i s  variation
is not indicated in Tannery's analysis [1893, 211] since the principal term in its
coefficient is ete13, whereas Tannery neglects all terms smaller than e12.
10 T h e  greater part of this last variation is represented by the term in Tannery's
concluded expression for the equation, the magnitude of which is given as eie12
and which Tannery [1893, 213-213] says is roughly 0;18°. I n  fact, however, the
total coefficient is slowly convergent, while ee12 is equal to  only 0;8,52°.
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At octant, the principal terms in the Moon's equation which are omitted
in Ptolemy's model are:

(a) The variation ± 3 9 ' 2 9 . 9 "  (1) =  ±45 '  225°)
(b) The annual equation ± 1 1 ' 9 . 9 "  sin as — 1'20" cos a.
(c) Reduction to the ecliptic —6'51.6" sin 2F + 50" cos 2P.

Including the error in Ptolemy's solar equation, we obtain for the 'apparent
annual equation'

AD(a's) =  —12'14" sin as + 10'32" cos as. ( 3 2 )

Excluding the variation, the probable error in the elongation due to omitted
terms is

A i D  =  ±0;12.71

and the probable error of a computed elongation due to the errors in the
coefficients of the terms in the equation is

A2D =  ±0'11.5':

The combined probable error in a computed elongation, disregarding the
variation, is thus very nearly

AD  =  ±0;17.1°.

Combining this with the probable error of an observed elongation, r-...-' ±0;25°,
we obtain for the probable error in the determination of any additional
inequality from a single observation

AD =  ±0;30.3°,

an uncertainty which is nearly equal to the magnitude of the variation.

The complete coefficient,

eie12 (1 +  5/2 el +  5e12 +  75/8 e13 • • • ),

is equal to roughly 0;14,45°. The remaining difference between this amount and
0;16,20° is due to a small additional term whose coefficient equals

ele13 (1 +  4e1 +  11e12 • • • ),

which is neglected by Tannery.
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In conclusion, the parameters of Ptolemy's lunar model represent very
well the principal terms of the two largest inequalities in the Moon's mo-
tion. A t  the same time the constraints imposed by the geometrical model
Ptolemy assumes introduce errors significantly larger than those due to
his parameters, especially at intermediate elongations between syzygy and
quadrature. I t  is also evident that Ptolemy's introduction of the prosneusis
is needed merely to yield the proper correction for the evection at elonga-
tions other than syzygy and quadrature and, consequently, that it does not
correspond to a partial correction for an additional inequality at octant. On
the other hand, the mechanism by means of which Ptolemy represents the
evection—i.e., by drawing in the center of the lunar epicycle and applying
the further correction for prosneusis—automatically produces a secondary
inequality, only part of  which is due to the prosneusis. Th is  residual in-
equality should not be considered a partial correction for the variation, as
Tannery [1893, 214] implies, since its argument differs from the argument of
the variation. Indeed, in discussing prosneusis [Aim. v 5], Ptolemy does not
claim that he is introducing a further inequality, but instead treats prosneu-
sis as a necessary part of the correction for the 'inequality based on the Sun'.

I f  one includes the variation, the probable error of an elongation near oc-
tant computed from Ptolemy's theory is ±(0;39.5 ± 0;17.1)° Although this
error is only slightly larger than the effective probable error in a single ob-
served elongation (±0;30.3°), the apparent secondary inequalities produced
by the limitations of Ptolemy's model would significantly increase the dif-
ficulty o f  discovering and evaluating the inequality corresponding to the
variation. Thus, it is difficult to see how Ptolemy could have substantially
improved his lunar model without fundamentally altering it.

In summary, the deficiencies of Ptolemy's lunar theory may be attributed
almost wholly to the model itself, and not to the parameters deduced from
observations. I t  is also clear that however we define Ptolemy's correction
corresponding to the evection, the magnitude of  this correction is very
nearly as accurate as Ptolemy's value for the radius of the lunar epicycle at
syzygy, despite the fact that the observations from which he determined
his second lunar inequality were much less accurate than the observations
of eclipses.

Both inequalities, moreover, are markedly more accurate than one would
expect from the procedures he describes, the errors of his observations, and
the residual errors introduced into his reductions by the constraints of his
model. Since this is true not only of the mean motions of all three lunar ar-
guments, but—more significantly—also of their actual values at Ptolemy's
time, Ptolemy must have obtained his parameters in some other manner
than the one he describes, given that the probability is negligible that all
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eight determinations should by accident be significantly more accurate than
would be expected.

The most natural explanation for this unexpected accuracy is that each
of these parameters resulted from many determinations based on a con-
siderably larger body of observations than Ptolemy reports. Indeed, it is
difficult to see how Ptolemy could have avoided using some kind of average,
since, in general, two separate determinations of the same parameter would
show marked differences due to the errors in the observations and their re-
duction. I f  Ptolemy did not use some averaging procedure, it is unclear
how he could have chosen among conflicting determinations, let alone con-
sistently chosen 'correctly'. At  the same time, the conclusion that Ptolemy
himself, rather than Hipparchus, must have followed such a procedure is
supported most strongly by the small errors in the actual values of all three
lunar arguments at the time when Ptolemy observed, as well as by the high
accuracy of the correction equivalent to the evection, which is indisputably
due to Ptolemy.

We may ask why Ptolemy did not describe such a procedure for arriving
at the values of his parameters, if this was in fact the manner in which he
determined them. The absence of an explicit description, however, is not
at all inconsistent with his general treatment of his own contributions to
the substance of the Almagest. Although he frequently mentions the con-
tributions of Hipparchus and occasionally discusses the difference between
Hipparchus' solution to a problem and his own, nowhere does he attempt
either to give a chronological account of his own work or to explain how
he arrived at the particular models with which he accounts for the motions
of Moon and planets. Indeed, the general objective of the Almagest is
didactic rather than historical, and for the most part Ptolemy seems more
concerned to show how, and from what sort of observations, a given result
can best be derived than to justify the results of his own derivations."

Whenever possible, moreover, these demonstrations are both formal and
rigorous, exceptions occurring only in those instances where either no rig-
orous solution can be achieved or where Ptolemy appears not to know the
formal solution. This close adherence to the standards of geometrical rigor
suggests a further reason why Ptolemy may have chosen to finesse the ques-
tion of how he actually arrived at his parameters, since he could not have
justified with comparable rigor any method of treating errors.

11 The two parameters whose correctness Ptolemy supports with more than min-
imal evidence are the mean motion of the Sun and its related motion, precession.
This leads one to wonder if Ptolemy may not have had more reason to doubt
the accuracy of these parameters than his others.
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Thus, if Ptolemy was less than candid concerning the manner by which
he arrived at many of his results, his intent may well have been to avoid
having to find a logical justification for the treatment of errors, rather than
to trick his readers into accepting his results.



APPENDIX 1

Secular Accelerations of the Sun and Moon

The foregoing investigation draws importantly on the evidence of the errors
in Ptolemy's solar and lunar observations that is obtained from comparisons
with modern theory. Consequently, it is desirable to minimize the possibil-
ity of introducing significant systematic errors from modern theory into the
results. The inequalities in the motions of the Sun and Moon are presently
known with far greater accuracy than such comparisons require. The mod-
ern values for the mean longitudes of the Sun and Moon at ancient epochs,
however, are affected by considerable uncertainty as to the magnitudes of
the secular accelerations of the mean motions of both celestial bodies.

This uncertainty arises primarily from the apparent difference between
the results obtained from analyses of modern observations and those de-
rived from ancient observations. I t  is also, however, reflected in the differ-
ent results derived from investigations of ancient observations—differences
which arise partly from divergent evaluations of the quality of the empir-
ical evidence from antiquity and partly from variations in the observations
investigated, methodologies employed, assumptions made, and even errors
committed. Finally, a small but additional element of uncertainty arises
from the use by the various investigators of slightly different elements—and,
hence, of different effective epochs—thus complicating the comparison of
their results.1

The following discussion reviews the principal attempts to determine the
accelerations of the Sun and Moon down to the 'definitive' determination by
Spencer Jones [1939], which has been adopted in national ephemerides (i.e.,
`modern theory') since 1952. Its purpose is to identify the values of these
parameters least likely to introduce significant errors into comparisons of
Ptolemy's observations with modern theory.

1 Fotheringham's researches [1909, 1915a, 1918, 1920, and 1923] are a particul-
arly troublesome example of these difficulties, since nearly all are based on dif-
ferent lunar elements.
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My principal finding is that de Sitter's [1927] ostensibly definitive analy-
sis of the ancient observational evidence, which Jones [1939] incorporated
in his determination, was seriously flawed by several significant errors, the
correction of which causes the apparent difference between the accelera-
tions derived from ancient and modern observations to disappear. This
correction leads to a significantly smaller value of the Moon's apparent
non-gravitational acceleration (+3.6") than that (+5.22") currently used
by the Nautical Almanac Offices [1961, 98, 107], and to a slightly smaller
value (+1.1") of the Sun's apparent acceleration than is presently accepted
(+1.23"). These values are also smaller than those found by Schoch and
adopted by P. V. Neugebauer [1929, 1934] and Tuckerman [1962-1964] in
their tables. They are also significantly different from those derived from
ancient observations by Newton [1969, 1970] and Muller and Stephenson
[1975], but are consistent with the results obtained from ancient observa-
tions by Curott [1966] and from modern observations by Morrison and
Ward [1975]. Moreover, a recent analysis of ancient and medieval ob-
servations by Stephenson and Morrison [1984], which includes extensive
data from cuneiform sources, suggests accelerations for the period cov-
ered by Ptolemy's observations which are only slightly higher than those
used here, although lower than those of Fotheringham, Schoch, and, most
recently, Newton [1985].

