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PREFACE

This collection of previously unpublished essays derives from a conference,

‘The Interaction of Science and Philosophy in Fifth and Fourth Century

Greece’, which was held by the Institute for Research in Classical Philoso-

phy and Science in 1986. This conference was intended to be a first step in

discovering ways to revitalize research in the history of ancient Greek phi-

losophy and science. For it is a regrettable fact of academic life today that

specialization often creates and enforces divisions between disciplines con-

cerned with a common subject-matter or period, which few scholars even

try to overcome. And this tendency is especially clear in the history of

ancient Greek thought. Yet, the existence of competing stories told by the

various academic groups—historians of philosophy, the exact sciences, biol-

ogy, and medicine—who study this subject and do not communicate with

one another is surely a challenge to begin afresh. Moreover, in the case of

Greek thought in the fifth and fourth centuries, since scientists and philoso-

phers were usually one and the same, meeting this challenge to begin anew
should involve taking advantage of the results of specialization but without

neglecting research in related disciplines. Still, to adjudicate among these

stories in order to determine a single, unified account which is richer in its

explanatory power is no easy task, since it demands a real appreciation of

the questions asked in the various disciplines and sub-specialties, a mastery

of the relevant information, and a critical grasp of how to use this evidence

to establish results. In fact, given the expertise needed, it seems unlikely

that many will undertake it themselves. So, what we proposed was to en-

courage collaboration. And to do this, we assembled leading historians of

ancient Greek philosophy, the various exact sciences, the life sciences, and

medicine to focus on three topics: (a) how Greek philosophers and scientists

defined science and demarcated the particular sciences during the fifth and

fourth centuries BC, (b) the role played by observation in theory as well

as by theory in observation, and (c) whether philosophical debates about

the ontology and character of scientific explanation occasioned any changes

IX



X PREFACE

in what the Greeks later regarded as science, and were in fact instrumental

in the emergence of new sciences.

This nexus of issues will interest all students of Greek culture. For, to

the best one can determine given the evidence available, it was during the

fifth and fourth centuries that the Greeks first began to elaborate their idea

of the differences between the scientific and philosophical enterprises and

of what is knowable through each. This period was, therefore, a critical

point in the history of Western thought, defining as it did two intellectual

activities and setting terms for their interaction or mutual influence then

and later. Of course, there have been other such points in the subsequent

history of philosophy and science. But this one has a special charm, since

it is the earliest on record, and since the figures involved—Archytas, Plato,

Aristotle, Eudoxus, Euclid, and so on—continue to have influence on the

course of Western intellectual history. Moreover, on the principle that the

challenge of new information is not to tailor it to pre-existing views but to

reconsider all the evidence at hand, it was (and still is) a particularly good

time to raise these issues again. For, not only has there been during the

last decade a substantial increase in the publication of scientific documents

from the Near East, documents which raise far-reaching questions about

the nature of Greek science and its relation to that of other cultures, there

has also been a dramatic increase in the output of research in the history of

Greek biological science and its philosophical underpinnings.

The meeting itself made notable progress towards our goals, thanks in-

deed to the efforts of my Co-Chair, James G. Lennox, and to the assistance

of James Allis, Stephen C. Wagner, Arlene Woodward, and Barbara Woolf.

But, as one might expect, there are numerous differences among the confer-

ence planned, the conference itself, and this volume of essays. Of the two

most important differences, the first is that this collection captures only the

traces of the excitement of the meeting and nothing of the free-wheeling,

thought-provoking discussions among the participants throughout the pro-

ceedings. Yet, it is my sincere hope that this volume will still serve to draw

the reader into the conversation begun in those few days, a conversation

the Institute aims to support and promote.

The second difference, as the contributors to this volume make clear,

is that the question of the interaction of Greek science and philosophy

has to be refined, and that there are many subsidiary issues which have

to be dealt with in order to address the three topics originally proposed.

Thus, for instance, there is a fundamental question about how to read and

interpret technical, scientific documents, the answer to which will affect

our determining what information, if any, they afford about the interaction

of science and philosophy.
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This volume of essays, then, is a record of a series of inquiries into a

basic problem in the study of ancient Greek science and philosophy. At

no point are the answers final. What is important in this collection is the

interdisciplinary effort to indicate new directions for research by addressing

the general question of how ancient science and philosophy interacted once

they were first differentiated, and by applying to narrowly defined instances

the latest techniques of modern philology, philosophy, historiography, and

literary studies.

In conclusion, I should like to record my gratitude to the sponsors of the

conference: the National Endowment for the Humanities; the Pennsylvania

Humanities Council; the Research and Development Fund at the University

of Pittsburgh; as well as the Departments of Classics, Philosophy, History

and Philosophy of Science, and the Center for Philosophy of Science, at

the University of Pittsburgh. Moreover, it is with great pleasure that I

thank all the contributors to this volume and acknowledge the invaluable

assistance of William R. Bowen, Marjorie Cars, and Stephen C. Wagner
in preparing it for publication.

Pittsburgh, Pennsylvania
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1

Some Remarks on the Origins

of Greek Science and Philosophy

CHARLES H. KAHN

This is not the occasion for new and surprising theses concerning the Pre-

socratics, and that is just as well, for I have no new and surprising theses

to present. Instead I shall defend some old theses and try to put them

in a perspective that may be useful here as a background for the more

specialized papers to be presented in this volume.

Philosophy in the strict sense is pretty clearly a Greek invention; but

at first sight Greek science, and above all Greek astronomy, seems to be

a borrowing from the Orient, like sculpture, architecture and the alphabet.

Does this mean that the older view is wrong, I mean the view presented by

Tannery and Burnet, who wrote before we learned so much about Baby-

lonian astronomy and mathematics, and who portray Greek science and

natural philosophy as coming into the world together, one and indivisible,

first in Ionia and then in southern Italy and Sicily, in the sixth and early

fifth centuries BC? I want to argue that the old view is right after all, and
that once we have absorbed the discoveries of Neugebauer and other explor-

ers of Mesopotamian science, we can see that Greek science is essentially

a new creation, inseparable after all from the origins of Greek philosophy

in the earliest phase of these two disciplines. In short, I want to defend

the traditional view that Greek astronomy and natural philosophy (and

the beginnings of geography and history too) first developed in Miletus

in the middle of the sixth century BC and then spread like an epidemic

throughout the Greek world, first by contagion to the neighboring cities

of Samos, Colophon, Ephesus and Clazomenae, then to Ionian colonies in

the northern Aegean (Abdera and Apollonia); and soon, travelling with

refugees and immigrants to the far west, to Croton and Metapontum, to

Elea and Acragas. So within the two generations that separate Anaximan-

1



2 CHARLES H. KAHN

der from Parmenides, Ionian science had been carried across the Greek

world, paralleling the diffusion of the alphabet some two centuries earlier.

Now the utility of the alphabet is obvious; but in the case of what the

Greeks called Trepl <|)wea)9 IcrropLa (the investigation of nature), it is not im-

mediately clear why this should have been so widely attractive so soon. The
new science had its utility, no doubt, in so far as it included map-making
(probably derived from the East) and observational astronomy (certainly

derived from the East). But I think it was above all the intellectual power of

a new, naturalistic or rational world-view which captured the imagination

of an amazingly curious, open-minded people, beginning with a handful of

pioneers along the Anatolian coast and in neighboring islands, but spread-

ing swiftly throughout those bustling Greek cities scattered across half the

Mediterranean. We can form some notion of the motivation and diversity

of these first two generations (from about 550 to 490 BC) in the glimpses

we get of three very striking and very different personalities—Pythagoras,

Xenophanes, and Heraclitus—who contributed both to the renown and to

the rapid physical diffusion of Ionian natural philosophy.

I do not propose to retell this familiar story. Instead I want to concentrate

on the two features which best mark the radical break with earlier world-

views, both in Greece and in the Orient, and which illustrate the close

links between exact science and philosophical speculation in this earliest

period. I think that a clear grasp of these two features will protect us

against three seductive errors which can distort our understanding of the

origins of Greek science and philosophy. The first error is to see Presocratic

natural philosophy as a continuous development from mythopoetic thought

in Homer and Hesiod, without a revolutionary break. The second error is

to see Greek astronomy (and/or mathematics) as essentially a continuation

of Mesopotamian science, without radical innovation. The third error is the

view championed by D. R. Dicks [1966], which treats the development of

Greek observational astronomy as if it were completely independent of the

speculative theories of the early natural philosophers. I have argued the

case against Dicks in my response [Kahn 1970], and I refer you to this article

for detailed documentation. Here I summarize some of my conclusions.

I take it for granted that the new science that arose in Ionia in the

sixth century was heavily dependent upon Babylonian astronomy, much in

the way that the creation of the alphabet was dependent upon Phoenician

sources and the creation of Greek sculpture and architecture was depen-

dent upon models from Egypt. (This is all part of the ‘orientalizing period’

of Greek culture, in the broadest sense.) Herodotus tells us of some es-

sential borrowings in the case of Greek astronomy: ‘The Greeks learned

of the TToXo? and the gnomon and the twelve parts of the day from the
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Babylonians’ [fljst. ii 109]. For once he is right (although his guess, in

the preceding sentence, that geometry was discovered in Egypt, has not

been confirmed). For example, the identity of the Morning Star and the

Evening Star, which had been known in Mesopotamia for many centuries,

is first attested in Greece for Parmenides [Diogenes Laertius, Vitae ix 23 =
Diels and Kranz 1951-1952, i 224.29-31]. (The absence of Greek evidence

before Parmenides is surely an accident of our meager documentation for

this early period: no doubt the information passed to Italy through Ionia.)

How much Babylonian lore was available in Ionia in the sixth century we
cannot know. But the Milesians added something for which there seems to

be no Mesopotamian precedent. This is a geometric model for the heavens,

a clear-cut scheme of concentric circles and other figures by which the ob-

served motion and changes of the heavenly bodies were to be explained.

The first and crudest of these models is attested for Anaximander: a series

of circles set at numerically definite distances from a disk-shaped earth in

the center. The model was quickly transformed and improved by his suc-

cessors. Within two generations we get the classical scheme of a celestial

sphere to which the fixed stars are attached so that their observed motion

is explained by the daily rotation of the sphere. (When exactly the stellar

sphere was introduced is not clear from our shabby evidence, but not later

than the poem of Parmenides, ca. 500 BC.) Somewhat later, but before

the time of Plato, the flat, discoid earth is replaced by a spherical model

for the earth as well. It is this kind of geometric model (but without the

spherical earth) that permits Anaxagoras to come up with a correct optical

explanation of lunar eclipse by the middle of the fifth century BC. Now the

important thing is not that the early models were so crude—that is only to

be expected. What was important was that a geometric model for celes-

tial motions had been proposed, with explanatory intent. 1 At the technical

1 By a model here I mean a good deal more than a cosmic picture of the sort

that one might find in Hesiod’s Theogony, and more also than the picture of the

heavens that served in Babylonian astronomy for plotting the movement of the

Sun, Moon, and planets relative to the fixed stars, since such a picture serves only

to describe but not to explain the observed phenomena. Scientific astronomy in

the Greek sense begins with the attempt to give such an explanation by means of

a definite structure conceived in terms of precise geometrical figures and relative

sizes and distances. Such a model made possible the correct explanation of the

Moon’s light by the time of Parmenides and the correct explanation of lunar

eclipse by the time of Anaxagoras. Since we have no astronomical texts from
this period, we cannot know when the various technical advances were made that

are incorporated in the later theory of spherics. The ascription of five zones to

Parmenides by Strabo [Geog. i 94 = Diels and Kranz 1951-1952, i 225] on the

authority of Posidonius is probably unreliable. But the pseudo-Platonic Erastae
132a [= Diels and Kranz 1951-1952, i 393] implies that schoolboys in the middle



4 CHARLES H. KAHN

level, it is this model that essentially defines the new philosophical view of

the natural world as a Koa|i09
,
a system governed by regularity and order.

And it is this same model that brings into existence scientific astronomy in

a new sense: a structured theory capable of explaining (or trying to ex-

plain) the observed phenomena of the heavens. In this sense the cosmology

of Anaximander and Parmenides is closer in principle to that of Ptolemy

and Copernicus than it is to Hesiod or to any of their predecessors—unless

one finds a geometric model in Babylon.

The second great innovation of Greek science is the notion of mathe-

matical proof. On this point I can quote Neugebauer [1963, 530]: ‘the

discoveries of the Old Babylonian period had long since become common
mathematical knowledge all over the ancient Near East’. What the Greeks

added was ‘a fundamentally new aspect . .
. ,
namely the idea of mathemat-

ical proof. It is only then that mathematics in the modern sense came into

existence.’

What Neugebauer does not see, but what seems obvious to me, is that

the idea of proof plays the same role here in the creation of Greek math-

ematics as the kinematic models for the heavens plays in the creation of

astronomical theory. When did this fundamental innovation in mathemat-

ics begin? Neugebauer tends to date it relatively late, in the fourth-century

work of Theaetetus and Eudoxus. But the reports on Hippocrates of Chios

take us back earlier, to the last half of the fifth century. Hippocrates is

said to have been the first author of Elements, that is, a presentation of

geometry in deductive form; and, in a long extract from Eudemus’ history

of geometry, we can see him operating with the ‘method of hypothesis’ or

explicitly recognized premisses. Before Hippocrates we have no detailed

documentation, so I shall not ‘claim this achievement for my hero, Anax-

imander. Of course the tradition recorded by Eudemus actually assigns the

earliest geometric proofs to Anaximander’s predecessor, Thales of Miletus

[Friedlein 1873, 157.10-13, 250.20-251.2, 299.1-5, 352.13-18 = Diels and

of the fifth century, in the time of Anaxagoras and Oenopides, were supposed

to be familiar with a structure showing the obliquity of the ecliptic relative to

the celestial equator:

the boys seemed to be arguing about Anaxagoras or about Oenopides. For

they appeared to be drawing circles and imitating certain inclinations by

their hands < relative to one another>.