To facilitate the comparison of historical investigations, I have followed
the convention of using the term 'acceleration' to denote the coefficient of
the term in T2 in the polynomial expression for any element, where T is
expressed in Universal (rather than Ephemeris) Time. Thus, except where
otherwise noted, the accelerations referred to denote the apparent acceler-
ations resulting from both gravitational and non-gravitational causes. The
symbols used in equations are as follows:

Sff, Sidereal lunar acceleration in longitude
S'„, Non-gravitational lunar acceleration in longitude, Sm — 6.05"
Ss Sidereal, non-gravitational apparent solar acceleration in longitude

due to the slowing of the Earth's rate of rotation
SD Acceleration of the Moon's mean elongation, 5m — S3
SP Non-gravitational acceleration in elongation, —  S3 = Sip-6.05'f

Ever since Clemence's paper [1948, 172], it has been customary to use
Ephemeris Time as the independent variable and to consider AT = ET —
UT ( the cumulative effect of the Earth's variable rotation) in place of Ss,
and to use 1/2 ( t h e  resulting non-gravitational retardation of the Moon's
sidereal longitude) in place of S .  . To  facilitate comparisons with recent
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studies, I  note the following relationships between the accelerations dis-
cussed here and related parameters discussed by others. (The approximate
relationship for 4 ,  results from the adoption of different effective epochs
for the modern mean motions.)

AT  1 / 2 e  l b / w e
ss =  24.35T2 =  24.35 =  15.46

Smi =  1 3 . 1 6 8 5 9
Is 2  2

Early determinations of the Moon's acceleration

The first to  suggest that the Moon exhibited a sensible acceleration was
Edmund Halley. On  October 19, 1692, he read a paper before the Royal So-
ciety proposing that certain discrepancies among the terrestrial longitudes
ascribed to such places as Babylon and Antioch could be reconciled by sup-
posing that the Moon (and planets) were retarded by the aether [MacPike
1932, 229].2 Th i s  retardation, Halley concluded, showed the impossibility
of the world's eternity. Subsequently, on October 18, 1693, he promised
[MacPike 1932, 232]

to make out the necessity of  the world's coming to an end, and
consequently that it must have had a beginning, which hitherto had
not been evinced from anything that has been observed in nature.

Although the Journal Book of the Royal Society [see MacPike 1932, 232]
notes that Halley was ordered to print a dissertation on this subject, his
only published reference to the Moon's acceleration appeared in 1695 as a
postscript to an article discussing the ruins of Palmyra [Halley 1695, 174].3

2 MacPike [1932, 210] has collected the references to  Halley in Thomas Birch's
History of the Royal Society, which includes the contents of the Society's Journal
Book up to December 1687. MacPike also published further references to Halley
from the Society's Journal Book from January 1687/8 t o  July  1, 1696. T h e
quotations in the text are from this source.
3 One  frequently encounters the statement that  Halley first proposed the exist-
ence of  a lunar acceleration in an earlier paper published in 1693 [Halley 1693],
in which he discusses four eclipses described by al-Battdra and corrects some of
the numbers given in the two editions of  al-Battani [1537, 1645] then available.
Although it is possible that his discovery of the acceleration arose from comparing
his reconstructed epochs for al-Battath's lunar arguments with values computed
from contemporary lunar theory, Halley makes no mention of the phenomenon in
this paper. Cf.  Houzeau and Lancaster 1882-1889, i i col. 1197.
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In this he asked 'any curious traveller residing there' to make observations
of lunar eclipses in Baghdad, Aleppo, and Alexandria, so as to enable him
to re-determine the longitudes of these places. With secure values for these
longitudes, he

could then pronounce in what proportion the Moon's motion does
accelerate; which that it does I think I can demonstrate, and shall
(God willing) one day make it appear to the publick.

The promised publication never appeared, and it seems that Halley never
succeeded in determining the amount of this acceleration. I n  the second
edition of the Principia [1713, 421], Newton did mention that Halley was the
first to discover the Moon's acceleration as shown by Babylonian eclipses
and eclipses observed by al-Battani. Th is  reference, however, was sup-
pressed in the third edition of 1727 for reasons I  have been unable to
discover.' Moreover, Halley makes no reference to this acceleration in
his lunar tables [1749], which were completed (although not published)
by 1720, suggesting that he was unable to satisfy himself that i t  really
existed.

After Halley, the question of the Moon's acceleration was taken up by
Richard Dunthorne [1749, 162] who attempted to determine the amount
of 'that acceleration of the Moon's motion which Dr. Halley suspected.
In his determination, he rejected eclipses observed by Tycho Brahe and
Bernard Walther as being too near his own epoch, and also those observed
by al-Battani because of the uncertainty of the longitudes of Antioch and
Racca. Instead, he used three solar eclipses—two of which were reported by
Ibn Yiinus (977 and 978) and the other by Theon (364)—and three lunar
eclipses reported by Ptolemy (-720, —382, —200). He  chose the latter
because each occurred near Sunrise or Sunset and thus afforded a partial
check on the times reported by Ptolemy. From these eclipses, Dunthorne
concluded that the magnitude of the Moon's acceleration was roughly 10",
an estimate which has proven to be very nearly correct.

Values of the accelerations similar to Dunthorne's were subsequently ob-
tained by Mayer [1752] and Lalande [1757], but neither introduced any ad-
ditional observational evidence or significantly improved upon Dunthorne's
rough analysis.' Concurrently, the Moon's acceleration was proving an em-
barrassment to theoretical astronomers, since no gravitational explanation

4 I  can find no reference to this question in the published correspondence of
either Halley [MacPike 1932] or Newton [Turnbull 1959-1961, Edleston 1850,
Cohen 1958, Rigaud 1841].
5 Mayer [1752, 389-392] discusses only the two Arabian eclipses used by Dun-
thorne and remarks on the unsatisfactory nature of the Ptolemaic eclipse reports.
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for this phenomenon could be found. As a result several papers appeared,
most notably by Lagrange [1773], Jean Bernoulli [1773], and LaPlace [1773],
in which the authors emphasized that the empirical evidence supporting the
existence of this phenomenon was not decisive, particularly in view of the
(ostensibly) dubious reliability of Ptolemy's reports. Curiously, all these
authors considered only the eclipses discussed by Dunthorne and ignored
the 16 others described in the Almagest.

A theoretical explanation of the Moon's acceleration was finally achieved
by LaPlace [1786], who showed that it resulted from a slow variation of the
eccentricity of the Earth's orbit. Moreover, LaPlace's initial computation
of the magnitude of the acceleration, 11.135", agreed well with the empirical
determinations of Dunthorne, Lalande, and Mayer.

The close agreement between the theoretical and empirical values of the
Moon's acceleration reduced the suspicion with which Ptolemy's eclipse-
reports had been regarded. I t  also reduced the necessity of a more pre-
cise empirical determination, since the magnitude of the acceleration could
be computed from gravitational theory using elements known with high
accuracy from modern observations. I n  his Mecanique celeste, LaPlace
[Bowditch 1829-1839, i i i  643] justified his final value for the Moon's ac-
celeration, 10.18" ..., with the remark,

This secular equation is placed beyond doubt by Mr. Bouvard, by
a profound discussion of the ancient eclipses which were known to
astronomers and also of  those he has obtained from an Arabian
MMS of Ibn Yunis.6

Bouvard, however, seems not to  have published this paper, and LaPlace
evidently did not think it necessary to discuss his results further. Elsewhere
LaPlace [1835, 492-494] showed that his own computed values of  the ac-
celerations of the Moon's elongation, anomaly, and argument of latitude
yielded values for these arguments at Thoth 1, Nabonassar 1 (Ptolemy's
epoch) that were in good agreement with Ptolemy's tabular values, values
which LaPlace took as representative of Ptolemy's eclipse-data.

In his tables, Mayer includes a correction for the Moon's acceleration equivalent
to +6.7" T2 (epoch: 1700), without indicating how he arrived at this number.
In a subsequent revision of his tables, Mayer [1770] changed the magnitude of
the acceleration to +9.00'; again without explanation.

Lalande [1751, 430] obtained the value of +9.886'; using the same eclipses as
Dunthorne, but after making small corrections to the Moon's mean anomaly at
the time of the Arabian eclipses (+977,8).
6 A  text and translation of the observations reported by Ibn Ylinus were pub-
lished by Caussin in 1804.
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As a result of LaPlace's work, it was generally accepted that the available
ancient observations supported the magnitude of the Moon's acceleration
computed from gravitational theofy, which in turn was considered more
accurate than any empirical determination. Consequently, ancient eclipses
received little attention during the first half of the nineteenth century, ex-
cept for occasional attempts [cf., e.g., Wurm 1817, Zech 1851] to improve
the modern values of the Moon's mean motions in anomaly and argument
of latitude.

By 1850, improvements in the accuracy of the lunar theory made it possi-
ble to use the path of totality of solar eclipses as evidence of the magnitude
of the Moon's acceleration. A i r y  [1853, 1857], and Hansen [1854, 8] inves-
tigated the circumstances of a few ancient solar eclipses which appeared
to have been total at known places, and showed that these reports could be
satisfied by a small increase in the value of the secular acceleration found
by LaPlace. As  a result, Hansen adopted the value 12.18" for the sidereal
acceleration of the Moon in his lunar tables published in 1857, even though
this value differed from the theoretical value.

Shortly before the publication of Hansen's lunar tables, Adams [1854]
showed that certain terms in the development of the theoretical value of
the acceleration, which LaPlace and others had neglected as insensible,
were not insensible at all; and that, when these were included, the value
for the acceleration was roughly half that obtained by omitting them. This
discovery precipitated a heated controversy, but was eventually accepted.
The definitive value for the Moon's theoretical sidereal acceleration was
found by Brown [1909, 148; 1919] to equal +6.05" ±  0.02" (1900).

By destroying the apparent agreement between the theoretical value of
the secular acceleration and that found from ancient eclipses, Adams' dis-
covery re-established the desirability of securely determining the secular
acceleration from ancient observations. T h e  problem should have been
straightforward, since, as Newcomb [1878, 25] pointed out, the secular ac-
celeration could be determined from the Ptolemaic and Arabian eclipses
with a probable error of ±0.4" and ±0.8" respectively, i f  the Moon's mean
centennial motion could be determined from modern observations with an
equivalent accuracy. The latter seemed possible given the number and pre-
cision of observations since 1750, provided that the deviations from theory
since 1750 could be attributed to either observational errors or errors in
theoretical terms of short period. Thus, the principal requirements for a
straightforward solution were merely that the coefficients of the significant
theoretical inequalities o f  long period be accurate and that the ancient
observations be free of large systematic errors.
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As i t  turned out, neither requirement could be satisfied with certainty.
The first condition—that Hansen's lunar theory should adequately rep-
resent the inequalities of long period in the Moon's motion—was initially
challenged by Delaunay [1863], who showed that a large term which Hansen
had found to arise from the action of Venus, +21.47" sin(8V — 13G +4;44`),
was virtually insensible (0.272") when its development was completed. Due
to the difficulties attending the development of the planetary terms in the
lunar theory, this conclusion (like Adams') was also questioned for some
time. But  subsequent investigations confirmed Delaunay's calculation, and
virtually eliminated the possibility that a term of this magnitude would re-
main undetected.