Once these two circles are drawn on a celestial sphere, a partial system of zones

is given. Whoever wrote the Erastae thought that Anaxagoras and Oenopides

were doing this kind of astronomy. I see no reason to believe that we are better

informed than the author of the Erastae on the development of scientific theory

in the fifth century.
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Kranz 1951-1952, i 79.8-19]. Thales is more a figure of legend than of

history, but this image of the sage who predicts an eclipse, uses geometry

to measure the height of the pyramids, and also begins cosmological spec-

ulation, nicely reflects what I take to be the fundamental historical fact:

that observational astronomy, speculative cosmology, and mathematical

research were developing together within those small circles of intellectual

activity that carried the new science from Ionia to Magna Graecia and

beyond.

We cannot reconstruct the early history of mathematical proof in Greece

as we can reconstruct (to a certain extent) the development of a celestial

model. But we can see the two enterprises interacting or coinciding in the

work of Oenopides of Chios (after Anaxagoras and before Hippocrates),

who did major work in astronomy but studied certain problems in geometry

‘because he thought they were useful for astronomy’ [Friedlein 1873, 283.4-

10 = Diels and Kranz 1951-1952, i 395.10-14] and speciflcally for measuring

the obliquity of the ecliptic. Oenopides also contributed to speculative

cosmology by explaining the Milky Way as the path previously marked
out by the Sun’s annual course, before it settled in the ecliptic [Achilles,

Isag. 24 = Diels and Kranz 1951-1952, i 394.29-32]. And we can see

the same interaction between observational astronomy, technical work in

geometry, and philosophical cosmology (as well as map-making) in the case

of Democritus, whose contribution to the mathematics of the cone and the

pyramid is recognized by Archimedes [Heath 1921, i 180].

Although we cannot reconstruct the early development of mathemati-

cal proof in Greece, we can perhaps see this development reflected in the

examples of philosophical arguments that happen to be preserved. The
oldest and most elaborate of these arguments has reached us intact simply

because it was embedded in the hexameters of Parmenides’ poem. (For this

one argument preserved from the beginning of the fifth century there must
have been dozens if not hundreds of arguments contrived by the mathe-

maticians but lost, because they were in prose or not even written down.)

Parmenides begins with a clear statement of his premiss or first proposi-

tion, presented in the choice between a pair of contradictories, it is or it

is not; and he gives reasons for rejecting the second alternative. He then

proceeds to derive a number of attributes of Being from the single premiss

that it is. So it must be one, unique, dense, symmetrical, immobile, un-

generated and imperishable. The argument for the attribute ungenerated

is preserved in full. It is an indirect argument proceeding from a trilemma

of assumptions: if what-is has come into being, then it must have come to

be (a) from Not-Being, (b) from Being, or (c) from nothing at all. All three

cLssumptions are shown to be incompatible with the basic premiss that it is
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and so they must be rejected. Hence, by a series of reductio arguments

which eliminate the alternatives, the thesis that it is ungenerated is es-

tablished. This argument clearly parallels the form of an indirect proof in

geometry. And we can recognize the same general pattern of argument over

and over again in the preserved fragments of Zeno, Melissus, Anaxagoras,

and Diogenes, where it is used either to defend or destroy a thesis. Either

we have p or not-p. My opponents assert p. But look what absurd (or false

or contradictory) results follow from p. Therefore not-p. Or else, I assert p.

For just imagine the opposite, not-p. But if not-p were the case, things

would be quite different (or impossible or ridiculous). Therefore p must

be the case.2

Incidentally, I think we can also see the influence of a mathematical mode
of argument in the way Anaxagoras and other thinkers such as Diogenes

first construct their dpxi) or starting-point (‘all things together’, plus voO?

ready to start things rotating, in the case of Anaxagoras), and then show

how the world-order develops naturally and inevitably (‘by necessity’) out

of these initial conditions. The physical dpxi) occupies the place of premiss

or hypothesis; the development of the cosmic order is analogous to the

derivation of theorems.

In the case of these philosophical arguments, preserved almost by chance

for the whole length of the fifth century, it must remain anyone’s guess how
far they presuppose, or how far they prepare the way for, the use of for-

mally similar arguments in geometry. Some scholars (notably Szabo) have

argued that the development of proof by the mathematicians is essentially

dependent upon the (supposedly) earlier deductive exploits of the Eleatic

philosophers. In the absence of any good textual evidence for mathemati-

cal proof earlier than Hippocrates in the late fifth century, it is impossi-

ble to refute Szabo’s thesis; but I think there is nothing to be said in its

favor [cf. Berka 1980, Knorr 1981a, Bowen 1984]. Hippocrates’ proof is

so elaborate that it clearly presupposes a considerable tradition of some

technical sophistication; and it is a sheer accident of our documentation

that we cannot trace this tradition back to its origins. My own hunch is

that the development of more or less rigorous proof in mathematics and

in philosophical argument went hand in hand, but that the geometrical

application is likely to have led the way from the beginning, even before

Parmenides. In these matters it is normal for philosophy to borrow from

mathematics, just as we can see Plato in the Meno taking over the method

of hypothesis from geometry. But in the beginning the philosophers and

the mathematicians will often have been the same people, as the tradition

2 Compare Geoffrey Lloyd’s remarks [1979, 25 and 71-78] on the use of modus
tollens and reductio arguments in fifth-century philosophical and medical texts.
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tells us of Thales and Pythagoras, and as we can see later in the case of

Democritus (and of a sophist like Hippias). The real contribution of phi-

losophy was not in the specific techniques of proof but in the very idea of

proving geometric propositions: taking some things for granted, either as

obviously true or temporarily assumed, in order to establish what follows

from them. This seems to me just as deep and philosophical an innovation

as the introduction of geometric models for the heavens.

There is a third fundamentally new idea which wfcan detect in the fifth

century and which has been elegantly documented by Geoffrey Lloyd, the

concept of nature as a uniform system implying a regularity of cause and

effect. This is the doctrine asserted in Airs, Waters, Places 22: ‘each afflic-

tion (irdSo?) has its own nature and none of them occurs without a natural

cause (4>WLg).’ As Lloyd points out [1979, 33], the origins of such a view

can be glimpsed in Anaximander’s fragment on cosmic justice; and a dog-

matic generalization is found in the somewhat questionable ‘fragment’ of

Leucippus [Aetius, De plac. i 25.4 = Diels and Kranz 1951-1952, ii 81.3-6];

but for a full articulation we must turn to the Hippocratic treatises of the

late fifth century. This again seems to me simply an accident of our docu-

mentation: the older Hippocratic treatises are the only non-fragmentary

scientific/philosophic texts that have reached us from the fifth century.

Their close connection with Ionian science seems to me clear; but I leave

this topic to Geoffrey Lloyd.

What I am proposing, then, is the traditional view of the origins of Greek

science and philosophy in the emergence of a closely connected bundle of

diverse but interrelated activities in the sixth and fifth centuries BC, before

the systematic specialization and separation of the disciplines that becomes

more characteristic of scientific work in the fourth century and later. There

may well have been astronomers and mathematicians in the fifth century

who were not also natural philosophers, but the more typical case is that

of Oenopides and Democritus who worked in all three fields. Socrates is

probably the first philosopher whose conception of his calling is essentially

independent of work in astronomy and cosmology; and, according to the

biographical sketch of the Phaedo, that was not true even of Socrates in his

youth. 3 The close connection between philosophy, science, and mathematics
is just as characteristic of Greek philosophy in its first century and a half

as it is of the initial period of modern philosophy in the 17th century.

3 The only possible precedent for Socrates that comes to mind is Protagoras, but
his rejection of a realist view of truth seem unthinkable without the traditions of

Eleatic ontology and Ionian cosmology. Socrates may well have been fascinated

by natural philosophy in his youth, but there is no trace of this in his own positive

conception of philosophy.
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And it is this essential interconnection which is exemplified in the two key

ideas which I have emphasized: geometric models for the heavens and the

development of deductive proof. If we bear these two ideas in mind, we
will not be tempted by either of the three errors to which I referred in

the beginning: to see Presocratic cosmology as a continuous development

from Hesiodic mythopoetry; to see Greek science as a mere borrowing from

the East; or to see the development of scientific astronomy as essentially

independent of speculative cosmology, as Dicks and Neugebauer would have

us do. It is really painful to see a great scholar like Neugebauer saying,

in his masterful History of Ancient Mathematical Astronomy [1975, 572],

that there is ‘no need for considering Greek philosophy as an early stage

in the development of science. Its role seems to me only comparable to

the infiuence on science of the Babylonian creation myth or of Manichean

cosmology’. I think it would be difficult to find a more profoundly mistaken

view in any serious book ever written on our topic. I can only put it down
to an extrciordinarily narrow construal of science and to a morbid dislike of

speculative theory on Neugebauer’s part.

More interesting, and perhaps more prevalent, than the line taken by

Dicks and Neugebauer is the related error of exaggerating the continuity

between Ionian science and its poetic antecedents. Of course, the early

natural philosophers were men of their time and place; their language and

much of their conceptual equipment were inherited from the Greek past.

But their debt can be overestimated and their originality masked by reading

back into Homer and Hesiod some of the most characteristic ideas of the

Milesians and their followers. There is a Cambridge tradition for this, going

back to Cornford and still visible in Kirk and Raven (even in the second

edition of 1983) and in some of Guthrie’s work."*

Thus Kirk and Raven claim that in ‘the naive view of the world’ in Homer
‘the sky is a solid hemisphere like a bowl’ [Kirk, Raven, and Schofield 1983,

9]. If there had been such a clear geometric model before the Milesians,

the invention of the stellar sphere would have marked a relatively trivial

advance in a continuous tradition. But in fact there is no trace of the

notion of a celestial hemisphere or bowl in Homer or in any poet earlier

than Parmenides; in so far as oijpavo^ in Homer has any definite shape,

it is that of a fiat roof or a steep incline rising to the zenith [Kahn 1985,

138-140]. But the very notion of a clear geometric model composed of

circles and spheres (as distinct from an anthropomorphic structure like a

house or a tent) is alien to mythopoetic thought as we find it in Homer and

^ But this tendency is not limited to Cambridge. Wade-Gery of Oxford once

wrote an essay [1949, 81] in which he described Hesiod as ‘the first Presocratic’.

And compare, for example, Solmsen 1950.
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Hesiod. Even more seductive is Cornford’s misreading of in Hesiod as

a somewhat distorted version of the Polynesian myth of the separation of

heaven and earth. Thus we find in Kirk and Raven: ‘For Hesiod’s source,

at all events, the first stage in the formation of a differentiated world was

the production of a vast gap between sky and earth’ [Kirk, Raven, and

Schofield 1983, 41]. Cornford found an echo of this supposed source in

some verses from Euripides [Frag. 484 ]: ‘Heaven and earth were once one

form; but then when they separated from one another, they gave birth

and brought all things to light’. But of course Euripides is quoting not

Hesiod but Empedocles or Anaxagoras or some other natural philosopher.

To project this view back into pre-Milesian mythopoetry is once more to

make the revolutionary novelty of Milesian cosmology invisible. It is also

to make hash of Hesiod, for whom the primeval gap, came into being

first of all.

This is not the occasion for a more sympathetic reading of the Theogony,

along the lines of Paula Philippson’s study [1936] or of Norman Brown’s

sensitive interpretation [1953]. I want only to remark that Cornford’s re-

ductive approach to Hesiod, reading not the text of the poem but looking

through it to find the more primitive ‘source’, has the effect not only of

disguising the radical novelty of Ionian cosmology but also of doing an

injustice to Hesiod’s own speculative achievement. He set out to imagine

what there could have been first of all in the beginnings before anything

had taken shape. Different mythic poets conceive this beginning in dif-

ferent ways. Hesiod’s ploy was to imagine an enormous gap, a vacant,

yawning hole with no sides. In the genealogical language of mythopoetry,

the negative character of this primordial chasm is revealed by its offspring,

infernal darkness (Erebos) and black Night. What we have then is a kind of

black hole, into which things could only fall and be lost. The first positive

item to appear is ‘broadbosomed Earth, a safe seat for all things forever’.

Earth is a safe seat because it prevents things from falling into the dark

chasm below. Hence everything positive and solid will now be produced

from Gaia. Her first product is the starry Heaven ‘equal to herself, to cover

her all around’. So the world now has an upper fioor, and Gaia now has

a mate. This story has a beautiful coherence of its own, which is to all

appearances Hesiod’s own creation. And if some of the succeeding misad-

ventures of Gaia and Ouranos do have a non-Greek source, this has nothing

to do with a primeval Polynesian ‘clinging together’, and also nothing to do

with the cosmologists’ quite different attempt to understand how a differ-

entiated universe could emerge in a natural way from the initial hypothesis

of an undifferentiated mass, whether this mass is described as direLpov or as

‘boundless air’ or as ‘all things together’.
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In conclusion, let me say one word about the demarcation between sci-

ence and philosophy, I can be brief, because in the period before Socrates

there is no such demarcation. The investigation of nature (irepl c|)ija€a)9

loTopCa) comprises both. Looking back from our point of view, we might

see the prefiguration of a distinction between philosophy and science in the

division between the two parts of Parmenides’ poem: the Way of Truth,

which presents a metaphysical account of Being, and the Way of Opinion,

which describes the genesis of the natural world. When we come to Plato’s

Timaeus, we can see the transformation of this dichotomy into something

resembling our distinction between a philosophical account of reality (in the

doctrine of Forms) and Plato’s own version of Ionian natural philosophy

or physics, as a ‘likely account’. But that lies outside my propos.

I should add that I have considered only the internal history of Greek

science and philosophy in its earliest phase. The external history—the

social, economic, and political conditions of this momentous innovation

—

would require another paper. But I would have nothing substantial to

add beyond the very instructive parallel between the emergence of rational

thought about the physical universe in the sixth century and the contem-

poraneous development in Greek political life—the parallel that was (to

my knowledge) first usefully drawn in J.-P. Vernant’s Les origines de la

pensee grecque [1962], and then convincingly developed in the last chapter

of Lloyd’s more recent study [1979]. I can add only one final question.

If one accepts the thesis developed by Jasper Griffin [1977], as I am in-

clined to do, then the author of the Iliad must be seen as having made
a systematic attempt to eliminate, suppress or play down all of the more

strikingly miraculous and monstrous elements in the older epic tradition.

That means that the Greek tendency to think of the circumstances of hu-

man life in ‘naturalistic’, non-magical terms can be seen at work already in

the late eighth century. In this perspective it is Homer and not Hesiod who
might properly rank as the first Presocratic. Now can we trace back to the

time of the Iliad that political and sociological parallel which works so well

for the sixth century? If not, is this too an accident of our documentation?

Or is this evidence for a more Weberian view of the essential autonomy

of intellectual history?
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Plato’s Science

—

His View and Ours of His

ALEXANDER P. D. MOURELATOS

I propose to canvass the essentials of Plato’s conception of science. The
two ‘views’ alluded to in the title of this paper correspond to these two

questions: What is it that we, given our conception of science, find either

especially congenial or especially uncongenial in Plato’s treatment of sci-

ence and of the sciences? What does Plato himself choose to emphasize in

the various contexts in which he does what is recognizable to us as science,

or talks about either particular sciences or the general topic of scientific

inquiry?

1. The judgmental approach to Plato’s science

Those elements in Plato’s conception of science that are jarringly out of

line with modern presuppositions are almost tediously familiar; so I shall

simply allude to them in general terms. In the famous methodological

passage of the Phaedo [95e-99e], Plato expresses a decided preference for

teleological explanation. Later, in the Timaeus, he reiterates that pref-

erence and displays it in the actual explanations he offers. In both the

Phaedo and the Timaeus Plato also implies that there is little point in

offering an explanans that falls short of providing a fully satisfying rational

insight. In other words, an explanation that is worth giving must either

itself be, or be a proximate step toward yielding, what we would call ‘ul-

timate’ explanation. The impatient optimism Plato shows in this respect

may well strike modern scientists as puerile. Well known, too, and much
deplored is Plato’s depreciation of the testimony of the senses in the search

11
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for truth and his specific disparagement of experiments and of the amassing

of observational data.

But there is also much that modern readers have found congenial, or

even strikingly prophetic of twentieth-century doctrines and trends. Re-

markably, the very same dialogue that earns the greatest scorn from Plato’s

modern detractors, the Timaeus, is the one that has stimulated the more
appreciative readings too.

The Timaeus might be said to constitute Plato’s encyclopedia of the

sciences. It could also be said to constitute Plato’s statement of a certain

doctrine that holds considerable appeal in our day: the unity of science.

If we set out to record discernible early contributions to what eventually

came to be distinct branches of science, we are likely to cite passages of the

Timaeus not only under the headings of number-theory, geometry, stere-

ometry, astronomy, and harmonics—these passages are well known and

conspicuous—but also under such headings as mechctnics (notably fiuid

mechanics and the theory of projectiles, 77c-81e), acoustics [80a-b], optics

[45b-46c], physical chemistry and mineralogy [53c-61c], the physiology of

perception [61c-68d], general human physiology [69d-81e], as well as hu-

man pathology [81e-86a], and psychopathology [86b-90d]. It matters not

at all that many of these passages contain not statements of Plato’s own
theories but rather Plato’s informed reportage of theories propounded by

his scientifically minded predecessors and contemporaries. The details in

the individual articles of the encyclopedia may be borrowed, but the vision

and organization of the whole is authentically Plato’s. The system is as

thoroughly mechanistic in its substance as it is teleological in its regula-

tive principles. Within the limits set by the teleology—the desideratum of

always realizing the best of relevant possibilities—the system both of the

heavens and of terrestrial phenomena involves only two factors: geometrical

structure and motion. This is a far cry from the sort of mechanism Plato

decries when he attacks materialist theories in Laws x 889b-c; 1 it is rather

a highly abstract doctrine of the geometry of motion, something akin to

the pure mechanism propounded by Descartes.

Modern readers have also been struck by what appears as a prefiguring

in the Timaeus of the standard hypothetico-deductive model of scientific

explanation [cf. Vlastos 1975, ch. 2-3]. We should remind ourselves here

of the two cases that work best for Plato. At 36b-d he constructs a ge-

ometric model of the seasonal spiral-like movement of the Sun between the

tropics. He theorizes that the spiral is the resultant of two regular and

uniform motions: the diurnal westward rotation of the whole sphere of the

1 The universe develops through chance interactions of reified opposites.
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heavens; and an eastward annual movement along a great celestial circle

drawn between the two tropics, the circle of the ecliptic. The construction

is elegant, and the fit with the empirical data known to Plato is nearly

perfect [cf. Vlastos 1975, 54-57].

At 51b-61c he uses a structural-mathematical model to account for both

intrinsic and interactive properties of the four elements. The theory is that

each element has a distinct but regular molecular structure, each type of

molecule having the geometry of one of the regular solids, the dodecahedron

excluded. A fair number of facts concerning the elements are captured by

Plato’s construction, but the fit between theory and data is far looser here

than it is in the account of solar motion. According to Gregory Vlastos

[1975, 85], the looseness should be blamed on the type of data concerning

terrestrial phenomena that Plato had at his disposal: ‘ordinary, uncon-

trolled, unrefined, unanalyzed observation—things which everybody was

supposed to know and no one was expected to investigate’.

Even Plato’s disparagement of empirical knowledge has a bright side

when judged in the light of twentieth-century developments in epistemology

and the philosophy of science. Thus, Plato appears squarely in agreement

with the view that the status of knowledge about the physical world is at

best that of a conjecture, an elKCog [i€6o9 (probable account).2 Also very

much in the spirit of recent philosophy of science is Plato’s recognition of

the tug-of-war relationship between theory and data. We say today that

a theory, controlled as it is by the relevant empirical data, is nonetheless

under multiple a priori constraints—those of the regulative principles of

science and of the dominant paradigm. Moreover, the pull of the theory on
the data is often strong enough to regiment and mold the data—we speak

of observation as being theory-laden. Plato tells us that in cosmology or

natural philosophy we must first take note of the contribution ‘reason’

makes to the universe, which calls for an abstract a priori understanding

of structures and of their optimal combinations and transformations; but

then we must also take note of the factor of brute facticity or raw givenness,

what Plato calls the ‘wandering cause’ and ‘necessity’. In the dialogue’s

ontological and quasi-mythical terms, cosmic Reason ‘exercises sway’ over

Necessity as it ‘persuades’ her to assume intelligible structure to the great-

est extent possible [Tim. 48a]. The epistemological corollary is that the

2 The point is made well by G. E. R. Lloyd [1983b, 11-30] in a succinct and
beautifully balanced discussion of Plato’s conception of science. See especially

1983b, 22: ‘[Plato’s] reluctance to claim any more than a certain probability is

readily understandable, indeed laudable when we reflect on the excessive dogma-
tism shown in this general area of inquiry not only by most of Plato’s predecessors

but also by most of his successors.’
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realm of Necessity is inherently so indeterminate as not to constitute a

legitimate object of understanding [51a-b, 52b]; it is intelligible only to the

extent that theoretical structures have been projected on to it [49e-50aj.

Then, too, there is that feature of the physics of the Timaeus that has

delighted Whitehead, Friedlander, and many a modern physicist: the atom-

ism of Plato’s Timaeus, which posits not unsplittable elementary corpuscles

but abstract generative formulae for the systematic articulation of space, is

closer to the spirit of our wave-theory of matter or of quantum mechan-

ics than is the classical atomism of Dalton, or its ancient predecessor, the

atomism of Democritus and Epicurus.

3

2. A survey of Plato’s ‘philosophy of science’

Let us now try to shed our modern ideology in the hope we may come

as close as possible to Plato’s own view of science. There is, of course,

one preconception we are unable to shed: our selection of texts will nec-

essarily be guided by what we recognize, in an appropriately broad sense,

as ‘science’. The semantic focus of the English term ‘science’ is clearly in

its count-noun use (a), the one that allows us to speak of a distinct body

of knowledge, e.g., geometry or chemistry, as ‘a science’. Radiating out

from this focus are: (b) the collective-noun use, and (c) the abstract-noun

use, which makes it possible for us to speak of the thinking that charac-

terizes the sciences. The use of €7rL(7Tq|ir| includes these three patterns,

but there are some major complications. The Greek term also carries (d)

the state-noun senses of ‘knowledge’ and ‘understanding’, and corresponds

also to two uses of the English term ‘skill’: (e) the abstract-noun use (as in

‘He shows skill’), and (f) the count-noun use (as in ‘Horse-riding is a skill’).

Plato shifts quite comfortably from one to the other of these six patterns of

use of eTTLaTqfiri. Indeed, because of the absence of the indefinite article in

Greek, it is only in uses of €TrLcrrq[iq in the plural that the two count-noun

uses, (a) and (f), are immediately recognizable without recourse to the

context. Since the theme of the present collection of studies is history and

philosophy of science, not epistemology or learning theory, it is reasonable

that we should select those texts in which the sense of eTTLorqjiq that is

thematically prominent is that of ‘branch or body of knowledge’.

A good text with which to begin is not the Timaeus but the digression in

the Philebus concerning precision and purity in the arts and sciences.

3 See Whitehead 1933, 126: ‘The modern wave-theory of the atom sides with

Plato rather than with Democritus: Newtonian dynamics sides with Democritus

against Plato.’ Cf. Friedlander 1958, ch. 14.
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Mathematics and the ^professions^: Philebus 55c-59c. The genus under

scrutiny is initially referred to as that of Tfjg Trepl tol fia0%aTa eTTLCjn^p.Ti9,

But as the scheme unfolds, the term €TrLarii[iTi is used interchangeably with

the term Tex^T] (art)—a significant pattern of equivalence that refiects the

established sense of ‘skill’ for eTTLarqpq 4 At 55d the genus is split into two

subgenera: the first comprises those arts and sciences that provide ‘services

to the public’ or ‘work/practice for hire’ (dqfUOupyLKOv), which Plato also

calls ‘practical arts’ (xeLpOTexviKaXg, 55d), and which we might call ‘pro-

fessional occupations’ or simply ‘professions’; the second comprises those

pursued for the sake of education and culture (ire pi TraLSeCav kul Tpocj)f|v).

Plato then makes the observation that if one were to subtract from each

of the professions the component that involves calculation, measurement,

and weighing, the remainder could well seem trivial (<j>aOXov, 55e). The
sciences of arithmetic, metrics, and statics are, accordingly, called ‘leaders’

(fiyepoyLKas*, 55d) among all the professions. This list of three leaders is

not, however, meant to be exhaustive: Plato will shortly refer to XoyLaTLto]

(the science of computation) as distinct from dpL0p.T|TLicn (properly the the-

ory of numbers) and as likewise a leader [56e]; indeed, he eventually speaks

of a whole train of sciences that are of the same genre as arithmetic and

metrics—what we may call, with no fear of anachronism, the ‘mathematical

sciences’.

After the initial division between professions and educational or cul-

tural subjects, the professions are in turn subdivided into those that make
maximum use of counting, measuring, and weighing, and those that make
limited use of them, relying mainly either on experience and practice (ep."

TretpCq kul tlvl TpL^fj, 55d) or on—what may well be meant as the rival

‘leader’— oroxaaTLJcp (the art of taking aim), or ‘the art of trial and error’

[55d: cf. 56a]. The art Plato cites as representative of the first group of

professions is reKTOVLicq (the art of building), which includes shipbuilding,

architecture, and carpentry. The prime example for the second group is

music (performing), other examples being medicine, agriculture, the art of

navigation, and military science. Characteristic of the professions in the

first group is that they show greater reliance on knowledge—or should the

translation be, ‘have more to do with science’ (€7TLcrrqp.q? pdXXov exopevov,

55d)?—treat of things in their purest state ((09 Ka0apojTaTa vopCCeLV, 55d),

involve more of what is clear and certain (aa<|)e9 . .
.
^e^aiov: cf. 56a), and

have a greater share of precision (aKpiPetag peTioxowag, 56c: cf. 56b).

^ The terms eiTLanipri and Texvnr] are used interchangeably not only in this passage

but often in Plato. The translation ‘craft’ for xexv^ is possible only in certain

contexts, not standardly. See Roochnik 1986, 295-310.
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Though Plato speaks of a division, his use of comparatives and superla-

tives suggests that we are dealing with a continuum or spectrum, with

the art of building at the one end and music at the other. Clearly, the

distinction does not correspond to that between ‘exact’ and ‘inexact’ sci-

ences, as we use these terms; but it will be convenient for us to refer to the

first and second groups as the ‘exact professions’ and ‘inexact professions’,

respectively.

Dichotomous division is not pursued further in this passage. Instead,

Plato focuses directly on the mathematical leaders. Their place in the

scheme is unclear. They are expressly said to be leaders of all arts and

sciences (cKdoTCov amdiv, 55d; Traadiv, 55e); so they cannot be said to be

leaders of the exact professions only. Nevertheless, the wording at 56c

suggests that they are to be included among the exact professions, albeit

standing far above the rest, being superlatively exact (toutwv 8e [the ref-

erence is presumably to the exact professions] ravTag aKpiPeardTag elvai

T€xva9). Still, the rubrics, xei'POTexv'LK-q and SrniLoupyLKOV (practical art,

work/practice for hire), of 55d certainly do not fit them. The suggestion

ready to hand from the initial dichotomy is that the mathematical sciences

are not professions at all; they are pursued for the sake of education. But,

then, how are we to explain their intricate and extensive involvement with

the universe of the professions?