Since Hansen [1854] had shown that his theory, including the question-
able Venus-term, satisfied the observations from 1750 to  1850 well, the
correction of  this term meant that the Moon exhibited unexplained de-
viations from its theoretical position. These deviations, moreover, could
not be adequately described by the observations in this interval, since the
period o f  the inequality supposed to  account for them (239 years) was
more than twice the interval for which reliable observations were available.
Thus, the determination of the secular acceleration from ancient observa-
tions came to require also a resolution of the discordance between modern
theory and observations, in order to permit establishing the Moon's mean
motion securely from modern observations.

Modern determinations of the accelerations of the Sun and Moon

The problem of re-determining the Moon's acceleration from ancient obser-
vations was first attacked intensively by Newcomb. In  1870, he showed that
Hansen's theory, even with the erroneous Venus-term, failed to satisfy both
a number of eclipses prior to 1750 and the most recent observations since
1850. This removed any possibility of describing the Moon's deviation from
theory solely by means of  observations from the period 1750-1850, and
caused Newcomb to investigate observations of  occultations and eclipses
made by 17th and 18th century astronomers (later extended in his second
memoir to include observations of occultations to 1908).

Having extended the interval for which lunar observations could be used
to obtain the necessary corrections to Hansen's theory, Newcomb made
two separate attempts to determine these corrections. The first, published
in 1878, used observations of occultations and eclipses from 1620 to 1750
together with the errors deduced from Hansen's theory by eliminating the
above-mentioned Venus-term. The second, published in 1912, extended the
comparisons of occultations to 1908 and introduced certain corrections to
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Hansen's elements and planetary terms. I n  both investigations, Newcomb
rejected al l  ancient reports of ostensibly total solar eclipses,7 a n d  deter-
mined the Moon's acceleration from the times of the lunar eclipses reported
by Ptolemy and of the lunar and solar eclipses described by Ibn Yanus.

The results o f  these two investigations were very nearly identical, de-
spite the several refinements and great amount of additional observational
material included in the later paper. Af ter  removing the empirical Venus-
term, Newcomb [1878] found the following corrections to Hansen's mean
longitude for 1800:

L1878 =  —1.14" — 29.17"T — 3.86"T2 +  15.5" sin (1.32°T + 93.9°)
SID =  2.27" ( 1 )
SD =  8.30';

while in his later paper he found the correction to be:

AL1912 =  —0.31" — 26.57"T — 4.22"T2 — 0.0067"T3
+  12.95" sin (1.31°T + 100.6°)

SID =  1.91"
SD =  7.94".

(2)

Subsequently, Brown [1913, 699; 1915, 513] found that Newcomb omit-
ted some planetary terms of long period in his second paper which, when
included, made Newcomb's final result for 1800:

AlL1912 =  —1.14" — 27.24"T — 3.378"T2 — 0.0067"T3
+  12.95" sin (1.31°T + 100.6°)

S'D =  2.75"
SD =  8.77';

(3)

In his papers of 1878 and 1912, Newcomb followed slightly different proce-
dures in arriving at his corrections to Hansen's elements, but both solutions
were based on the assumption that the deviation from theory in modern
times was properly described by a mean motion and sinusoidal term which
minimized the squares of the deviations. The major part of Newcomb's cor-
rection to the Moon's mean motion and his entire correction to the mean

7 Cf. Newcomb 1878, 28-34; 1912, 228-246, for an excellent critical discussion of
the quality of the ancient reports of total eclipses as evidence for determining the
amount of the accelerations of the Sun and Moon.
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longitude at epoch thus arise from solving the equations of condition de-
rived from modern observations on the assumption of a periodic deviation.

Furthermore, a  substantial part of  Newcomb's correction to Hansen's
acceleration was due to his resulting correction to Hansen's mean motion.
Thus, as shown in  his earlier paper, Newcomb's correction to Hansen's
mean motion by itself required a corresponding correction to Hansen's ac-
celeration of

AS,, =  —1.25"(1800)
= 10.9"(1800)

in order to  satisfy the solar eclipses o f  Thales (-584),  Larissa (-556),
and Agathocles (-309), which Hansen used. Thus, the effective difference
between the secular acceleration Newcomb derived from the Ptolemaic and
Arabian lunar eclipses (1878) and the acceleration satisfying these three
solar eclipses was 2 . 1 " ,  equivalent to roughly 20 minutes in the time of
an eclipse at Ptolemy's epoch and to 35 minutes at —400.

Newcomb's work raised two important problems. The first was whether
it was proper to assume that an unexplained deviation from gravitational
theory in the Moon's motion was periodic over the interval for which mod-
ern observations were available and, thus, whether Newcomb's reduction
of Hansen's mean motion was justified. Although there appears to be no
formal justification for doing so [cf. van der Waerden 1961], the absence of a
more satisfactory procedure has made it common practice to determine the
Moon's mean motion by a periodic least-squares analysis, which minimizes
the deviations shown by modern observations. Thus, most of Newcomb's
reduction of Hansen's mean motion has been accepted.

The second problem, which Newcomb discussed in his paper of  1878,
was whether the Ptolemaic and Arabian eclipses did not require a smaller
value in the Moon's acceleration than that which appeared to satisfy certain
ancient solar eclipses. This question became a matter of controversy even
before Newcomb published his second paper and eventually occasioned a
re-examination in bits and pieces of all of the relevant ancient observations.

In a series of memoirs, Ginzel [1882-1884] discussed reports of over 50
solar eclipses ranging in date from —752 to 1415. F r o m  29 of  these, he
obtained corrections to Hansen's elements which slightly reduced Hansen's
acceleration, but  which increased his mean motion in 1800 by 9`! Ginzel
also arrived at a correction to the motion of the Moon's perigee which was
considered too large to fall within the limits of uncertainty of either mod-
ern theory or modern observations. Final ly,  in  his Spezieller Kanon der
Finsternisse [1885, 5], Ginzel published small additional corrections. I n
1887, Oppolzer published his Kanon der Finsternisse [cf. Oppolzer 1962],
which was based upon Hansen's elements modified by a different empirical
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correction than Ginzel's. Newcomb [1912, 238] showed that Oppolzer's cor-
rection to the Moon's mean motion and secular acceleration was virtually
identical with his own, but that Oppolzer also incorporated inadmissible
corrections to the mean motion of the node and the secular acceleration of
the perigee, both of  which were thought to be determined securely from
gravitational theory.

In 1905 and 1906, Cowell analyzed reports of six ancient solar eclipses,
which seemed to indicate that totality was visible at specific locations. Ex-
cept for the eclipses of —309 (Agathocles) and —430 (Thucydides), neither
Newcomb nor Airy had previously discussed any of these eclipses. Cowell
concluded that  five solar eclipses (-1062, —762, —647, —430, and 197)
could be satisfied only by decreasing the secular acceleration of the Moon's
node or increasing the secular acceleration of the Sun and Moon by 3.5'!

Newcomb challenged Cowell's results, arguing that such a reduction in
the acceleration of the node was inadmissible on theoretical grounds, while
his own analyses of modern observations of the Sun and Mercury rendered
implausible the existence of a solar acceleration only a third as large as Cow-
ell proposed. Nevertheless, although the numerical results of Cowell's anal-
ysis were never widely accepted, his suggestion that the Sun exhibited a per-
ceptible acceleration was eventually confirmed by subsequent investigators.

After Newcomb's last memoir, Fotheringham took up the problem of
determining the secular accelerations of the Sun and Moon from ancient
observations. I n  a series of papers extending from 1909 to 1927, Fother-
ingham analyzed not only the observations o f  solar and lunar eclipses
[1920a—b] which had been previously utilized for these purposes, but also
the equinox-observations of  Hipparchus [Fotheringham 1918], the lunar
eclipse-magnitudes reported by Ptolemy [Fotheringham 1909a], and the
lunar occultations reported in the Almagest [Fotheringham 1915a]. H i s
final estimate of  the values best satisfying the eclipses and occultations
was Sm =  +10.8", Ss =  +1.5 '  and SD =  9.3" (SD =  3.27"), applied to
a mean motion and epoch (1800) very nearly identical to Newcomb's [cf.
Fotheringham 1920b, 125].

Fotheringham's values for the secular accelerations derived from differ-
ent types of  observations are shown in Table A1.1. H is  discussion of the
non-Babylonian eclipses reported by Ptolemy led to nearly the same accel-
eration of the Moon's mean elongation as the one Newcomb had obtained
from his analysis of both Ptolemaic and Arabian eclipses. His investigations
of other ancient data, however, indicated both a larger secular acceleration
of the Moon and the existence of a sensible acceleration of the Sun. The lat-
ter was perhaps Fotheringham's most significant finding, and was attested
directly by the Alexandrian eclipse-magnitudes and Hipparchus' equinox-



Secular Accelerations

Lunar Lunar  Eclipse
Eclipses Magnitudes

Occultations Equinoxes So la r  Eclipses
(Hipparchus) (To ta l i t y )

S,.,2
Ss
SD

1.78" ±  0.45"
7.9"

10.3" ±  0.74" a 10.8"
1.95 ± 0.27" 1 . 5 "

9.3"
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a Corrected from 10.8" in accordance with Fotheringham 1923, 273.

Table A1.1. Fotheringham's Accelerations of the Sun and
Moon from Different Ancient Observations

observations, as well as indirectly by the difference between the values for
the lunar acceleration derived from occultations and the acceleration in
elongation derived from lunar eclipses.