Plato rules that the question is to be approached as one not of genus-

species classification but of homonymy (6p.(j5vup.ov, 57b: cf. 57b-e). He
inquires whether a distinction analogous to that between exact and inexact

professions may not be drawn within each of the mathematical sciences, and

he reaches the conclusion that there are ‘two arts of arithmetic and two

arts of measurement, and a whole train of arts of this genre (rauTaL? dXXai

TOiauraL avv€Ti6\L€vai auxv'aL) that have this twin character but have come to

share a single name’ [57d].5 The distinction is, say, between the arithmetic

5 The use of auveTTopevai here calls to mind the use of cruveTTopeva? at 56c. There
the participle is used to express the relation that holds between the individual

professions and their paradigm profession (t6ictovlkti in the case of the exact pro-

fessions, poiKTLXTi in that of the inexact ones). One might, therefore, suppose that

the participle at 57d is meant to refer to the relation the individual professions

have to the mathematical sciences, in the latter’s capacity as leaders. If that

is the relevant meaning of ouveTTopevai here, we have the implication that the

duality extends through the whole spectrum of the professions—the inexact ones

included, since they too are properly led by the mathematical sciences. The
mathematical component present in each of the professions would, accordingly,

constitute in each case a distinct mathematical science that has the duality pos-

tulated. An attractive feature of this interpretation is that it accounts for the

omission of the science of harmonics from Plato’s list of mathematical sciences

and for the rather surprising choice of music as the paradigm of a trial-and-error
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employed within the professions, which involves units of various sizes, and

only approximately equal at that (two head of cattle, two military camps),

and the arithmetic studied by theorists (t(3v (})LXoao(tx)uvn'(i)v), which posits

constant and exactly equal units [56d-e]. Plato alludes to a corresponding

distinction that obtains between the art of calculation employed within the

profession of building or of business and the theoretical study of geometry

or of numerical operations (rq? Kara <{)LXoao(j>Lav yecoperpCa? re kuI XoyLapdjv

KaxafieXeTCopevcoy, 56e-57a). It is safe to refer to this distinction as that

between applied and theoretical or pure mathematics.

The extent of the difference between applied and pure mathematics re-

ceives considerable emphasis:

We have come to note a degree of difference in clarity between sci-

ences that is amazing .... Even after saying that these [scil. the

mathematics employed in the professions] differ greatly from the

other professions, the sciences employed in the enterprise of true

theorists (at Trepl TTjy tcov oirrwg (j>LXoao4)OuvTa)v 6pp.qi/) differ to an

astonishing degree in precision and truth concerning measures and

numbers from their respective professional versions. [Phil. 57c-d]6

These words, however, are spoken not by Socrates but by Protarchus.

When Socrates asks at 57e, ‘Shall we then say that these [theoretical math-

ematics] are the most precise of sciences? ’7 Protarchus does not hesitate to

answer, ‘Very much so.’ But Socrates goes on to make the characteris-

tically Platonic point that still superior is the art of dialectic [57e-59d].

To mark its supreme status, Socrates bestows on it the ‘finest’ and ‘most

honorable’ of names, voOg (understanding) and 4)p6vT|aL9 (thought) [59c-d].

Thus, while exalting dialectic Plato also suggests that the title of eTTLOTqpq

for theoretical mathematics is secure.

In the course of his exaltation of dialectic Socrates makes the point that

the theoretical study of nature (Trepl (|)i3a6a)9 . .
.
CtitcXv . . . Trepl tov Koapov

Tovde, 59a) ranks with the ordinary professions, inasmuch as it deals not

art. The suggestion would be that there are also two arts of music: the hit-and-

miss affair practiced by performers, and the theoretical science that is also called

‘harmonics’. But it is more straightforward to assume that the phrase TauTai?

dXXai TOLatnraL oweiropevaL at 57d functions merely as an ‘etc.’ that covers

recognized mathematical sciences other than the two, arithmetic and metrics,

that are explicitly mentioned.

6touto)v 8* auToiv clearly refers back to auTUL, which can only be the mathematics
used in the professions. The genitive, therefore, should be taken as governed by
8La<j)epoiKJLv, not as a partitive genitive.

^I discuss shortly below a certain pregnant ambiguity in this question.



18 ALEXANDER P. D. MOURELATOS

with timeless truths but with things subject to change. Not only the title

voO? but equally the title eTTLaTqfi-n is withheld from it.

That names such as (f>p6i/qaL9 ,
V0O9 ,

and €TTLaTqp.T] are, in an important

sense, honorific and subject to recall is a theme that runs throughout this

passage in the Philebus. In the earlier stages of the division it is the term

T€XPt| that has this character. Thus, at 55e-56a Plato observes that it is

only ‘the many’ who use T€XVT] of that component of the arts that does

not involve mathematics, and at 56c he shows some reticence about using

the term T€XVT| of the genus that encompasses the whole spectrum of the

professions, including the inexact ones (Gaipey Tolvw Sixt) Tag Xeyo^ievas

T€xyug, ‘Let us divide in two the so-called professions’). The implication

is that, as the mathematical component becomes smaller, the title of Tcxyr]

becomes progressively dubious. There is also a poignant ambiguity of syn-

tax in the two passages that place mathematics among the exact professions

(Taurag aKpiPeardrag elvai rexvag, 56c; €TrLaTqp.as dKpiPeX? pdXtaT’ elyat,

57e): Plato may be saying that these rank as exact Texvat or eTTLorfifiaL; or

he may be saying that these are Texvai and eTTLOTfjpaL in the most exact

sense of these terms. Clearly what we have in the Philebus is not a purely

descriptive classification but an axiology of the arts and sciences.

The scheme of Statesman 258e-260b. The initial distinction at Philebus

55d between professions and educational-cultural subjects appears to corre-

spond, at first blush, to the distinction drawn in Statesman 258e between

TrpaKTLKf] e7rLcrrqp.T] and ‘yvcoorucf] e7rLarqp.q. But, as further divisions are

drawn in the latter dialogue, we find at 260b that yvcocrnKf) eiaaTfipTi has

two species, one purely KpiTLKoy (judgmental) and one eTTLTaKTLKOV (direc-

tive, executive, or managerial). The science of calculation falls entirely

within the judgmental species; but architecture, which involves the is-

suance of directions and plans as well as of judgments, falls in the ex-

ecutive species [259e-260a]. As lower-level divisions are articulated, we

find under the heading of the executive species—and thus under the gen-

eral heading of ‘yvcooTUcfi eTrujTqpT]—not only the art of the statesman but

also various forms of husbandry. Obviously, the 'yvaKrrucf) 6 TTLcrrqp.T) of the

Statesman does not correspond to the ‘enterprise of true theorists’ referred

to in the Philebus. The relevant sense of eTrLOTqfir) here must be that of

‘skill’, and the initial distinction is not one between applied and theoreti-

cal science but rather one between purely practical skills—which are not

discussed further—and cognitive skills. Thus, all the distinctions drawn

in the Statesman are within the domain of what in the Philebus would

count strictly as professions. But the rationale of the distinctions in the
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Statesman is quite different from that of pointing up the contrast between

exact and inexact professions.

Plato’s citing architecture as a skill that combines judgment and exe-

cution does, however, firm up the point that was made in the Philebus,

where architecture appeared among the ‘exact’ professions. Even though

the dialectical method encourages dichotomous division, the truth is that

the professions properly constitute a spectrum: those involving only prac-

tical skills at one end; those that involve a heavier component of cognitive

and intellectual skills at the other.

The sublimated sciences ofRepublic vii. The doctrine of the Philebus, that

once the mathematical component is subtracted from any of the arts and

sciences the remainder is ‘trivial’, appears also in the Republic, where we

are told that ‘every art and science’ must necessarily involve number and

calculation [522d]. The remark occurs at the beginning of the long section

in book 7 that lays out the program of higher education of the guardians:

first the five mathematical subjects of arithmetic, geometry, stereometry,

astronomy, and harmonics; and then the ‘coping stone’ and ‘main song’,

for which the mathematical studies are only a ‘prelude’, dialectic. Philebus

55c-59d quite obviously repeats many themes from this famous passage of

the Republic. The duality of arithmetic, geometry, and astronomy appears

in the dialogical play between the practical version of each that Glau-

con appreciates—the military commander’s counting of troops, measuring

of fields, and knowledge of seasons—and the austerely theoretical version

Socrates is promoting. And, as later in the Philebus, the contrast between

the mathematical sciences and dialectic is made to seem bigger than that

between the two homonymous versions of each of the five mathematical

sciences.

There are also, however, some intriguing differences from the account in

the Philebus. Astronomy and harmonics, neither of which is mentioned in

that later dialogue, are given in the Republic an additional twist of theo-

retical sublimation. Applied harmonics, surely, is none other than music in

the ordinary sense—that prime example of an inexact profession. Signi-

ficantly, Plato does not have Glaucon dwell on the usefulness of music,

since this was fully covered in book 4. Instead, Glaucon, who by this stage

in the discussion has caught the drift of Socrates’ interest in the mathemat-
ical subjects, immediately volunteers his censure of the aural approach to

harmonics. In distinguishing musical tones and measuring intervals, these

aural harmonists hew to the practice of musical performers. Just as the

latter do their tuning by trial-and-error, the aural harmonists seek to deter-

mine the smallest detectable interval through intent listening after repeated
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tunings and retunings of strings. Socrates dismisses that approach with the

rather repugnant elaboration of a metaphor of strings being tortured, and

proceeds to draw a distinction between two versions of properly theoretical

harmonics: the science of the Pythagoreans who seek the ratios that corre-

spond to aural concords, and the purely mathematical science practiced by

Platonically minded harmonists who would ‘ascend to problems to investi-

gate which numbers are consonant and which not, and why the ones are

so and the others not’ [531c]. The wording suggests a program for some
sort of purely mathematical unified theory of selected ratios. The phrase

‘consonant numbers’ (ou|i(j)a)V0L dpiSfioC) has been convincingly interpreted

by Andrew Barker [1978b, 342] as ‘those numbers which, from their place

in an intelligible system, we shall call “consonant” on the analogy with

heard sounds ’.8

When astronomy is discussed in the Republic, the applied version of

the subject is represented—as in the case of arithmetic and geometry—in

Glaucon’s jejune endorsement of its usefulness.9 Here, too, Socrates draws

a further distinction, one within the domain of other-than-applied astron-

omy: standard contemporary astronomy (o)g vvv dorpopopeXTai, 530c) ver-

sus ‘real astronomy’ (cf. tco ovtl daTpovopiKOV, 530a; ovtws doTpovopCa?,

530b). What Socrates considers standard astronomy here is not the ap-

plication of astronomical data in the construction of calendars or in agri-

culture; for it is expressly said to have no utility (dxpiiorou, 530c), an

important detail in the text that has often been overlooked. As Socrates’

conventional image of the gaping stargazer (dvo) kcxtivcos, 529b) suggests,

it is a form of Oecapia (natural-historical or disinterested inquiry). It aims

to chart the heavens by seasons, and to ascertain the paths and periods

of revolution of the planets in their easterly motion through the zodiac.

The definition of astronomy given in Gorgias 451c envisages clearly this

standard version: ‘the account (XoyoL) concerning the revolutions of the

stars and of the Sun and Moon, specifically, how they relate to one another

with respect to speed’.

Real astronomy is toto caelo different. A purely programmatic subject,

it is not discussed under its proper name in any other part of the Platonic

8 1 regret having missed this important article in my earlier investigations of this

subject.

9 The applied version of astronomy that Glaucon appreciates must have been

part of the Athenian public’s perception of peTecopoXoyta. In Symp. 188a-b the

pompous medical doctor Eryximachus, who comes across clearly as a spokesman

for Ionian science, conceives of ‘the science of the revolutions of the stars and

of the seasons of their respective years’ as applied to the forecasting of violent

weather and of epidemics.
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corpus. It is defined in strikingly revisionary terms as a science of ‘solids

in revolution’ or of ‘the revolution of that which has depth’ [528a, 528d].

The elaboration of these definitions Plato gives in 529c-d is most plausibly

read a/ envisaging a science of general and pure kinematics. As with Plato’s

sublimated version of harmonics, real astronomy uses a ‘problem’ approach;

it treats the motions traced by the stars and planets not as evidence but

merely as suggestive of problems in the analysis and synthesis of motion. 10

The sciences generally and the ‘love of wisdom \ We have touched on the

major texts in which Plato gives us, what we would recognize as, his phi-

losophy of science. Let me now ask a general question. Within the large

Platonic context of the ‘love of wisdom’, what is the contribution made by

the sciences? I shall proceed by raising three subordinate questions. First,

what is the contribution made by the arts and sciences at the broadest

range of the spectrum? In answering this sub-question Plato would almost

certainly have recourse to the familiar Socratic theme of the arts and sci-

ences as paradigms of human rationality: each of the arts and sciences has

a product or object as its focal concern; for each there is a reXog and an

implied teleological framework that is necessarily coherent; each is teach-

able; each affords a fairly accessible and transparent distinction between

experts and non-experts; each affords compelling procedures for settling

disputes that arise in the course of its practice. These several aspects of

the paradigmatic function the arts and sciences have for Plato’s Socrates

are now understood quite well [see, e.g., Irwin 1977, 73-75; Roochnik 1986,

303-310; Brumbaugh 1976]. I choose here to expand briefly on the first

aspect, which is remarkable for its presence at all stages and contexts of

Plato’s thought. Even the most menial and least exact of the arts has

the virtue of focusing intelligent endeavor on a fairly well-defined field: the

cobbler will concern himself with the making of shoes; the flutist with mak-
ing music on pipes; the doctor with healing the sick. This disciplined and
collected ‘about-ness’ of the arts and sciences, their engaged intentionality,

is an authentic manifestation of philosophic Ipo)?. The relevant contrast is

with the scatterbrain mentality of dabblers, meddlers, and impressionable

acolytes; the sophists and their pupils; imitative artists and their audi-

ences; demagogic politicians and their gullible and sycophantic followers.

^0 Here is an example that has an obvious astronomical analogue: When a sphere

revolves uniformly on an axis, what is the curve traced by a point that moves
along a great circle the plane of which is inclined to the sphere’s axis? Answer:
a spiral of alternately descending and ascending coils. I have argued at length for

this interpretation of ‘real astronomy’ in Mourelatos 1980, 33-73 and 1981, 1-32.
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The strict code of Laws viii 846d-e, which bars an artisan from practic-

ing two professions, is not only a continuation of the Socratic theme of

the rationality of specialization, it also points up the affinity between this

theme and the Platonic conception of social justice—in the reinterpretation

worked out in the Republic of the traditional precept, ‘doing one’s own and

not being a busy-body’.

Mathematics and the dove of wisdom’. The second sub-question is What
contribution do the mathematical sciences make? Plato would cite four

distinct contributions. As we saw in the passage from the Philebus, math-

ematics constitutes the core and essence of both exact and inexact pro-

fessions. Mathematics is the relevant paradigm in both the Platonic and

the modern (Kuhnian) sense: it is the ideal Form toward which all arts

and sciences aim; and it is the source and repository of the acknowledged

techniques and procedures that mark the difference between the true pro-

fessional and the charlatan. Second—here the relevant text is Republic

vii—mathematics promotes the TrepLaywyq and peTaaTpo(f>q, that momen-
tous turn-around, away from preoccupation with the world of sensibles and

toward the contemplation of purely theoretical entities. Third—the rele-

vant text is again Republic vii—mathematics is the appropriate TTpoTTaideCa

(preparatory training) for dialectic. Let me dwell briefly on this last contri-

bution.

Human feelings run high when it comes to discussions of justice or happi-

ness; but the topics of number and shape lend themselves to dispassionate

discussion [cf. Euthyphro 7b]. Progress toward real insight in mathemat-

ics can be quick, which fortifles us against crises of p.LaoXoyLa (hatred or

mistrust of argument) and sensitizes us to the important distinction be-

tween genuine and purely eristic argument. This facet of the propaedeutic

function of mathematics is well understood. But there is also another,

which is sometimes overlooked: it involves the series of the five mathe-

matical sciences, with astronomy and harmonics understood in accordance

with the revisionary definitions of Republic vii. This series of five subjects

paves the way to that ‘synoptic view’ of reality that is characteristic of the

dialectician [Resp. 537c] . The five have an obvious affinity one to another

(oLK€LOTr|Tog . . . dXXqXwv tcSv pa0r|p.dTa)v, 537c). Indeed, they seem to con-

stitute a systematic circle. The truths of the theory of numbers can be

studied in isolation from those of the other sciences. But our intellectual

horizon progressively expands as we move to plane geometry, which incor-

porates all truths of the theory of numbers, and then to stereometry, which

incorporates all of plane geometry. Our horizon is expanded further when,

with real astronomy, the geometrical sense of shape is generalized into that
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of curves and trajectories in two and three dimensions. Then, finally, when
Plato’s version of harmonics seeks to understand the principle of unity of

the ratios that underlie concordant motions, the circle is closed: we return

to the theory of numbers, now focusing on a pre-eminently unified part of

the theory of ratios [see above, and Barker 1978b]. Putting together this

theme of the systematic unity of the five mathematical sciences of Republic

vii with the theme of the Philebus, that the core and essence of all the arts

and sciences is mathematics, we come to appreciate how large a part of the

work that leads up to the dialectician’s crowning achievement of synoptic

vision is done at the stage of mathematical study.

Turning now to the fourth contribution made by mathematics, we begin

to make contact with features of Plato’s conception that were cited at

the start of this paper as holding a special appeal for modern readers.

As the Timaeus shows, the mathematical sciences provide the appropriate

explanantia in cosmological speculation. The point can be made concerning

the mathematical sciences generally; but it holds with greater force when
mathematics is conceived of in the terms of Republic vii.

Mathematics dispenses appropriate explanantia in two ways.H First, the

only explanation of specific phenomena that promises not to beg further

questions is one in terms of mathematical structure. Why does earth (the

element) tend to be cohesive, stable, unreactive, and heavy? Answer: be-

cause earth molecules have the geometry of a cube. Accordingly, when
contact is made with a plane surface, all six faces of the cube offer either

a secure square base or at least the possibility of a smooth slide, with no

tumbling. Moreover, as cubes make contact with one another, their six

square faces make for firm and compact stacking. Why, by contrast, is

fire expansive, highly mobile, destructive, and light? Answer: because its

molecules have the geometry of a tetrahedron. The four triangular faces

of this solid make for a structure that is liable to tipping and tumbling,

and the pointed vertices and sharp corners that join the faces insinuate

themselves more easily into other structures, thus promoting breakup. In

other words, mathematics offers ultimately satisfying formal causes in our

study of particular natural phenomena.

What is more, mathematics provides the appropriate context toward

answering those general and metaphysical questions for which only a teleo-

logical answer would be appropriate. Suppose we ask. Why should the

elements have the structure of regular solids? or Why should the real (as

distinct from the phenomenal) motions of the heavenly bodies be uniform

In this paragraph and in the one that follows I condense an argument developed

at length in Mourelatos 1981, 24-30.
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and circular? or Why should there be seven planets, their periods related

to one another in accordance with the specifications Plato gives in the

Timaeus? Plato’s answer in each case is that this arrangement is ‘the

best’. The answer may strike us today as quite arbitrary, a mere aesthetic

prejudice. Plato’s rejoinder might well be that the original question was not

raised in vacuo. It is inherent to the ‘generative’ logic of mathematics that

within each of the mathematical sciences certain structures are promoted

as paramount and pre-eminent: in arithmetic, the smaller integers and

the contrast between odd and even numbers; in plane geometry, straight

lines, triangles, simple polygons, perfect arcs, and circles; in solid geometry,

the sphere and the regular solids; in real astronomy, rotary motions; in

harmonics, the three means, arithmetic, geometric, and harmonic. Thus

a certain axiology of structure is built into mathematics. The asking of

questions as to which structures are ‘best’ is necessarily placed against that

background, and the answer forthcoming expresses a preference educated

by mathematical insight.

Mathematics as the essence of and paradigm for all the arts and sci-

ences, as the discipline of the ‘turn-around’ toward the world of Forms,

as the preparatory training for dialectic (in the cultivation both of habits

of argument and of the synoptic view), and as the dispenser of appropri-

ate explanatory structures in cosmological inquiry—these are four major

contributions the mathematical sciences make to the Platonic quest for

wisdom.

Cosmology^s contribution: relevance of the Timaeus. The contribution

last mentioned naturally prompts us to ask whether there is not also a

contribution made by cosmology as such. This would be the third in my
main series of subordinate questions concerning Plato’s conception of the

role played by the sciences.

Here the distinction between cosmology-in-general and Plato’s use of it

in the Timaeus is crucial. The verdict with respect to cosmology-in-general

is clear from the Philebus. Though it often is a disinterested inquiry (this

is presumably the force of the concessive €L T€ kul at Phil. 59a), it ranks,

as we saw, with the practical professions. For, like them, it is concerned

not with timeless truths but with various events and processes; its mode
of cognition is that of 86^a (belief, conjecture); the entities it deals with fall

squarely within the realm of 86fa [Phil. 58e-59b]. If it contributes to the

grand Platonic quest, it does so only in the Socratic way, by serving as one

of the examples of well-focused intelligent activity. It is astonishing that

Plato never makes comments of the sort we commonly make in discussing

the contributions of Presocratic natural philosophers to the development
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of science. We recognize that, regardless as to whether the Presocratics

saw the world in dynamic or static terms, their inquiry into 4>LiaL9 was

itself a momentous ‘turn-around’; that it was, in the language of Plato’s

Cave, a release from the bondage of irrationality and superstition; that

in distinguishing between appearance and reality the natural philosophers

were close to the spirit of Plato’s corresponding distinction; and that

—

as Charles Kahn has again reminded us [see ch. 1 above]—mathematics

and Trepl (j)Lia€a)9 laTopia developed hand-in-hand in the sixth and fifth cen-

turies. What Plato keeps seeing, instead, are the perils and the distractions

posed by natural philosophy. Thus, in the Phaedo [96c] natural philosophy

threatens to ‘blind’ Socrates, robbing him of his common sense; and in

Laws X 891b-892c it is said to promote the fundamental error that soul

and are posterior in the order of things to ‘nature’.

Plato acknowledges the epistemological limitations as applicable to his

own cosmology in the Timaeus. But the metaphysical certainties that frame

Plato’s otherwise ‘probable account’—the principles that the universe is a

structure of the highest beauty and value, and that it reflects the workings

of intelligent soul at many levels of activity—permit Plato to claim for

his cosmology a redeeming ideological function, one that no naturalistic

cosmology could perform. The explanatory mathematical structures of the

Timaeus exhibit the ideal order that cosmic intelligence has built into the

world. As we contemplate that order, we come to be in possession of

patterns we can use in ordering our immediate moral universe, our lives

on earth. This essentially heuristic, edifying, and inspirational function

of Platonic cosmology is alluded to throughout the dialogue and is given

rhetorical emphasis in the dialogue’s climactic paragraph, which enjoins

us to tune the motions of our soul in accordance with the ‘harmonious

structures and revolutions’ of the universe [Tim. 90c-d].12

So in answer to our third question concerning Plato’s conception of the

contributions the sciences make, we must say that cosmology as such makes
no special contribution. If, however, a cosmology is framed by a Platonic

metaphysics, and only on that condition, it has a powerfully edifying func-

tion. The compliment Plato seems to pay cosmology in the Timaeus is a

thinly disguised act of self-praise for his metaphysics, after all.

There is good reason to think that, for Plato, human souls have their own
proper motions not metaphorically but in a fairly literal sense of klvticjls': Rung
1985

,
17-27 .
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3. Platonic natural philosophy and modern science

The two approaches to Plato’s science that I have pursued have produced

significantly different observations. The encyclopedia of the sciences in the

Timaeus is a mirage of anachronistic reading. With the exception of the

mathematical sciences, none of the sciences listed in what I earlier called

the encyclopedia get any recognition from Plato as distinct fields of in-

quiry. His own scheme is simply: the arts and sciences in the ordinary

sense; the mathematical sciences; and, as something of an appendix, global

natural philosophy, provided it is invested with a Platonic ideology. The
Platonic thesis of the unity of science is actually more sweeping than the

Timaeus would suggest, and more sweeping than its modern counterpart:

it is a thesis that all of the arts and sciences have a common mathematical

core. Plato never seems to let go of the conviction that empirical inquiry is

a fundamentally flawed and unsatisfactory undertaking. The bare logical

schema of hypothetico-deductive science can, no doubt, be found in the

Timaeus. But so far as Plato is concerned, its function is to furnish illus-

trations, from familiar experience, either of certain metaphysical principles

or of mathematical propositions, the truth of which, in either case, is known
a priori.

The bearing of ‘hard facts’. When I referred earlier to the looseness of

fit between Plato’s geometric-kinematic theory of matter and the relevant

data of observation, I cited the explanation that no one had done for ter-

restrial phenomena the sort of assembly and analysis of ‘hard facts’ that

fifth-century astronomers like Meton and Euctemon had done for celestial

phenomena [see Vlastos 1975, 85]. And yet I am not convinced that, had

there been such a body of data for terrestrial phenomena, Plato would

have searched them for evidence against his theory. Even in the case of

astronomy, once Plato turns to the motion of the Moon and the other

five planets, he shows little inclination toward canvassing ‘hard facts’. At

Timaeus 38d-e Plato’s astronomical spokesman begs to be excused from

giving details concerning the positions in the cosmos assigned by God to

the three slowest planets—Mars, Jupiter, and Saturn^^—and the reasons

for those particular assignments. That Timaeus defers this discussion is not

in itself significant: his plea, that it would require too long a digression,

13 TO. S’ dXXa ol 8f) Kal 8 l’ alTta? iSpyaaTO. It is clear that dXXa excludes the Moon,
the Sun, and the Sun’s two companions, Venus and Mercury. The positions of all

four of these bodies were explained at Tim. 38c-d.
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makes perfect sense in the context of the dialogue and should be taken

at face value [cf. Lloyd 1983b, 21]. What is significant is that he should

suppose that a scientific account of the positions in the cosmos of the three

slowest planets can be given. Empirical data that would have bearing on

questions of the distance of the outer planets from the earth, or even of

their order in space, must have seemed as inaccessible to Plato as they

seemed down to the invention of the telescope [Mourelatos 1987, 93-96].

For all of antiquity, including Ptolemy, such questions with respect to all

five planets (not just with respect to the outer three) could be the subject

only for a priori constructions or numerology [see Van Helden 1985, 15-27,

esp. 21 and 26]. It is speculation in the latter vein, not a canvassing of

hard facts, that Timaeus defers.

It is also significant that Plato betrays not the slightest concern that the

data obtained through observation might put in jeopardy his rationalist

conviction that the periods of the planets are systematically related to one

another in intelligible ratios (ev Xoyo) 8e 4>6po[i€voi;g, 36d).l^ Remarkably, he

seems to have made this part of his theory virtually safe from refutation by

tying it to the doctrine of the Great Year, the time it takes for all planets

and the sphere of the fixed stars to complete simultaneously an integral

number of revolutions [Tim. 39c-d]. The intelligible ratios Plato speaks

of must apply either directly to the planetary periods or to the number
of revolutions each planet completes in a Great Year. The first possibility

could hardly have seemed worth pursuing. The best approximations that

may have been known to Plato do not seem to fall into any intelligible

pattern: 1/366 year for the revolution of the sphere of the fixed stars (one sid-

ereal day); 15 1/13 year for the Moon; 16 1 year for Sun, Venus, and Mercury; 2

l"! Only six ratios would be involved, since there are only four distinct numerical

figures for planetary periods (the Sun, Venus, and Mercury are said to have the

same period: cf. Tim. 38d). I cannot agree with A. E. Taylor [1928, 216] that

Plato’s claim that the planetary orbits are related by ratios means simply that

‘the fraction
period of y

always a rational fraction’. In Platonic contexts in

which the theme of harmonious structure is prominent, terms such as Xoyog and
auppcTpLa are likely to refer to proportions that are systematically significant, pro-

portions generated in accordance with some intelligible principle of progression:

see Mourelatos 1980, 39-41, 54-56: cf. 1987, 88-90, 96-101.

At Laws 828a-b Plato gives the figure of 365 days for the solar year; and his

account of the motion of the Sun in the Timaeus implies that he understood that

the solar day is slightly longer (we know it is approximately 4 minutes longer)

than the sidereal day.