The individual values for the Sun's acceleration determined from the
different sets of observations were not entirely consistent, and the discrep-
ancies appeared to support a relatively high value for this acceleration.
The occultations and lunar eclipses suggested a solar acceleration of 2.4"
(originally 2.9',' close to Cowell's value), compared with roughly 1.9" (orig-
inally 1.0") from equinoxes, 1.8" from eclipse-magnitudes and 1.5" from
solar eclipses. Similarly, the acceleration of the Moon's elongation found
from occultations, equinoxes, and eclipse-magnitudes was 8.4', compared
with 9.3ll from solar eclipses and 7.9" from lunar eclipses. Thus,  Fother-
ingham's results appeared to confirm the discrepancy, first suggested by
Airy [1853] hal f  a century earlier, between the acceleration in elongation
implicit in the lunar eclipse-times and that derived from other ancient data.

Fotheringham's results became an important element in the derivation
of the accelerations presently accepted as 'modern theory'. Accordingly,
the specific values which he obtained from different types of observations
deserve critical scrutiny.

First, i n  determining the Sun's secular acceleration from Hipparchus'
equinoxes, Fotheringham [1918] assumes a constant error in  declination
(-0;4.4°), which he derives from Hipparchus' declinations of  seven stars
near the equator [cf. Ptolemy, Alm. v i i  3]. H e  then applies this error,
which differs appreciably from the mean systematic error of +0;0.7° for all
18 declinations [cf. Pannekoek 1955, 64], to Hipparchus' spring equinoxes
from —134 to —127 in order to obtain his 'definitive result,

Ss =  +1.95" ±
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(a) Sm = +10.8" ±  0.7"
(b) Sm = +10.8" ± 0.9"
(c) Sm = +10.0" ±  0.8'f

(a') Sm = +10.1" 0.7"
(b') Sm = +10.1" ± 0.9"
(c') Sm = + 9.3" ± 0.8'!

In the same paper, Fotheringham showed that assuming an error in dec-
lination which would yield the best fit for all equinoxes (-0;7.6° ± 0;0.46°)
would make the most probable acceleration

S, = +1.0" ± 0.18If

Thus, while the probable errors obtained from the discordances are rela-
tively small, the determination is very sensitive to the assumed systematic
error in declination. On balance, the lower result seems at least as proba-
ble as the higher, but virtually any value for the secular acceleration of the
Sun between r.:-1 +0.8" and +2.0" is arguably consistent with Hipparchus'
equinox-observations.

Much the same can be said of Fotheringham's determinations based on
the reported lunar eclipse-magnitudes and occultations. In the case of the
former, he [1909a] excludes the Babylonian eclipses, which would increase
the secular acceleration, while taking no account of the uncertainty of the
motion of the node. As a result his final determination,

Ss = +1.78" ± 0.45",

is uncertain by a considerably larger amount than the error he estimates.
In the case of the occultations, the result, which Fotheringham de-

duced from a set of seven very discordant observations, depends largely
on his assumptions about the probable clock-errors. Using three different
assumptions—(1) that the clock-error was proportional to the time from
Sunrise or Sunset, whichever was closer to the event; (2) that the clock-
error was independent of the time from Sunrise or Sunset; and (3) that
the clock-error was proportional to the time from Sunset alone (which he
describes as 'improbable,')—Fotheringham [1915a, 393] found:

Of these, he accepted (a) as the most probable. Subsequently, Fothering-
ham [1923] corrected an error in his comparisons, thereby modifying the
above values (assuming the same modern mean motions) to:
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From (a') and a further correction to Cowell's value for the Moon's mean
motion, Fotheringham [1920b, 125] concluded that the Moon's sidereal ac-
celeration best satisfying Ptolemy's occultations was

S„i=10.3"±0.74".

The probable error of this, however, could easily be increased by a slightly
different estimation of the probability of assumptions (a) and (c).

In 1920, at the conclusion of a paper re-investigating the ancient solar
eclipses, Fotheringham [1920b, 126] announced his oft-quoted values for
the secular accelerations of the Sun and Moon,

Sm. =  +10.8" S im =  +4.75"
Ss =  +  1.5" S I D  =  3.25';

which he asserted best satisfied all classes of ancient data. As shown by the
graph on [1920b, 123] of that paper, these eclipses give extremely uncertain
and discordant results. Indeed, Fotheringham seems to have obtained his
final values by assuming the value of the secular acceleration of the Moon
previously derived from the Ptolemaic occultations (10.8"), and accepting
the largest solar acceleration consistent with this value and the condition
that the eclipse of —128 be total at the Hellespont. His subsequent correc-
tion of the Moon's acceleration as determined from the occultations would
have satisfied the eclipse of  —128, wi th  values for the solar acceleration
ranging from +0.9" to  +1.25"; while his lower value for the Moon's ac-
celeration derived from the occultations under assumption (c) would have
satisfied the eclipse of Hipparchus, together with several others with a solar
acceleration ranging from +0.5" to +0.9';

I f  we disregard Fotheringham's determination of the Sun's acceleration
from eclipse-magnitudes and Hipparchus' equinoxes as too uncertain, or,
alternatively, i f  we accept the value S3 =  +1.0" derived from his int i-
tial analysis of the equinoxes as equally probable as his concluded value
(+1.95"), then the bulk of the solar eclipses, including that of Hipparchus,
would be satisfied by the accelerations:

=  +9.9" ±  0.4"
S'n =  +3.85" ±  0.4"

=  +0.9" +  0.2"
SID =  +2.95" ±  0.6';

These values, moreover, agree with the corrected results of Fotheringham's
analysis o f  the occultations on either assumption concerning the clock-
errors, as well as with his initial determinations of the secular acceleration

8 Cf. Fotheringham 1923, 123.
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of the Sun from Hipparchus' equinoxes. They also agree very nearly with
Newcomb's final determination (as corrected by Brown) of the acceleration
of the Moon's elongation from both Arabian and Ptolemaic eclipses, the
discordance being reduced to t i  0.21!

Following Fotheringham's investigations, Schoch [cf. 1926, 3; 1931] re-
computed the occultations described in the Almagest with greater preci-
sion than Fotheringham had and also re-investigated the circumstances of
a number of ancient solar eclipses. Schoch's procedure for determining
the values of the two accelerations from this material contrasted sharply
with both Newcomb's and Fotheringham's. Whereas they had derived their
results from the average deviations of a relatively large number of obser-
vations, Schoch's values, as far as I can make out, were determined from
two events, the occultation of Spica observed by Timocharis in —282 Nov 8
[Ptolemy, Alm. vii 3: Toomer, 336] and the solar eclipse of —128 Nov 20
associated with Hipparchus. Concerning the former, Schoch noted a dis-
crepancy (previously remarked by Ptolemy) between the time reported for
the occultation and the comment that it occurred 'just as the Moon was
rising'. Accepting the second designation as more accurate and interpret-
ing it to mean that the occultation took place half an hour after Moonrise,
Schoch concluded that the sidereal secular acceleration of the Moon was

Stn, = +11.09'f

Although he gives no details, he says in the same work [1926, 3] that the
Sun's acceleration was determined from the ancient solar eclipses, of which
t̀he best criterion for [determining] the element is the eclipse of Hipparchus

in —128'. Since Schoch's adopted value, Ss =  +1.511`f would make this
eclipse central at the Hellespont, given the lunar acceleration noted above,
his result appears to rest on this assumption.

Having determined the accelerations in this manner, Schoch [1926, 2]
dismissed the lunar eclipses reported by Ptolemy as 'worthless', and showed
that his values agreed more or less with various solar eclipse-reports and
with a lunar eclipse in —424 Oct 9 recorded in a cuneiform text [Kugler
1913-1935, 233]. Since both Fotheringham and Newcomb showed that
some eclipses can always be more or less satisfied by any pair of reasonable
accelerations, Schoch's procedure scarcely enhances the credibility of his
results. In this respect, it is also unfortunate that Schoch did not publish
more of the details of his computations and comparisons.

The results obtained by Fotheringham and Schoch were further analyzed
by de Sitter in a paper published in 1927, which was generally accepted
by contemporary astronomers as the definitive discussion of the ancient
observational evidence. I n  it de Sitter sets up separate equations of con-
ditions for:
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(i) the accelerations of the Sun determined by Fotheringham from
(a) Hipparchus' equinoxes,
(b) the solar eclipses, and
(c) the lunar eclipse-magnitudes;

(ii) the accelerations of the Moon determined from
(d) Ptolemy's occultations and
(e) ancient solar eclipses;

(iii) the relationship between the two accelerations found by Fotheringham
from
(f) the eclipse of Hipparchus (-128); and

(iv) the acceleration of the Moon's elongation determined by Fotheringham
from
(g) the Alexandrian lunar eclipses and
(h) Schoch's discussion [1926, 3] of the Babylonian lunar eclipse of

—424.
After weighting these equations according to Fotheringham's and Schoch's
estimates of the probable error of each determination, de Sitter [1927, 23]
obtained the non-gravitational accelerations (1900),

S:„ = (5.22" ± 0.30")R
S3 = (1.80" ± 0.16")R,

where R =  T2 + 1.33T — 0.26. R was introduced to minimize the effect of
the corrections on the agreement between theory and modern observations,
and makes the effective epoch of the mean motions 1833.5.

De Sitter's procedure in arriving at these results affords several grounds
for criticism, and it is hard to understand why others have accepted his
analysis so uncritically as representing the evidence of ancient observations.
In the first place, he treats a number of Fotheringham's results—e.g., the
accelerations of the Sun and Moon derived from solar eclipses, and the rela-
tion between them derived from the solar eclipse of Hipparchus (-128)—as
independent determinations, when in fact they are independent neither of
each other nor of the rest of Fotheringham's results. Indeed, the only ev-
idence afforded by the solar eclipses alone which supports the relatively
high value for the lunar acceleration adopted by Fotheringham is the so-
called Eclipse of Babylon in —1062. Since there is considerable doubt as to
whether this vague report refers to an eclipse at all [cf. Fotheringham 1920b,
105-106], there is no justification for counting it a condition to be satisfied.

A second criticism of de Sitter's procedure is that he adopts Fother-
ingham's estimates of probable error as the basis of weighting his equa-
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Sm = +9.67" ± 0.5"
S:„ = +3.62" ± 0.5"
Ss = +1.14" ± 0.3"

SD = +8.53" ± 0.6"
SID = 2.48"±  0.6'!

tions without taking any account of the sensitivity of Fotheringham's re-
sults to slightly different assumptions about the observational procedures
or their possible systematic errors. This is particularly true of the val-
ues of the secular acceleration of the Sun determined from Hipparchus'
equinox-observations and from lunar eclipse-magnitudes and of the lunar
acceleration determined from occultations.