16 The relevant figure would be that of the sidereal month, which is nearly two

days shorter than the synodic month (the familiar month of the lunar phases).

That Plato is aware of the distinction between the sidereal and the synodic month
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years for Mars; 12 for Jupiter; 30 for Saturn. 17 The \6yos Plato was hoping

for was presumably expressed more perspicuously in the formula for the

Great Year; it was a Xoyos that applied somehow to the whole numbers

that represent the integral number of revolutions each of the eight bodies

performs in a Great Year—in other words to the smallest possible integers

that can be substituted for the variables in this grand equation:

a sidereal days b sidereal months

c years of Sun/Venus/Mercury

d Martian years

e Jovian years

/ Saturnian years.

The \oyo£ should, of course, be the same, whether our unit is solar years

or any other of the five units implied in this equation. The importance

of the Great Year formulation is, obviously, that—in the absence of clocks

and instruments of precise celestial measurement—it constitutes the ideal

algorithm for establishing the relevant Xoyog. The figures concerning the

periods are, after all, rough approximations, subject to correction for ob-

servational error; and cycles, such as that of the Great Year, would offer,

in principle, the most impressive check on received figures. In fact, the

concept of the Great Year is utterly useless for purposes of verifying values

for the planetary periods. Each of the figures would have to be verified in

smaller cycles against each of the other five; or, ultimately, the two exactly

similar celestial events that mark the beginning and the end of the Great

Year proper—a certain configuration of stars and planets, and the next

occurrence of that same configuration many aeons later—would have to be

observed and recorded, and all the intervening revolutions would have to

be accurately counted and their figures duly recorded. Given the enormity

and chimerical nature of either of these research projects, 18 it was not un-

reasonable of Plato to have discounted the possibility that the empiriccJ

is shown by the wording at Tim. 39c: ‘The month is completed when the Moon,
having made the full round of its own proper orbit (TrepteXSoOaa tov ^aurf)? kukXov),

should catch up with the Sun (fiXtov ^mKaTaXdpTi).’ Note that the text says tov

^auTfi? rather than tov aurq?, and that the syntax (aorist participle modifying

the subject of the finite aorist) strongly suggests that two distinct events are

involved.

17 Concerning early ancient knowledge of the periods of the three slower planets,

see Neugebauer 1975, 681, 688.

18 Computations of the Platonic Great Year in the ancient and medieval tradition

vary wildly, and, in any event, run in the thousands of solar years: see Taylor

1928, 216-220.
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data might some day give the lie to his idealizing postulate of a Xoyo? that

governs the periods.

Vlastos [1975, 91] is right on the mark when he speaks of Plato’s ‘lordly

insouciance for the empirical verification of his elaborate and ingenious

physical theory’. But this attitude of Plato arises not from the paucity of

relevant ‘hard facts’ in certain areas of inquiry but from Plato’s rationalist

conviction of the tediousness and marginal relevance of the empirical data

in all science. In the dialogue between Reason and Necessity, it is Reason

that has the last say.

Cosmology and myth. I should like to close with a coda about Plato’s use

of the term p06og to describe the genre of his cosmology. To be sure, [iuOos

does not necessarily mean ‘myth’; it can mean ‘story’ and ‘account’. Yet

there is an unmistakable playfulness to the Timaeus. And this playful-

ness becomes progressively more noticeable as we move from the domain of

Reason to that of Necessity. In the final pages, which discuss the differ-

entiation of sexes and lower animals, the style is almost comic—a return to

the Aristophanic idiom of the Symposium. Indeed, at Tim. 59d the eiKCog

[i€0os (likely story) told in natural philosophy is explicitly called a ‘quiet

and thoughtful form of play’ (perpiov . . . TraiSLav' kul (J>p6vLp.oy). Modern
accounts that claim to find in the Timaeus a prefiguring of our hypothetico-

deductive conception of science fail to hear the chuckles of play and irony

in Timaeus’ voice. Given that in Platonic natural philosophy the explana-

tory function is completely subordinate to the edifying, inspirational, and

ideological function, there is little point for faithfulness to the details of

natural history [cf. Mourelatos 1987, 96-102]. It suffices to say, ‘It could

be like this, or like this, or yet like this.’ What matters is that we grasp

the principal truths: that the universe is good and beautiful, that it shows

the workings of intelligence at all levels of its organization, and that it is

articulated in harmonious structures. 19

With a little transposition we could easily make the preceding comments
apply to the Great Speech of the Protagoras: ‘Civilization may have started

more or less like so.’ What matters is not the details but the insight the

19 In so far as Timaeus’ cosmological account promotes our grasp of these principal

truths, it is not only ‘no less likely’ than any competing account, or ‘as likely as

possible’ (pr|Sev6g Vtov elKOTo?, Tim. 29c; poXtora elKOTo?, 44c-d; piaXiara gIko?,

67d), it is even ‘ipore likely’ (pr|8ev6? eiKOTa, ^LdXXov Si, 48d).
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story elicits into certain truths concerning the nature of man and the origins

of the conception of justice. The sense in which the Timaeus is a p.O0O9

is not so different, after all, from the sense in which Protagoras’ account

of the origins of civilization is a myth.20

201 thank Charles Kahn for detailed critical comments on the version that was
presented at the 1986 conference at Pittsburgh. I also thank Alan Bowen for some
very thoughtful corrections. An abridged version was presented in February 1989

in French translation at the Maison des sciences de I’homme in Paris, under

the joint auspices of L’Ecole des hautes etudes en sciences sociales, the Centre

nationale de la recherche scientifique, and the University of Lille III. I thank my
French hosts for their kind invitation, which afforded me that second occasion

of stimulating discussion of the argument of this paper.
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The Aristotelian Conception

of the Pure and Applied Sciences

JOSEPH OWENS CSsR

Much has been written on Aristotle’s conception of the pure and applied

sciences. His tripartite division of science into theoretical science, practical

science, and productive science is well known. 1 The surface features of this

division may suggest an equation of the Stagirite’s concept of theoretical

1 The tripartite division occurs four times in the Aristotelian corpus: Top. 145al4-

18, 157al0-ll; Meta. 1025bl8-26, 1064al0-19. The passages in the Topics

merely refer to it so as to illustrate other points, while those in the Metaphysics

give its rationale. On other occasions Aristotle speaks in terms of a bipartite

division, in which theoretical science is always one member. The other mem-
ber is practical science at Meta. 993bl9-23 [cf. De an. 407a23-25, 433al4-15,

and Polit. 1333al6-25]; whereas it is productive science at Meta. 982bll-28 and
1075al-3, De cael. 306al6-17, and Eth. Eud. 1216bl0-19. The last text here

is interesting in so far as it notes how theoretical science may nevertheless be

useful, and as it treats an instance of practical science as a productive science:

This approach holds good in the theoretical sciences: nothing belongs to as-

tronomy or natural science or geometry except knowing and apprehending

the nature of the objects which fall under these sciences; though incidentally

they may well be useful to us for many of the things we need. Of the pro-

ductive sciences, however, the end is distinct from the science . . . health

is the end of medicine, good social order . . . the end of political science,

[trans. Woods 1982]

Aristotle’s bipartite division of the sciences need not cause much surprise against

its own background. The really basic partition was between sciences whose pur-

pose was knowledge for its own sake and those whose purpose was something

else (conduct or product), and between those whose starting-points were in the

things known and those whose starting-points (choice or plans) were in the agent

or producer. Plato calls the crafts practical sciences [Polit. 258d-e] as well as

productive [Soph. 219b-c, 265a-266a], and at Soph. 266d the expression ‘pro-

31
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science with today’s notion of pure science, leaving his practical and pro-

ductive sciences to the realm of applied science. Closer acquaintance with

the rationale of the Aristotelian grouping, however, quickly raises doubts

about the supposed correspondence. Indeed, Aristotle’s division calls for

scrutiny against a background wider than the currently accepted notions of

pure and applied science, and our prima facie impression that there is such

a correspondence needs to be modified in the light of a careful examination

of the problems involved.

The first difficulty lies in attaining correct understanding of the Aris-

totelian notions of what a science is. As an English word, ‘science’ carries

the general meaning of the Latin, ‘scientia’, in this context, which translates

the Greek 6TrLaTqp.r| as used here by Aristotle.2 For him €TTL(jTq|ir| meant an

organized body of knowledge, quite as it does today. But our modern no-

tion of science requires considerable adjusting if we are to get an accurate

account of Aristotle’s tripartite division. Under the Aristotelian caption

of theoretical science come metaphysics and the philosophy of nature, dis-

ciplines that today are not commonly regarded as scientific. Moreover,

sciences such as astronomy, harmonics, optics, and mechanics are viewed

by the Stagirite as ‘the more physical of the branches of mathematics’

[Phys. 194a7-8: Hardie and Gaye 1930, ad Joc.]3 in the sense that they are

theoretical sciences in themselves and not just applications of mathematics

to concrete, material domains. Next, practical science for him finds its

starting-points or principles in the correct habituation of the moral agent,

and its conclusions in the actions that issue from those principles [Eth. Nic.

1095a3-6, 1103b6-25, 1147al8-28: cf. Meta. 1025bl8-24, 1064al0-16]; it is

viewed as a science of a different type from the theoretical, and not as essen-

tially the application of theoretical principles to conduct. Rather, practical

science involves intrinsically a correct appetitive habituation. Finally, the

productive sciences consist in correct habituation for producing things, as

carpentry for making houses. The only productive sciences on which Aris-

totle himself has left treatises are poetry and rhetoric, subjects that today

ductive practice’ is used. Sharp contrast between the two terms, ‘practical’ and
‘productive’, did not always have to be observed.

2Cf. texts cited in nl above, and others listed in Bonitz’ Index Aristotelicus [1870,

279b38-280a4]. For Aristotle, ^morfipTi can also signify (a) intellectual knowledge

in contrast either to sensation [1870, 278b58-579al] or to opinion [1870, 279a4-

10], (b) reasoned knowledge in contrast to intuition [Eth. Nic. 1140b31-35j. The
etymology of ‘scientia’ is not certain [see Ernout and Meillet 1951, s.v. scioj; on

its subsequent history, see n6, below.

3 On the science of mechanics in this context, see An. post. 78b37.
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would hardly be regarded as applied science, while accomplishments like

carpentry would be considered crafts and not sciences at all.

These observations indicate at once that our notion of science must be

revised if we are to grasp the Aristotelian conception of what science is

and how the sciences are divided. In general, Aristotle tends to approach

science by treating it as a habit that qualifies a human person. Thus, he

categorizes [Cat. 8b29] the sciences under habits, a subdivision of quality,

and claims that science is also [Cat. Ila20-31; Top. 145al5-18] something

relative in so far as it bears essentially upon a subject-matter. For him any

science is fundamentally a habit of a human person. This helps explain why
he thinks that moral and technical habituation are involved intrinsically in

their respective types of science, the practical and the productive. The
intelligible content of any science will remain the same when the science

is viewed as a habituation, since for Aristotle [De an. 415al4-23] the speci-

fication of the human faculties comes from the objects of these faculties

through the acts by which the objects are apprehended, and habits are

formed by repeated acts. But approaching science as a personal habitu-

ation opens out in directions different from those indicated by approaching

it as an objective body of knowledge; and it requires changing the way

our notion of science is specified in its various branches. And to make the

differences even greater, Aristotle regards a science as a body of knowledge

given essentially in terms of a thing’s causes, where ‘cause’ is understood in

a much wider sense than is usual today.

This adjustment in focus should not be too much to ask of those consid-

ering the classification of the sciences in Aristotle. In recent times what we
call science has in fact shown considerable flexibility. Not so long ago the

natural scientists resented the use of the term for the social sciences. Today
nobody raises an eyebrow at the mention of political science, behavioral sci-

ence or human science. Experts in those fields do not hesitate to call them-

selves social scientists, and even the term ‘human scientist’ has been used.^

In the past, the English word ‘science’, like the German Wissenscha£t\

has been applied to philosophy.^ But no philosopher or theologian today

would think of calling himself a scientist, no matter how scientific he may
consider his procedure to be; nor would he bring it under the heading of

Science (capitalized or personified). The term ‘scientist’ dates only from

1834, and was quickly appropriated to the natural and life sciences. But,

'*E.g., Bernard Lonergan [1972, 3, 23, 210]. The terms ‘metaphysical science’ and
‘divine metaphysical science’ have been used recently by an aerospace scientist,

Gordon N. Patterson [1985, 3, 58-65].

^E.g., by Edmund Husserl [1965, 71-147]. Cf. Lauer’s comments [1965, 5, 8-19,

25-27].
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traditionally, the term ‘science’, translating the Latin scientia, has been

used of philosophical disciplines such as metaphysics, philosophy of nature,

moral philosophy, and classical logic.6 Now one should not be too hasty in

concluding that there is no reason for this usage in the notion of science

itself. Words have their magic. Their use at a particular time can easily

cast a blinding spell over one’s ability to draw out the potentialities latent

in a concept. To study Aristotle with genuine empathy one needs at least to

leave open the possibility that the very notion of science itself may in virtue

of its own implications be extended as far as he and centuries of Western

tradition have seen it range. Without this empathetic understanding, much
of what Aristotle wrote on the division of the sciences will appear badly

confused and even nonsensical or self-contradictory. The possibility that

our notion of science has a wider range than current use allows needs to

be entertained seriously.

The classification of the sciences as pure and applied stems from the

nineteenth century. It has proven serviceable for practical purposes, as

a glance at the large number of titles listed in a library-catalogue under

applied mathematics or applied science will indicate. Yet this distinction

is not easily described theoretically. Pure sciences are usually described

as sciences that deal with generalities which may be applied to particular

subject-matters. For Aristotle, all human knowledge originates in particu-

lar sensible things.7 From Descartes on, however, ideas have been regarded

6 See Marietan 1901; McRae 1961; Weisheipl 1965, 54-90. On the shift in the

usage of ‘science’ during the late eighteenth and early nineteenth century from

its primary signification of a human attribute to that of an objective body of

knowledge, see Williams 1958, xii-xvii.

‘The nineteenth century invented the terms “pure” and “applied” mathemat-

ics .. . a terminology which is far from being adequate and satisfactory’ [Lanczos

1964, 1]: cf. ‘.
. . we have now the “pure analyst,” who pursues his ideas in a world

of purely theoretical constructions, and the “numerical analyst,” who translates

the process of analysis into machine operations’ [1964, v]. The earliest notice

listed in the Oxford English Dictionary [s.v. pure II d] of the distinction ‘between

pure science, which has to do only with ideas, and the application of its laws

to use of life’ is from Johnson’s Rambler in 1750, though the contrast between

pure and mixed mathematics is noted from a century earlier. Implicit in the

sense of ‘pure’, as understood in this context today, is pursuit of the discipline

just in itself on account of its own intrinsic appeal, as opposed to pursuit for

utility or some other extrinsic purpose: ‘On the other hand, the pure mathe-

matician studies mathematics in its own right and finds great aesthetic appeal

in its logical structure and abstract systems’ [Jackowski and Sbraga 1970, 1-2].

Yet one may doubt the original independence suggested by ‘in its own right’ [see

Lanczos 1964, 1], and applied branches such as astronomy and computer science

may have their own intrinsic appeal. Moreover, disciplines like theoretical physics

and theoretical mechanics appear to function as applied mathematics in their spe-
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as the first and immediate objects of the mind, with the result that they

may be considered apart by themselves in their generality prior to their

application to particular subjects. Kant’s distinction of pure reason from

practical reason, and then of both from empirical knowledge, has further

deepened this cleft. However, the distinction of pure and applied sciences

has in fact proven so successful that there is no question now of looking

upon Aristotle’s tripartite division as something that could be substituted

for it or used alongside it. As Tennyson wrote:

Why take the style of those heroic times?

For nature brings not back the mastodon.

Nor we those times.

[The Epic 35-37]

The purpose of looking at Aristotle’s tripartite division now is not rivalry

or confrontation. Rather, it is to see what philosophical insight and un-

derstanding Aristotle can give in regard to the nature and the functioning

of the sciences, in the way that different philosophies can disclose deeper

and inspiring conceptions that may be missed by views to which one has

become accustomed. In this spirit, then, let us examine Aristotle’s tripar-

tite division to see how it compares with the current classification of the

sciences into the pure and applied.

The first question, obviously, will be whether Aristotle’s notion of the-

oretical science coincides with the modern notion of pure science. In the

ancient Greek context what was theoretical did not imply any contrast to

what was real or actual. It did not have any connotation of the hypotheti-

cal or the uncertain, and it did not bear upon something worked out solely

in the mind and now waiting to be tested by observation or experiment

for its truth. Rather, ‘theoretical’ entailed the contemplation or study of

something already existent and lying before the mind’s eye for examina-

tion. It meant something that just in itself revealed its own truth and in a

thoroughly objective fashion.

The objects that came in this way under the mind’s theoretical gaze

were of three ultimate kinds: they were either metaphysical or physical or

mathematical. Hence, the three broadest divisions of theoretical science

cial areas, while application to practical use is seen in applied physics, applied

psychology, applied cybernetics, applied radiology, applied geography, and so on.

These considerations suggest difficulties in our distinction of the pure and applied

sciences, in spite of the practical success the division enjoys in current use. The
two terms will continue to be used, ‘even if they have been coined wrongly by
conjuring up associations that are not warranted philosophically’ [Lanczos 1964,

1-2].
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were metaphysics, philosophy of nature, and mathematics. Of these three

the first, metaphysics—called by Aristotle the primary philosophy—was

the highest and most exact. It was the highest, since it was understood

by the Stagirite as the explanation of things in terms of their causes, and

metaphysics explained things through the causes that were first and high-

est [Meta. 981a24-982al: cf. 982b2-10]. Further, metaphysics was clearly

for Aristotle the most ‘exact’ of the sciences, because it explained things

through the most precise or least complicated of causes, such as being and

actuality [Meta. 982al2-14, a25-28].8 In both these ways metaphysics was

science in the most excellent grade. Moreover, as the first or primary in-

stance of science, metaphysics was be the paradigm to be imitated as far

as possible by the other sciences, in accord with the focal reference that

located in the primary instance the nature expressed in all others.

9

Does a discipline so conceived count as a pure science today? Certainly

it was regarded as the most general of disciplines, for it treated universally

of all things under their aspect of being. In addition, it was looked upon as

a type of knowledge pursued purely for the sake of knowledge, even though

its conclusions about intellectual activity and God and soul were put to sig-

nificant use by ethics. One of its explicitly listed tasks [Meta. 1005al9-b34]

was to protect the other sciences against assaults from scepticism and ex-

treme relativism, by defending such general principles as the first principle

of demonstration (which was later called the principle of contradiction).

But it kept this watch entirely from the outside, like a police unit that

patrolled the streets without entering into the family life of the citizens

and in fact that was seldom if ever called upon to exercise its authority.

On these counts, metaphysics can well qualify for listing as a pure science,

remaining aloof as it does from observed particularities and keeping its

hands unsullied through any immediate contact with the practical or the

productive orders. Indeed, it appears from this standpoint as an object

so pure and thin to the modern mind that one may have difficulty in seeing

any real science in it at all!

Yet some hedging seems required. There is a difference in motivation.

Because it is pursued for its own sake, Aristotle ranks theoretical science

8 Thus, mathematical science is not the most exact, even though Aristotle’s ex-

ample here is taken from mathematics (arithmetic is said to be more exact than

geometry, because it is less complicated). Cf. Meta. 995a8-ll, where mathematics
is mentioned as an instance of accuracy in discourse.

9 For Aristotle a term like ‘health’ signified a nature found in a primary instance

as such, i.e., in health as the disposition of a vital organism, and in other instances

by reference to that primary instance, i.e., in cooked food as a cause of health.

This was felicitously termed focal meaning by G. E. L. Owen [1960, 169].
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higher than sciences meant for other purposes. But today’s pure science,

no matter how attractive it may be in itself, is in most quarters valued

for the mediated contribution it can actually or possibly make to practical

living. Otherwise it would tend to be regarded as lacking relevance. Fur-

ther, the universality of focal reference in Aristotle’s metaphysics, though

unlimited in extent, is based upon a definite type of being, the divine. Ac-

cordingly, by virtue of its object, metaphysics is for Aristotle a theology. 10

It is specified by separate, that is, supersensible substance. Still, granted

these reservations, there seems no reason to demur at looking upon Aris-

totelian metaphysics as a pure science, if it is to be classed at all as a

science—the phrase ‘applied metaphysics’ would in fact seem incongruous

and difficult to endow with meaning.

Next, philosophy of nature for Aristotle explains sensible things through

their substantial principles or causes, namely, matter and form, and thereby

accounts for their extension in space and their multiplication in singulars

of the same species. With the two further causes, namely, the efficient

and final, the philosophy of nature also explains in its own way generation

and perishing, change, and time. As in the case of metaphysics it is a

theoretical science, pursued for its own sake even though it proves helpful

for metaphysical study and for ethical matters concerned with passions and

self-control [see Meta. 1071b6-10, Eth. Nic. 1102al8-bll]. Consequently,

the philosophy of nature can be classified as a pure science just as meta-

physics. There will be similar reservations in regard to its bearing upon
a particular kind of things, namely, real sensible beings, and in regard to

its pursuit for the knowledge it gives in itself apart from its relevance to

the control of nature. If no supersensible substance existed, it would be

the highest science [Meta. 1026a27-29, 1064b9-ll].

Finally, the third general type of Aristotelian theoretical science is math-

ematics. Mathematics deals with corporeal things in abstraction from their

sensible qualities. It explains them in terms of quantity, both continuous

and discrete. Once abstracted from the restraints of sensible qualities,

the objects of mathematics can be expanded indefinitely through dimen-

sions beyond the third and fourth. Irrational numbers may also have their

place, and the way is left open for non-Euclidean geometries and the other

developments that took place long after Aristotle’s time. In any case,

mathematics, as Aristotle saw it, is to be pursued as a pure science in

abstraction from the sensible conditions of everyday life; there need be no

special hesitation in classifying his conception of mathematics in general

See Meta. 1026al9 (where primary philosophy is called theological) and 1064b3

(where it is the ‘theological’ type of the theoretical sciences).
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as pure science. Indeed, mathematics, as Aristotle accounted for it, is so

pure in its detachment from sensible qualification that it is able to sustain

epistemologically all possible advances of mathematics, even in areas of

which Aristotle himself did not have the least inkling.

But also recognized by Aristotle as mathematical sciences were astron-

omy, harmonics, optics, and mechanics. As noted above, the first three of

these were explicitly called by him ‘the more physical of the branches of

mathematics’. Mechanics can readily be seen as coming under this type

too, as also today’s far-flung mathematized natural and life sciences, and by

extension the behavioral sciences. In such sciences the mathematics would

today be regarded as applied.H But from Aristotle’s viewpoint, these sci-

ences could be pursued purely for the sake of the knowledge they gave, even

though this knowledge was restricted to particular areas and could be put

to practical use; it was in itself theoretical. The sciences that pursued such

knowledge were in consequence regarded as theoretical sciences. Aristotle

[An. post. 78b39-79al6] also speaks of non-mathematical sciences of nature,

such as navigational astronomy and acoustical harmonics. Apparently, he

looked upon sciences of this kind as coming under the philosophy of nature,

on the grounds that from the knowledge of a thing’s specific form all the

thing’s natural developments could be deduced somewhat as knowledge of

the blueprint shows how a house is to be constructed. 12 Of this type would

be the extensive research carried out in Aristotle’s biological works.

But, in regard to the present point of investigation, the situation is suffi-

ciently clear. The sciences that deal with the physical universe, whether

Aristotle classified them under mathematics or under the philosophy of

nature, are in his conception regarded as one and all frankly theoretical.

None of them can be looked upon as either practical or productive science.

Their type is markedly different from either of those two divisions.

What, then, is there left for Aristotle’s practical science to bear on? It

deals with human conduct, but in a way very different from the theoretical

procedure of our social sciences. It finds its principles not in what is already

there before it, but in the human choice that originates conduct [Meta.

1025b8-24, 1064al0-16]. It is focused upon not what is going on or taking

E.g., as at An. post 78b35-79al6. For treatment of these Greek sciences ex-

pressly as applied mathematics in contrast to ‘pure mathematical subjects’, see

Heath 1921, i 17-18; and 1949, 58-61. On mathematics in today’s life sciences,

see Defares and Sneddon 1964; for the social sciences, see Bishir and Drewes 1970.

12 ‘For in house-building too it is more the case that these things take place

because the form of the house is such , .... And this is the way we should speak

of everything that is composed naturally’ [De part. an. 640al5-b4: Balme 1972,

ad loc.]. Cf. Balme 1972, 86-87 and Aristotle, De an. 402b6-403a2.
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place, but upon what should be done through human choice and the right

reason that is meant to guide that choice. Practical science is concerned

with something yet to be done, an object that is not already determined by

nature. More specifically, it bears upon something that is to be chosen.

While truth in the theoretical order consists in the conformity of one’s

judgement with reality, truth in the practical order consists for Aristotle

in conformity of one’s judgement with correct moral habituation. 13 This

correct habituation requires training and education from the earliest years

[see Eth. Nic. 1103al4-1107a2, 1179b29-1180b28]. In conformity with such

moral habituation, one judges immediately that some things are right and

that others are wrong, and in that way one acquires the premises of practi-

cal science [Eth. Nic. 1095a2-8, 1095b4-13]. Hence, Aristotle’s own claim,

so strange and unacceptable to many today, is that only a morally good and

mature person is capable of undertaking the study of ethics as a science. 1^

The conclusion of practical reasoning, moreover, is the action performed.

It is not a detached proposition uttered by the mind [Eth. Nic. 1147a25-28:

cf. 1095a5-6]: it is something done in human action. The whole purpose

of practical science is to bring about good conduct [Eth. Nic. 1103b26-31,

1179a35-b4: cf. 1102a7-12].

This conception of practical science is obviously different from the or-

dinary understanding of science today. Perhaps Aristotle’s presentation

of truth in the practical order is too brief and this may be why it has

been overlooked or forgotten. 15 But in the three works on ethics there has

13 ‘.
. . truth in agreement with right desire’ [Eth. Nic. 1139a30-31: Ross 1915

ad loc.].

14 See Eth. Nic. 1095a2-8, 1095b4-13, 1103al4-1107a2, 1179b29-1180b28. There

can of course be a theoretical study of what good persons do [Eth. Nic. 1169b33-
1170a3], and an evaluation of the actions of others in analogy with the way one
relates one’s own actions to one’s own chosen ultimate goal. But to be truly

scientific, from Aristotle’s viewpoint, the reasoning must be based upon the true

principles, and these the man who is not morally good just does not have. The
evil man would be merely repeating by rote what he has learned from the morally

good man, like the drunkard reciting the verses of Empedocles [Eth. Nic. 1147b9-
14]. With the premises accepted in this way on faith or authority, the immoral
man can construct his reasoning on analogy with his own habituation. But his

reasoning does not thereby become truly scientific. His failure to appreciate to

KoXov would be like tone-deafness in a person writing about the sound of music.

15 As Adler states:

That there is such a widespread ignorance of Aristotle’s introduction of a

twofold conception of truth, sharply distinguishing between the truth of

theoretical (or descriptive) statements on the one hand, and the truth of

practical (or normative) statements on the other hand, can, perhaps, be
explained, though hardly excused, by the fact that his treatment of this
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been handed down a moral philosophy that is acknowledged to have peren-

nial worth. Yet Aristotle’s practical science does not fit into the modern
conceptions of the sciences. It is not pure science, since it is embedded
in action, and since in its totality it bears upon individual needs. It is

not applied science: instead of being an application of theoretical norms

to practical acts, it starts as a science from the individual acts of right

and wrong and reasons from there to its general conceptions. To speak of

applied ethics would in this case seem to be a mistake. 17 Practical science

can and has to make use of the findings of theoretical science [see Eth.