Finally, and most significantly, de Sitter's results are vitiated by impor-
tant numerical errors. In deriving the equation of condition for the Moon's
secular acceleration as determined from the occultations—which is the only
independent evidence in support of a lunar acceleration greater than 10"—
de Sitter not only disregards Fotheringham's subsequent correction of his
first determination, he also computes AL incorrectly, arriving at a figure
610" too large. Even worse, in his equations derived from the accelerations
of the Moon's elongation found by Fotheringham, he includes the total
difference, SD = Sm — S.,, into the computation, although the rest of his
equations and his solution are for only the non-gravitational component,
S'D. To correct for this, the numbers +2950" and +2320" [de Sitter 1927,
22] must be replaced by +620" and +660", respectively.

When these corrections are made and de Sitter's weights for individual
equations of conditions are revised to reflect somewhat larger estimates
of the probable errors in each determination than Fotheringham's, signif-
icantly lower values for both accelerations result. Furthermore, de Sitter's
use of Fotheringham's revised determination of the Sun's acceleration from
Hipparchus' equinoxes (1.95") instead of his initial solution (1.0") seems
unjustified in view of the several questionable assumptions which Fother-
ingham made in arriving at the higher value. Although these observations
are at best tenuous evidence of the magnitude of the Sun's acceleration,
it seems preferable to accept the lower value with a probable error equal
to roughly the same amount (±1.0") in combining determinations from
different types of observations.

With these corrections, and using the mean of Fotheringham's corrected
results for the occultations deduced from assumptions (a') and (c') [see
164, above], I find on re-solving de Sitter's equations:

These values satisfy all of the Ptolemaic observations; and the acceleration
of the Moon's elongation, SD, is very close to what Newcomb deduced
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from Ptolemaic lunar eclipses. To  satisfy the majority of the ancient solar
eclipses discussed by Fotheringham [1920b] would require that SD =  8.9"
and, thus, either a  somewhat larger lunar acceleration + 1 0 . 1 " )  or  a
smaller solar acceleration + 0 . 8 " ) ;  but  the uncertainties and ambigu-
ities attending these reports greatly diminish their value as evidence of
either acceleration [cf. Newcomb 1912, 228-246]. Furthermore, the Ara-
bian eclipse reports discussed by Newcomb are best satisfied by opposite
corrections, namely, an increase in the Sun's acceleration or a decrease in
the Moon's acceleration. Since these eclipses are nearer the modern epoch,
and since there are difficulties wi th  some of  the reports as well as sys-
tematic differences among observations made by different observers, they
cannot be taken as conclusive evidence. Nevertheless, they seem at least as
valuable as the ancient reports of total solar eclipses and so tend to offset
the evidence of the latter.

De Sitter's paper [1927] also addressed the correlation between the ap-
parent accelerations and fluctuations (unexplained discrepancies between
observations and gravitational theory) in the longitudes of the Sun, Moon,
and planets. I f  these are due entirely to variations in the Earth's rotation,
then their magnitudes should be in proportion to their mean motions. He
found this to be true for the accelerations and fluctuations of the Sun and
inner planets, clearly not true in the case of the Moon's acceleration, and
unclear with respect to the Moon's fluctuations.

After removing the effects of the accelerations derived from ancient ob-
servations, de Sitter compared the total fluctuations (including Newcomb's
`great empirical term') of the Sun, Moon, Mercury, and Venus. He found
that the best solution to the residuals gave

Q =  1.25 ni/nm,

as the most probable ratio of the magnitudes of the fluctuations of the Sun
and planets to those of the Moon (here n, is the mean motion of the Sun or
planet in question and Tim that of the Moon).

Subsequently, in 1939, Morgan and Scott demonstrated that the meridian-
observations of the Sun from 1900 to 1937 could be satisfied by assuming
Q =  1.00. I n  the same year, Spencer Jones [1939] reviewed the entire
body of modern observations of the Sun, Moon, Mercury, and Venus. Us-
ing de Sitter's value for the non-gravitational acceleration of  the Moon,
+5.22", Jones first solved the equations of conditions for Q and the Sun's
acceleration, obtaining

Q =  1.025 S s  =  +1.25"
and

Q = 1.062 S ,  =  +1.26",
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S, = +1.14" ± 0.11" ( f r o m  solar observations)
and

(4)

Ss = +1.24" ± 0.04" ( f r o m  Mercury transits),

giving a weighted mean of

(5)

S, = +1.23" ± 0.04'! (6)

depending on whether observations of the Sun's right ascension were in-
cluded in the analysis. From these results, Spencer Jones concluded that Q
was indeed unity.

Re-solving for Q = 1.00, Spencer Jones found for the Sun's acceleration

These values depend upon the assumption that de Sitter's value for the
non-gravitational acceleration of the Moon, +5.22", represents the actual
non-gravitational acceleration of the Moon over the period for which mod-
ern observations are available. As Spencer Jones pointed out, any change
(OS;,,) in this value would require a corresponding change,

AS, = 119 AS„, = 0.0747AS:„,
n m

in the value of the secular acceleration of the Sun to satisfy the condition
that Q = 1 for the fluctuations.

In discussing the discrepancy between his results and de Sitter's, Jones
determined the value of AS,' which would give the same ratio between the
non-gravitational accelerations of the Moon and Sun as de Sitter's values.
He concludes [1939, 555-556],

The best values that we can assign for the (non-gravitational) secular
accelerations of the Sun and Moon at the present time (or more
strictly the best average values for the past two hundred and fifty
years) are therefore:

For the Moon S772 =  +3.11" ± 0.57"
For the Sun S s  = +1.07" ±

These values of the accelerations will not satisfy any of the ancient
observations of eclipses and occultations, which are on the whole in
very good agreement with each other in requiring appreciably larger
values. There seems to be no escape from the conclusion that the
effects of tidal friction are appreciably less at the present time than
the average effects over the past two thousand years.
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In view of the errors in de Sitter's analysis, and of the evidence discussed
above that most o f  the ancient observations are well satisfied by lower
values for both the lunar and solar accelerations than de Sitter found,
Spencer Jones' conclusion seems untenable. Indeed, if we replace de Sitter's
published value for the non-gravitational acceleration of the Moon (+5.22")
with that found by re-solving his equations wi th appropriate corrections
[see 168, above], the secular accelerations from Jones' analysis become:

=  3.62" ±  0.5" ( d e  Sitter revised)
S, =  1.11" ±  0.06" (S. Jones revised)

SD =  2.51" ±  0.5" ( S .  Jones revised)
(7)

Alternatively, i f  we assume, following Spencer Jones, that the ratio of the
accelerations has remained constant (i.e., 3.62/1.14), we obtain:

=  3.50" ±  0.5"
Ss=1.10"±0.06 ' (8)

Both sets of values, (7) and (8), are in excellent agreement with those found
from re-solving de Sitter's equations with correct data and revised weights.
Thus, the apparent discrepancy between the accelerations determined from
ancient and modern observations arose mainly from errors committed by de
Sitter and unwittingly introduced into accepted theory by Spencer Jones.

In 1948, Clemence transformed Jones' non-gravitational acceleration of
the Sun to an expression for AT,  being the difference between observed Uni-
versal Time and an invariable Ephemeris Time (originally called Newton-
ian time by Clemence). Expressed in Ephemeris Time (ET) Jones' non-
gravitational acceleration of the Moon becomes

O r

1
21 m =  5.22 — 13.368 • 1.23" =  —11.22"

=  —22.44"AY.

Interestingly, the first person to publish an analogous calculation of the
Moon's secular retardation was Schoch [1926, 34] who found

2i1,r, =  —14.84" o r  —  29.68 'WY.

In 1952, Spencer Jones' and Clemence's accelerations were adopted by
the International Astronomical Union, and they have since been incorpo-
rated in the ephemerides prepared by the American and British Nautical
Almanac Offices [1961, 94]. Thus did Fotheringham's results and de Sitter's
errors become part of modern theory.
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= 1.31" ±  0.10" (epoch: 1755)
S;r, = 6.28" ±  0.82" (10)
S'D = 4.97" ±  0.9'!

Recent investigations of the secular accelerations

Since the adoption of Spencer Jones' accelerations in 1952, there have been
several further studies of these parameters, which on the whole have left
the matter as uncertain as ever. I n  1952, Brouwer revised and extended
Spencer Jones' analysis, excluding de Sitter's results and using modern
data from lunar occultations through 1948 and the results of Newcomb's
analysis of Ptolemaic and Arabian eclipse-times for ancient data. F r o m
these, he obtained

Ss =  1.01" (epoch:  1715)
Sim =  2.22" SID  =  1.21"

as the accelerations best fitt ing the ancient and modern data, although he
noted [Brouwer 1952, 141] that this result is sensitive to how the Moon's
(modern) fluctuations are treated. Brouwer showed that these appeared to
be random instead of periodic, and his solution was based on this premise.

In 1961, van der Waerden extended Brouwer's methodological discussion
and tried to reconcile the observed accelerations with Jeffreys' theory [1952,
225] which suggested that the ratio of the apparent accelerations, smiss,
should be roughly 6.9, far higher than that resulting from Spencer Jones'
accelerations (4.2), let alone Brouwer's (2.2). Va n  der Waerden derived
revised accelerations from four data-points having mean epochs of: 1962
(based on extrapolations from 1958.0 lunar data; 1635 (based on New-
comb's analysis of observations by Gassendi and Hevelius); 950 (based on
Brouwer's data derived from Newcomb's study of Arabian eclipse-times);
and —386 (based on his own analysis of three apparently critical ancient
observations). These last were (a) the Babylonian lunar eclipse of —424
Oct 9 [cf. also Schoch 1926; de Sitter 1927]; (b) the lunar eclipse of —382
Dec 23 observed in Babylon and reported by Ptolemy [see 61-63, above];
and (c) the lunar occultation observed by Timocharis on —282 Nov 8 [see
86-88, above]. These three observations give very discordant results, and
van der Waerden's result does not represent any one of them very well, let
alone all three. Nevertheless, from these data, he finds accelerations of:

(9)

In 1966, Curott investigated ancient records of solar eclipses using Ephem-
eris Time and Spencer Jones' (de Sitter's) value for the Moon's acceleration
(5.22") together with other modern parameters. He found an apparent solar
acceleration of 1.10" ±  0.06" (epoch: 1900), which becomes
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S, = 1.79" ±  0.22" 1.45" ±  0.23"
= 1.34" ±  2.15" 3.12" ±  3.05" (12)
= —41.6" ±  4.3" — 42.3" ±  6.1'f

= 2.75" ±  0.65"
SID = 5.32" ±  7.9" (13)

= —78.9" ±

=  1.25" ±  0.07" (epoch:  1780),
a result virtually identical with Jones'. Curott, moreover, found an aver-

age value for Ass/6,s,, of 0.12 for the relevant eclipses, so that for

0S:„ =  —1.6" ±  0.5';
AS3 =  —0.19" ± .06"

Or

Sim =  3.62" ±  0.5"
S3 =  1.06" ±  0.09" (epoch:  1780),

a result virtually identical with Spencer Jones' as revised [cf. 171, above].
In 1969, R. R. Newton announced that he had re-analyzed all o f  the

traditional (i.e., non-cuneiform) ancient and medieval observations and
found that the apparent accelerations of both the Sun and Moon varied
significantly wi th time. I n  particular, he found the following (average)
accelerations since 1900 for ancient and medieval observations, respectively:

Before 500 A f t e r  500
Epoch: —200 E p o c h :  1000

Comparing these wi th a value for =  —20.1" ±  2.6', which he [1969,
826] had previously found by analyzing modern data, Newton [1970, 280]
concluded that (the average effective value of) v a r i e d  in time as

=  —22" + 3.3" T 0 . 11 4 "  T2 ( To  =  1900),

and, thus, that there was a 'strong presumption that h a s  changed by
a factor of 2 within historical times'.

Newton's full analysis was published in 1972. I t  was followed in the same
year by an analysis of 379 additional medieval solar eclipses, from which he
found accelerations of:
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Ss = 1.88" ±  0.21" (epoch: 1770)
= 6.32" ±  02.5" (14)

SID = 4.44" ±

Ss = 1.23" (S. Jones)
Sm = 3.45" ±  2"

(15)
SID = 2.22" ±  2"

= —26.0".

These have an effective epoch of 976, and are clearly inconsistent with the
values shown above, values which Newton found from Islamic observations
around the same date. Subsequently, Newton implicitly abandoned both
sets of results.

In 1975, Muller and Stephenson carefully investigated the circumstances
of 25 reports of solar eclipses from ancient and medieval times. From these
they found accelerations equivalent to:

Of the 25 eclipses, however, the authors regarded only seven as certain while
only two contributed evidence defining the lower boundary of Ss. O f  these
two, one was a partial eclipse observed at an inferred location in China in
120, and the other was a total eclipse observed near the Kerulen River by
the party of Ch'ang-ch'un in 1221 [Muller and Stephenson 1975, 491-493].

Furthermore, in 1975, Morrison and Ward re-investigated all of the trans-
its of Mercury from 1677 to 1973. Assuming Spencer Jones' value for the
apparent solar acceleration, they [1975, 197-198] found:

This result is close to Spencer Jones' when the latter is adjusted to correct
for de Sitter's errors, and supports the assumption of constant accelerations
since ancient historical times.

Following his polemic against Ptolemy, Newton [1979-1984] attacked
Jones' methodology and concluded that the solar and lunar accelerations
at the modern epoch (1900) were radically different from those derived by
Jones. I n  addition, he concluded that i s  probably constant and equal
to —28.4" ±  5.7" ( in  contrast to his earlier finding), but  that the rate of
the Earth's rotation exhibits a sensible acceleration which he attributed
mainly to a change in the gravitational constant. I n  a subsequent work,
Newton [1985b, 324] found Ss to vary as

Ss =  0.70" — 0.0668"T — 0.0015"T2 ( T 0  =  1900). ( 1 6 )
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S3 =
Epoch: —300

1.44"

Epoch: 1900

0.62"
Sim = 5.25" — 5.71" (17)

= 3.81" — 6.1'!

Investigator Method 7)77,cy

Morrison/Ward [1975] transits of Mercury —26.0±  2.0
Lambeck [1980] numerical tidal model —29.6±  3.1
Cazenave [1982] artificial satellites —26.1±  2.9
Dickey/Williams [1982] lunar laser ranging —25.1±  1.2

=
Stephenson/Morrison

1.26"

Newton

1.32"
Sim = 4.33" 5.13" (18)

3.07"

This combined with the value =  —28" results in the following param-
eters for ancient and modern epochs:

While these are inconsistent with his earlier findings, i t  is interesting that
Newton's most recent accelerations for —300 are very similar to those found
by Fotheringham and Schoch.

Recently, a  number of  investigators have used different techniques to
measure the lunar acceleration (rim) directly. As summarized by Stephen-
son and Morrision [1984, 50], the most accurate of these are:

These results suggest that the current value of ii,,, lies between —24" and
—26', which compares favorably with the value of —23.2" derived from de
Sitter's analysis of ancient observations as corrected.

Stephenson and Morrison [1984] and Newton [1985b] have published new
attempts to describe the variation of the Earth's rotation, assuming a con-
stant value for 71m and using ancient and medieval observations incorpo-
rating extensive Babylonian data from cuneiform sources. Though their
methods and conclusions differ, they all find that a constant acceleration
will not account well for both ancient and medieval observations. For —300,
the accelerations implicit in their studies, assuming 11m =  —25', are:
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Investigator Ss Sim Sir) Epochs

van der Waerden [1961] 1.31" 6.28" 4.97" -22.4" -380/1780
Muller/Stephenson [1975] 1.88 6.32 4.44 -37.6 0/1770
S. Jones [1939] 1.23 [5.22] 3.99 -22.4 -200/1780
Newton [1985]a 1.32 5.13 3.81 [-25.0] -300/1790
de Sitter [1927] 1.80 5.22 3.42 -37.7 -200/1833
Schoch [1926] 1.51 5.04 3.53 -30.3 -200/1800
Fotheringham [1920b] 1.50 4.75 3.25 -30.6 -250/1800
Stephenson/Morrison [1984]4 1.26 4.33 3.07 [-25.0] -300/1900
Newcomb [1912]a [1.23] [3.97] 2.75 [-25.0] -300/1800
Curott [1966] 1.06 [3.62] 2.56 -21.1 Pt,' 0/1780
S. Jones (revised)b 1.11 [3.62 2.51 -22.4 -200/1780
de Sitter (revised)` 1.14 3.62 2.48 -23.2 -200/1833
Morrison/Ward [1975] [1.23] 3.45 2.22 -26.0 1677/1973
Newton [1970] 1.79 3.13 1.34 -41.6 -200/1900
Brouwer [1952] 1.01 2.22 1.21 -20.5 -300/1900

Ss= 1.15" ±  0.15"
SID= 2.85" ±  0.5" (19)

= 4.00" ±  0.6"

APPENDIX 1

a Calculated from ihn and Sir). b Cf. 171, above. C f .  169, above.

Table A1.2. Summary of Recent Determinations of
the Accelerations of the Sun and Moon

The results of the investigations discussed above, beginning with New-
comb [1912], are summarized in Table A1.2. Since, for ancient observations,
the acceleration in elongation (Sir)) is the best determined parameter, the
findings are listed in  order of  SD'. Parameters which are assumed from
other studies and not independently derived are shown in [ ]. More than
half (7/13) the results give values for SD between 'A.,- 2.5" and 3.5', w i th
the values of Ss falling between roughly 1.1" and 1.5'f A t  present, the best
estimates of the (average) accelerations for -300/1900 seem to be:

=  25" ±  21!

These are very close to Stephenson and Morrison's implicit findings. [1984]
and to Newcomb's results [1912] when adjusted for the Sun's acceleration.
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S3 = 1.0"
S:„ = 3.62" (Sin = 9.76") (20)
SD = 2.62" (SD =  8.67"),

Epoch Ats AtE) Atm,

140 —19' —3" —4'
—140 —25 —3 —5
—250 —28 —4 —5
—500 —35 —5 —17
—750 —43 —5 —18

Elements of the Sun and Moon used in this work

When this study was first completed, the accelerations which seemed to
fit the ancient and medieval data best were:

and these parameters were adopted in this work. Recently, the combination
of better modern techniques for estimating ii,,,, and the use of more exten-
sive Babylonian data in estimating S, have suggested that slightly higher
accelerations may in fact apply. These would affect the calculated times of
lunar phenomena reported by Ptolemy by no more than 10 minutes. I n
view of the uncertainties which still attend the values of these parameters,
I have left unchanged the parameters originally adopted.

The following table shows the corrections to the computed times of the
solar (Ats) and lunar (AtD and Atm), phenomena which would result from
the use of the accelerations shown in (19) in place of the elements adopted
in this work.

The adopted accelerations differ from those deduced by S. Jones [1939] and
included in the elements accepted by the Nautical Almanac Offices by:

=  —1.6"
AS3 =  —0.23"

These corrections should be multiplied by R = T2 +1.33T-0.26 to minimize
their effect on modern observations. Hence, the total corrections to the
expressions for the mean longitudes of the Sun and Moon at 1900 become:

= +0.42" — 2.13"T — 1.6"T2
=  +0.06" — 0.31"T — 0.23"T2.
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L7,2 = 270;26,16.78° +  1336'306;53,36.890T 10 .76"T2
Ls = 279;41,49.10° +  100'0;46,10.80°T 2.09"T2
D = 350;44,27.68°+  1236'307;7,26.09°T 8.67"T2.

Applying these to the elements used by the Nautical Almanac Offices [1961,
98, 107], expressed in terms of Universal Time,9 we  obtain for 1900.0:

In this work, the longitudes of the Moon's perigee and node are from the
expressions derived by Brown [1915] and used by the Nautical Almanac
Offices [1961, 107]. For reference, these are (1900.0):

Pm =  334;19,46.40° + 11'109;2,2.52°T — 37.12"T2
Nm =  259;10,59.79° — 5'134;8,31.23°T 7.48"T2.

9 The elements stated in Nautical Almanac Offices [1961, 98, 107] are for Ephem-
eris Time. To obtain expressions for the elements for Universal Time the following
corrections must be applied:

A L ,  =  +4.65" + 12.96"T + 5.22"T2 +  B
A' Ls =  +1.00" + 2.97" T + 1.23" T2 +  0.0747B,

where B is the value of the Moon's fluctuation. In the present study, B has been
neglected because its magnitude at ancient epochs is unknown.
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Lm = 270;26,16.65° +  1336T307;53,39.52°T 12 .22"T2
= 334;19,45.94° +  11'109;1,58.50°T — 37.12"T2
= 259;10,58.80° — 5'134;8,25.900T 7.51"T2

D = 350;44,28.41° +  1236T307;7,29.95°T 9 . 6 2 " T 2
L,  = 279;41,48.24° +  100'10;46,9.570T +  2.6007'2.

Corrections to Earlier Elements

Previous investigations of Ptolemaic observations have been based on differ-
ent lunar elements than those derived in appendix 1, as have the most con-
venient tables for computing the circumstances of solar and lunar phenom-
ena in antiquity. Therefore, i t  seems desirable to present the corrections
required to reduce these elements to those adopted in this study.

The most useful tables for computing the positions of the Moon at distant
epochs or for determining the circumstances of eclipses are:

(a) P.  V.  Neugebauer, Tafeln f i i r  Sonne, Planeten und Mond
nebst Tafel der Mondphasen: Tafeln zur astronomische Chro-
nologie [1914]; with corrections based on Schoch's elements
[P. V. Neugebauer 1929, i 35; i i  Table Ed;

(b) P. V.  Neugebauer, `Spezieller Kanon der Mondfinsternisse
fur Vorderasien und Agypten von 3450 bis 1 v. Chr'. [1934];

(c) T.  R. Oppolzer, Canon of Eclipses [1962, first published in
1887]; and

(d) B. Tuckerman, Planetary, Lunar and Solar Positions —600
to +1649 [1962-1964].

Of these, P. V.  Neugebauer's tables and Tuckerman's computed positions
are based on Schoch's corrected elements as given in P. V. Neugebauer 1929,
i 35. Oppolzer's Canon [1962], on the other hand, is based on the elements
of Hansen and Leverrier, to which Oppolzer applies an empirical correction.

For January 0, 1900 Schoch's elements [1926] are:
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= +0.13" — 2.63"T — 1.46"T2
= +0.46" +  3.02"T + 0.00"T2

ANn, = —0.01" — 5.33"T — 0.03"T2
A D  = —0.73" — 3.86"T — 0.95"T2

ALs = +0.86" + 1.23"T — 0.51"T2.

T AL, , Atm, A D AtD A L , A t ,

—10 (900) —120' +3 .6 ' —58' +1 .9 ' —62' +24.8 '
—15 (400) —289 +8.8 —162 +5.5 —122 +48.8
—20 (-100) —532 +16.1 —304 +10.0 —22 +91.2
—25 (-600) —845 +25.6 —497 +16.3 —348 +139.0

= +0.68" — 6.36"T — 2.42"T2
= +12.56" +  20.86"T +  9.82"T2
= —71.32" — 71.03"T — 2.07"T2

A D  = +0.84" +  5 .66"T +  0.93"T2.

Comparing these with the elements shown in appendix 1, we obtain:

These corrections computed for ancient and early medieval epochs are given
in Table A2.1, where A t  is the correction to the time at which the body
in question would reach a given mean longitude or elongation according
to Schoch's elements.

Table A2.1. Corrections to Schoch's Elements

To compute the difference in time of a given event such as an eclipse or
occultation, the appropriate A L should be divided by the actual velocity.

In using tables depending on Schoch's elements, only the corrections to
the mean longitude and elongation need be considered. This is because the
differences between the motions of the perigee and node according to Brown
and Schoch would not produce sensible effects in the position of the Moon
except at very far distant epochs, and also because the difference is within
the probable error assigned to these motions by Brown [1915, 514-515].

This is not true of the elements on which Oppolzer's Canon are based.
For those, we must consider the corrections not only to the mean motions
on longitude and elongation, but also to the principal arguments of lati-
tude and anomaly. Using Newcomb's comparison [1912, 238] of Oppolzer's
corrected elements and comparing them with Schoch's for 1900, we find:
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AL,,,, = +0.81" +  3 .73"T +  0.96"T2
AD = +0.11" +  2 .50"T — 0.02"T2

Ad =  A L — A P = —11.75" — 17.13"T — 8.86"T2
A F  = A L  — A N  = +72.16" +  74.76"T + 3.03"T2.

T A D At i , Da O F

—10 (900) —27" +0.9m —727"-373"
—15 (400) —42 +1.4 —1750 —367
—20 (-100) —58 +1.9 —3210 —222
—25 (-600) —75 +2.5 —5716 +97

A D  = —29.76" — 31.24"T — 2.6"T2
A d  = —37.10" — 41.80"T — 0.66"T2

A F  = —37.47" — 38.54"T — 0.87"T2.

T AD AtD Ad A F

—17 (200) —215" +7.1in +478" +393"
—18 (100) —275 +9.1 +496 +406
—20 (-100) —391 +13.1 +527 +409

Applying the correction to Schoch found above, we obtain:

These corrections are tabulated in Table A2.2.

Table A2.2. Corrections to Oppolzer's Elements

The correction to Oppolzer's elongation is negligible, and the correction
in the argument of latitude wil l  yield an error of less than 0.2d i n  com-
puted eclipse-magnitudes at Ptolemy's time. T h e  error in the argument
of anomaly, however, can affect the time of conjunction at —100 by nearly
10 minutes.

Finally, since it is sometimes convenient to refer to Newcomb's computa-
tions [18781, which are based on Hansen's tables, the following corrections
to Hansen's elements are consistent with those described above.

The corrections to each of  these elements for specific dates are given in
Table A2.3.

Table A2.3. Corrections to Hansen's Elements

The error in the time of an eclipse due to the error in Hansen's anomaly
is less than ±2 minutes for the period over which Ptolemy reports observa-
tions. The error in an eclipse-magnitude can reach nearly 0.5'
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The Inequality in Eccentric Motion

The expression for the inequality in eccentric motion is frequently stated
[cf. Tannery 1893, 168 f.], but its development is seldom shown. I f  we ig-
nore powers of e' greater than 4, the inequality is developed most simply in
this way:

e' sin a'tan g = ,  e' <  1
1 +  e' cos Eti

=  el sin al(1 — e' cos di e ' 2  cos2 —  c'3 cos3 . . . )
74=  (e' + e ' 3 )  sin a l ( i . e , 2  1 4  ) sin 2a' + e ' 3  sin 3a'

14 .
— g e  S M 4 a 1 . . .

If we neglect powers of g' greater than 4, we may put,

g' =  tan g' — 3 =  tan g' — 3 tan3 g'.

(1)

(2)

From (1), we obtain,

i  ,  f—3 tan3 g =  1 —4e3 sin a' — 1  —12e3 sin 3a1 — 1 — e4' sin 247/1 —1 e4 sin 4a-1 .  . . (3)4 8

Thus, from (1), (2), and (3), i t  follows that

1g' =  e' sin a' — —1e'2 sin 2a1 —3e'3 sin 3al — 1 —e'4 sin 4a'... ( 4 )
2  4
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162
166
38n28, 53, 61-63, 72-75, 77, 156
38n28, 53, 63-64, 72-75
38n28, 51, 53, 64-65, 72-75
161-162
79, 80-82, 94, 97
79, 82-83, 94, 97
79, 82, 84-85, 94, 97
49, 79, 86-88, 94, 97, 166, 172
12, 13n1, 18
38n28, 53, 65, 73, 75, 156
38n28, 53, 66, 71, 73, 75
38n28, 53, 66, 71, 73, 75
53, 68, 72-73, 75, 77
13n1, 14n2, 18, 20-22, 40
13n1, 14n4, 18, 20-22, 40
13n1, 14n4, 18, 20-22, 40

196
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18, 20-21, 22n16, 33, 36, 39-40
14, 16, 18, 20, 25n20, 33, 36, 40
18, 20, 25n20, 33, 36, 40
18, 20n12, 25n20

- 146 Sep 26/27 f a l l  equinox
-145 Mar  24 s p r i n g  equinox

(Rhodes)
(Alexandria)

lunar eclipse
fall equinox
spring equinox
spring equinox
spring equinox
fall equinox
spring equinox
lunar eclipse
lunar eclipse

Apr 21
Sep 27

-144 Mar  23
-143 Mar  23
- 142 Mar  23

Sep 26
- 141 Mar  24
- 140 Jan 27
- 134 Mar  21

Mar 23/24
-133 Mar  24
- 132 Mar  23
-131 Mar  23
- 130 Mar  24
-129 Mar  24
- 128 Mar  23

Nov 20
- 127 Mar  23

Aug 5
- 126 May 2

Jul 7
+92 Nov 29
+98 Jan 11

Jan 14
+125 A p r  5
+126 Aug  3
+127 Mar  26
+130 Dec 15
+132 Feb 2

Sep 25
+133 May 6
+134 Oct 20
+135 Nov 1
+136 Mar  6
+138 Dec 16

Dec 22
+139 Feb 9

Feb 23
May 17
May 30
Jul 11

spring
spring
spring
spring
spring
spring

equinox
equinox
equinox
equinox
equinox
equinox

spring equinox
solar eclipse
spring equinox
lunar elongation
lunar elongation
lunar elongation
occult., Pleiades
occult., Spica
occult., 3  Sco
lunar eclipse
lunar latitude
Saturn, elong.
Mars, elong.
Mercury, elong.
fall equinox
lunar eclipse
lunar eclipse
lunar parallax
lunar eclipse
lunar elong.
lunar elong.
lunar elong.
lunar elong.
lunar elong.
lunar elong.
lunar elong.

23n18
13n1, 18, 20, 33, 39, 40
18, 20
18, 20
18, 20
13n1, 14n2, 18, 20-22, 40
18, 20
53, 68-69, 72-75, 77
23n18
13n1, 18, 20, 40, 163
18, 20
18, 20
18, 20
18, 20
18, 20
18, 20
165-166
13n1, 18, 20, 40, 163
38, 101-102, 110, 121
38, 103, 119, 121
38, 103-104, 110, 121
79, 88-89, 94, 97
79, 90-1, 94, 97
79, 92-94, 97
51, 53
48n2
37n27, 39, 51n7
37n27
37n27
13, 18, 20, 31, 35-36, 40
53, 70, 73, 75
53, 70-71, 73, 75, 77
48n1
53, 71-73, 75, 77
104-108, 119
109-111, 119, 121
109, 112, 119, 121
112-114, 119
114-115, 119
115-116, 119
116-117, 119
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13, 18, 20, 31, 35-36, 40
13, 18, 20, 31, 35-36, 40
13, 18, 40
162

2. DATED OBSERVATIONS B Y  T Y P E  A N D  D AT E

Equinoxes

-161 Sep 27 f a l l 13n1, 14n2, 18, 20-22, 40
-158 Sep 27 f a l l 13n1, 14n4, 18, 20-22, 40
-157 Sep 27 f a l l 13n1, 14n4, 18, 20-22, 40
-146 Sep 26/27 f a l l 18, 20-21, 22n16, 33, 36, 39-40
-145 Mar  24 s p r i n g

(Rhodes)
14, 16, 18, 20, 25n20, 33,
18, 20, 25n20, 33, 36, 40

36, 40

(Alexandria) 18, 20n12, 25n20
Sep 27 f a l l 13n1, 18, 20, 33, 39, 40

-144 Mar  23 s p r i n g 18, 20
-143 Mar  23 s p r i n g 18, 20
-142 Mar  23 s p r i n g 18, 20

Sep 26 f a l l 13n1, 14n2, 18, 20-22, 40
-141 Mar  24 s p r i n g 18, 20
-134 Mar  23/24 spring 13n1, 18, 20, 40, 164
-133 Mar  24 s p r i n g 18, 20
-132 Mar  23 s p r i n g 18, 20
-131 Mar  23 s p r i n g 18, 20
-130 Mar  24 s p r i n g 18, 20
-129 Mar  24 s p r i n g 18, 20
-128 Mar  23 s p r i n g 18, 20
-127 Mar  23 s p r i n g 13n1, 18, 20, 40, 163
+132 Sep 25 f a l l 13, 18, 20, 31, 35-36, 40
+139 Sep 26 f a l l 13, 18, 20, 31, 35-36, 40
+140 Mar  22 s p r i n g 13, 18, 20, 31, 35-36, 40

Solstices

-431 Jun 27 s u m m e r  1 2 ,
-279 Jun 26 s u m m e r  1 2 ,
+140 Jun 25 s u m m e r  1 3 ,

18, 78
13n1, 18
18, 40

Solar eclipses

-1062 Jul  31 ( B a b y l o n ) 162
-762 Jun 15 ( N i n e v e h ) 162

+139 Sep 26
+140 Mar  22

Jun 25
+197 Jun 3

fall equinox
spring equinox
summer solstice
solar eclipse
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- 647 A p r  6 ( A r c h i l o c h u s )  1 6 2
- 584 May 28 ( T h a l e s )  1 6 1
- 556 May 19 ( L a r i s s a )  1 6 1
- 430 Aug  3 ( T h u c y d i d e s )  1 6 2
- 309 A u g  15 ( A g a t h o c l e s )  1 6 1 - 1 6 2
- 128 Nov 20 ( H i p p a r c h u s )  1 6 5 - 1 6 6
+197 Jun 3 1 6 2

Lunar eclipses

- 720 Mar  19 B a b y l o n  5 3 - 5 6 ,  72-3, 75, 156
- 719 Mar  8 B a b y l o n  5 1 ,  53, 56-57, 73, 75, 77, 138

Sep 1 B a b y l o n  4 9 ,  53, 57, 72-75, 77
- 620 Sep 22 B a b y l o n  5 3 ,  58, 72-73, 75, 77
-522 Dec 16 B a b y l o n  5 1 ,  53, 58-60, 73-75, 77
- 521 Jun 10 B a b y l o n  5 9 - 6 0
- 501 Nov19/20 Babylon 5 0 - 5 1 ,  53, 60, 72-75, 77, 138
- 490 A p r  25 B a b y l o n  5 1 ,  53, 61, 72-73, 75, 77, 135
- 424 Oct 9  B a b y l o n  1 6 6
-382 Dec 23 B a b y l o n  3 8 n 2 8 ,  53, 61-63, 72-75, 77, 156
- 381 Jun 18 B a b y l o n  3 8 n 2 8 ,  53, 63-64, 72-75

Dec 12 B a b y l o n  3 8 n 2 8 ,  51, 53, 64-65, 72-75
- 200 Sep 22 A l e x a n d r i a  38n28,  53, 65, 73, 75, 156
- 199 Mar  19 A l e x a n d r i a  38n28,  53, 66, 71, 73, 75

Sep 12 A l e x a n d r i a  38n28,  53, 66, 71, 73, 75
-173 May 1 A l e x a n d r i a  5 5 3 ,  68, 72-73, 75, 77
- 145 A p r  21 R h o d e s  2 3 n 1 8
- 140 Jan 27 R h o d e s  5 3 ,  68-69, 72-75, 77
-134 Mar  21 R h o d e s  2 3 n 1 8
+125 A p r  5 A l e x a n d r i a  5 1 ,  53
+133 May 6 A l e x a n d r i a  5 3 ,  70, 73, 75
+134 Oct 20 A l e x a n d r i a  5 3 ,  70-71, 73, 75, 77
+136 Mar  6 A l e x a n d r i a  5 3 ,  71-73, 75, 77

Lunar elongations

-127 Aug  5
- 126 May 2
- 126 Jul  7
+138 Dec 16
+138 Dec 22
+139 Feb 9

Feb 23
May 17
Jul 11

38, 101-102, 110, 121
38, 103, 119, 121
38, 103-104, 110, 121
104-108, 119
109-111, 119, 121
109, 112, 119, 121
112-114, 119
114-115, 119
116-117, 119
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Lunar latitude

+126 Aug  3 4 8 n 2

Lunar parallax

+135 Nov 1 4 8 n 1

Occultations

-294 Dec 21 13 Sco 79, 80-82, 94, 97
-293 Mar  9 Spica 79, 82-83, 94, 97
-282 Jan 29

Nov 8
Pleiades
Spica

79,
49,

82, 84-85,
79, 86-88,

94,
94,

97
97, 166, 172

+92 Nov 29 Pleiades 79, 88-89, 94, 97
+98 Jan 11

Jan 14
Spica
0 Sco

79,
79,

90-91, 94,
92-93, 94,

97
97

Planetary elongations

+127 Mar  26 S a t u r n  3 7 n 2 7 ,  39, 51n7
+130 Dec 15 M a r s  3 7 n 2 7
+132 Feb 2 M e r c u r y  3 7 n 2 7

3. PLANETS OBSERVED

Mercury, 114-115
Venus, 104-108, 121
Mars, 115-116, 120

Jupiter, 117
Saturn, 109-111

4. STARS OBSERVED

Aldebaran, 109-111, 117
/3 Scorpionis, 80-81, 92-93, 97,

104-5
Pleiades, 82,  84-85, 88-89, 97

Regulus, 99, 113-115, 121n46

Spica, 49, 82-83, 86-87, 90-91,
106-107

5. INSTRUMENTS

armillary astrolabe, 36, 38, 99-100, m e r i d i o n a l  armillary, 4 ,  14, 17, 22,
101n35, 114 2 5

equatorial r ing, 14-17, 22, 25-36 p l i n t h ,  4-7,  10-11



INDEX OF PARAMETERS

Lunar accelerations, 79, 86, 106,
153ff
apparent non-gravitational

3.62" (assumed) 1 7 7
4.00" (concluded) 1 7 6
5.22" (de Sitter) 1 6 7 ,  171

gravitational
6.05" (Brown) 1 5 8

total
10.3" (Fotheringham) 7 9 ,

165
10.8" (Fotheringham) 1 6 5
11.09" (Schoch) 7 9 ,  166
11.135" 1 5 7
12.18" 1 5 8

physical non-gravitational
—22.44"/cy 1 7 1
—25" (concluded) 1 7 6

values
assumed 1 7 7
error in 1 2 2
concluded 1 7 6
revised 1 7 1
summary 1 7 6

Lunar arguments
adjusted, 178
Ptolemy, errors in,  137
mean motions, 131

Lunar eccentricity, 141
5;13 (syzygy), 141n7
5;14 (syzygy), 141n7
5;15 (syz., Ptolemy), 141

5;17,35 (syz., optimal), 145
6;29 (octant), 146
7;51,14 (quad., optimal), 145

8;0 (quad., Ptolemy) 1 4 4
Lunar equation, 142, 145, 147

annual equation, 46, 142
evection, 148

1;16,26° (modern) 1 4 8
1;17,6.5° (Ptolemy) 1 4 7
1;19,37.9° (apparent) 1 4 7

omitted terms, 142, 145, 149
prosneusis, 148

Obliquity o f  the ecliptic
23;40,46° (modern, +130), 3
23;51,20° (Ptolemy, al i i ) ,  x i i i ,  2
24°, 3n3

Precession, 77
34.8"/yr (Ptolemy, optimal), 77
36"/yr (Ptolemy), 77

Ptolemy's epoch
746 Feb 26 noon, 54-55

Ptolemy's lunar model, 127-128
Ptolemy's solar model

apogee (65;30°), 42-44
equation, 42, 44-45
mean longitude, 41
motion in  latitude, 2
second inequality, 23n18, 32

Solar acceleration, 162ff
1.00" (assumed), 177
1.15" (concluded), 176

201
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1.23" (S. Jones), 170-171, 174 3 1 ; 1 2 °  (modern), 5,  112-113,
1.5" (Fotheringham), 165 1 1 6
1.511" (Schoch), 166 R h o d e s

Terrestrial latitudes 3 6 ; 2 4 °  (modern), 102-104
Alexandria T i m e

30;58° (Ptolemy), 5  r e p o r t s  of, 50-51
observations of, 99-100