Nic. 1102al6-bll, Eth. Eud. 1216bl0-19], but it does not itself consist

in an application of these findings. Basically, perhaps, the notion of a

genuine science of conduct that is a unitary habituation of will, appetite,

and passion as well as of intellect, is what estranges Aristotle’s practical

science from contemporary empathy and acceptance as a science. There

is certainly nothing corresponding to it in the modern division of pure and

applied sciences.

Finally, there are for Aristotle the productive sciences. As with prac-

tical science, they too have their starting-points within the producer. But

unlike those of practical science, these starting-points are fixed plans or

designs; they do not originate in choice. The productive science works the

design into some material, such as bricks and stones and lumber in the

case of a house, pigments or bronze in the case of a painting or statue,

words and images in the case of a poem or speech. Like practical science

it makes abundant use of theoretical knowledge. But it is not itself that

theoretical knowledge applied externally. It is a habituation in its own
right, a habituation that resides in unitary fashion in mind, nerves, and

muscles. 18 It is intrinsically a different type of knowledge from the theoret-

ical. It involves knowing how to do something rather than knowing what

something is. Thus, one may know motor-mechanics and the rules of the

crucial matter is contained in a single paragraph in book 6, chapter 2 of

the Ethics (1139a21-b31).

16 John Herman Randall [1960, 248] portrays how ‘Aristotle’s practical philos-

ophy’ can be generalized to fit ‘any cultural heritage’.

17 On this topic in general, see MacIntyre 1984, 498-513.

18 Plato had written ‘But the science possessed by the arts relating to carpentering

and to handicraft in general is inherent in their application . . . ’ [Polit. 258d-e:

trans. H. N. Fowler 1925]. Gilbert Ryle [1949, 27] distinguished ‘know’ from

‘know how’ as the knowledge ‘of this or that truth’ from ‘the ability to do certain

sorts of things’. With Aristotle the productive science is the ability, and not just

a theoretical knowledge applied by the art. The ‘science’ of boxing would be a

case in point.
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road, and yet not know how to drive. No matter how much theoretical

knowledge one has about wood and nails and tools, one is not a carpenter

if one can hit a nail on the head only occasionally. The habituation that

enables one to build a house is the productive science. As practical science

is the habituation that brings one to conduct oneself properly, so produc-

tive science is what equips one to produce things expertly, whether houses,

automobiles, poems or music. Using, but not giving, knowledge of what

things are, practical and productive sciences consist in knowing in habitual

fashion how to behave and how to make things. In this perspective the

theoretical, the practical, and the productive are three different types of

science.

The preceding remarks make plain the difficulties encountered in efforts

to fit the Aristotelian sciences into the modern categories of pure and ap-

plied science. To the question. What is Aristotle’s classification of the pure

and applied sciences?, the straightforward answer is that Aristotle has no

such classification. But we can take the sciences the way he divides them,

and ask how they fit under the modern classification. From this viewpoint

metaphysics may, with certain reservations, be regarded as a pure science.

Philosophy of nature and mathematics in their general conclusions would

also come under pure science, though, when their general principles are

studied in particular areas, the procedure would be akin to that of applied

science. Aristotle’s practical science does not seem to fit at all under the

modern classifications, since it is neither pure nor applied science. And
today his productive sciences would be looked upon not as sciences at all,

but as crafts and fine art. Moreover, sciences set up to cover their activities

would be regarded from his standpoint as theoretical, since they would be

studying what was already existent instead of bearing on what is yet to be

produced. Indeed, all the modern pure and applied sciences would count for

Aristotle as theoretical knowledge. Logic, which was not classified by the

Stagirite but left as a preparation for them all, would be no exception [see

Meta. 1005b2-5, 1059bl4-19]: mathematical logic would obviously enough
come under mathematics; and traditional logic, though concerned with the

structure of human thought, does not bear upon behaving or producing

and would be akin to theoretical knowledge. But it was left by Aristotle

as something outside the classification of the sciences and functioned as a

preparation for them all.

The modern classification of the sciences in terms of pure and applied has

proven serviceable. Nobody would wish to substitute Aristotle’s tripartite

framework as far as curricular and ready reference purposes are concerned.

The multiplication of the natural, life, and social sciences would throw the

tripartite division badly out of balance for presenting a general picture of
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the situation today. But one need hardly look upon the modern division

of pure and applied sciences as a contemporary sublimation of everything

worthwhile in the Aristotelian conception, meekly acquiescing ‘that a truth

looks freshest in the fashion of the day’ [Tennyson, The Epic 31-32]. No,

Aristotle presents a radically different philosophical approach from ours.

The Stagirite’s viewpoint affords a panoramic understanding of the various

phases of human knowledge that is lacking in the modern approach based.on

the classification of pure and applied sciences. It allows room for bringing

the supersensible under the scrutiny of genuine science, for penetrating

to the substance of material things, for safeguarding human conduct from

inclusion in the grip of a necessitarian interpretation of reality, and for

maintaining the human dignity that is expressed in the arts and crafts.

None of this Aristotelian understanding of scientific knowledge need be

expected, one may note, to help the individual modern sciences strictly

within the areas of their own work. What the Aristotelian explanation

gives, rather, is a marvelously elevating philosophical view of the enterprise

as a whole. It satisfies a deep longing for a well-rounded conception of the

role the sciences play in human culture and human personality, and of the

indispensable aid they give in bringing about the good life for which human
nature is fashioned.
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Platonic and

Aristotelian Science

ROBERT G. TURNBULL

My intention in this paper is to show that both Plato and Aristotle de-

scribe and explain procedures of inquiry which can appropriately be called

scientific, and that both offer plausible rationales for those procedures. By
calling the procedures scientific I intend more than the claim that they

are somehow precursors of later developments that really must be called

scientific. Since they make use of observation and theory (in their own
ways) and derive conclusions which explain phenomena and can be ration-

ally corrected, I think that those procedures are genuinely scientific in their

own right. I must caution, however, that in making these claims I am not

asserting that the results of using these procedures can now be defended as

plausible science.

Plato’s procedure of collection and division and Aristotle’s procedure for

arriving at definitory middles are the basic procedures I have in mind in

making the above claims. Their respective descriptions and explanations

of those procedures are, however, imbedded in rich philosophical contexts,

so that the effort to explain and defend the claims made above is rather

complicated and controversial. I shall try to reduce the complication and

narrow the field of controversy as much as possible in the exposition that

follows. I think that it is proper to begin with an account of concepts for

both Plato and Aristotle.

1. Concepts

Plato. As everyone knows, Plato holds that there are eternal and unchang-

ing Forms, and that the Forms constitute and provide objective norms of

43
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all intelligibility. Since—especially in the earlier dialogues—Plato often

uses visual metaphors in speaking of our awareness of the Forms, a number
of interpreters have assumed that what he has in mind is some sort of

non-visual seeing of the Forms, rather like Russell’s ‘acquaintance’ with

sense-data. I think this assumption is mistaken even for such dialogues

as Phaedo, and I am confident that it is mistaken for the later dialogues.

From the earliest introduction of the Forms in the dialogues, Plato is- at

pains to contrast sensation or perception and dialectic, insisting that our

awareness of the Forms is non-sensuous.

The effort of the Socratic dialogues is, in the main, to arrive at some

sort of definition—whether or not definitions are thought to delineate the

structure of the Forms—and to criticize or defend proffered definitions by

some sort of reasoning or dialectic. Though there is in this effort reference

to applications of a proposed definition, where these may involve perception

or memory of individuals characterized in some appropriate way, the effort

is not plausibly understood as a heuristic preliminary to non-conceptual

and non-visual staring at a Form.

In later dialogues, notably as I shall shortly show, Cratylus and Par-

menides, Plato explicitly claims that we must have some sort of conceptual

ability in order to be aware of or have knowledge of the Forms. But even in

earlier dialogues, the rationale of the argument presumes that it is possible

for us to learn and that such learning involves a change in us. The change

in Polus (in Gorgias) in recognizing that it is better to suffer than to do

injustice or the change in Glaucon and Adeimantus (in Republic) in coming

to recognize justice as each doing his/her own is what we should ordinarily

call conceptual change—whether this is to be thought of as catastrophic

change or as recognition of the inner workings of a concept imperfectly

articulated.

In Cratylus Socrates claims that there are Name-Forms which are of the

Forms of which they are Name-Forms. 1 I understand the ‘of’ here as TTpog

TL, so that Name-Forms stand to the Forms they are of rather as double

stands to half or slave to master. (In particular, I wish not to suggest that

the ‘of’ expresses what we should call intentionality.) Plato is at pains

to make it clear that Name-Forms are not themselves bits of language.

His mythical name-giver, however, must have them in mind in inventing a

language suitable for expressing the distinctions among the several Name-

Forms. And Plato makes it clear that different natural languages may

1 For a detailed defense of the line of interpretation of Name-Forms given in this

paper, see Gold 1978.
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be suitable for such expression and equally clearly suggests that a child is

fortunate to live in a society having a language suitable for such expression.

A person who acquires a suitable language has, of course, a set of lin-

guistic abilities tied in a variety of ways to perceptual episodes, actions,

procedures, and so on. And this person may have those abilities without

having any idea that the language which is the vehicle for those abilities is

expressive of the Name-Forms. As I read Plato, it takes reflection upon

terms and their uses to bring about recognition of the Forms and further

reflection to achieve recognition of Name-Forms. But let that matter stand

for the moment.

What I wish to contend is that Plato uses the notion of Name-Forms with

the implication that in this, as in other cases of Forms, we may speak of

having shares of or participating in such Name-Forms. And I wish to con-

tend that having a share of a Name-Form is having a concept or conceptual

ability, an ability the articulation of which is, of course, linguistic. Thus, to

have a share of the Name-Form which is of, say. The Triangle Itself is to

be able to recognize something seen as a triangle; and, on reflection, to be

able to deflne The Triangle Itself and, thus, to have an articulate awareness

of that form. Indicative, therefore, of having the concept, triangle, is the

ability to pick out triangles or triangular objects and say what they are.

And indicative of having reflected properly is the ability to give a deflnition

and defend it.

In Parmenides Plato speaks of Knowledge-Forms in a context that re-

quires our thinking of a given Knowledge-Form as (in the Trpo? tl sense)

of some commensurate Form.2 Thus, knowledge and the several kinds of

knowledge are of appropriate Forms or clusters of Forms. Again, as in the

case of the Name-Forms, to have a share of a Knowledge-Form is to have a

conceptual or ‘knowing’ ability.

In Timaeus Plato speaks of the soul as being ‘made of’ Being, Same,

and Different (the most pervasive Forms); and in Theaetetus 184c-185d,3

he lists Being, Same, Different, and Number among the resources of the

soul in perceiving various things as something or other, as the same as like

or similar things, as different, and so on. I think that, if one were to look

for a contemporary materialist equivalent for what Plato states in these

2 Farm. 134a. I shall be making a parallel point about ‘of’ in the TTpog tl sense

concerning Aristotle, An. post, ii 19.

3 Needless to say, I am thinking of Being, Not-Being, Likeness, Unlikeness, Same,
Different, and Number as the conceptual means employed by the soul when, as

Theaetetus is made to say [185d7-10] ‘I think that the principle is no special

organ as in the case of the others, but that the soul, by means of itself, discerns

the commons in everything.’
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places, one would find it in the claim that in any sort of perception there

is not merely stimulation but a great deal of processing going on. Thus,

evolution has so modified the primitive nervous system of our ancestors that

we ‘see’ a world of things and their modifications, movements, similarities,

differences, and so on. This processing is, of course, pre-linguistic or non-

linguistic, and, in this materialist way, explains our ready acquisition of

linguistic abilities. Plato, of course, has no such theoretical resources and

thus, to explain our conceptual abilities, turns to what he takes to be the

nature and character of soul.

Earlier Plato, as in Phaedo, has Socrates depend heavily upon the suffer-

ance of an interlocutor in inquiry—usually inquiry that promises to lead to

a correct definition. Here, I believe, Plato relies on standard linguistic us-

age and Socrates’ interlocutor’s recognition of it when pressed. Later Plato,

recognizing the multiplicity and interrelation of the forms, introduces col-

lection and division (best described, I believe, in the ‘Prometheus’ passage

at Philebus 16c-17a^). With this and clear recognition of one/many pat-

terns in genera/species orderings of the Forms, one has a procedure for

a disciplined, one-person search for definitions. For any given term, one

looks for a ‘one’, i.e., a genus in which it might plausibly be placed. Having

determined such a genus, one then ‘divides’, i.e., tries to determine what

species fall immediately under that genus, using some prima facie appro-

priate differentia. In turn, one takes the species which seems appropriate

for the term to be defined and divides in the same manner once again,

using a differentia congruent with that first used. And so on until reaching

the term to be defined. What emerges from this process is a definition by

multiple genera and differentiae by means of which one can explain some

necessary feature or other of the term or Form inquired about.

Aristotle. Aristotle introduces the term ‘universal’ (to KaOoXoi;) for some-

thing which is ‘in the soul’, which ‘holds for many’, and which ultimately

depends for its ‘coming-to-be’ on sense perception and memory. Given

Aristotle’s doctrine of soul, a universal has to be some sort of acquired

ability of a human being, an ability which, among other things, enables a

person to be aware of something as being the sort of thing it is. Given this

description, it seems clear enough that Aristotelian universals are concepts.

^ Socrates says of the procedure described in the ‘Prometheus’ passage: ‘It is a

path which is not very difficult to point out but exceedingly difficult to use. For

by its means have been brought to light all of the discoveries of science (t€xvt|)’

[Phil. 16cl-4]. See also Moravcsik 1979.
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In An. post, ii 19, Aristotle offers his well-known account of the coming-

to-be of the first universal in the soul.5 He says that there will be no such

coming-to-be unless there is (a) the capability of sense perception, (b) the

capabil’ty of memory, and (c) ‘repeated memory of the same’. I understand

‘memory’ here to mean or include the ability to hold a past perception of

something sufficiently long to fit it to a new perception of that (or a simi-

lar) thing. Given these conditions, human beings at least, being endowed

with the capability of (experience) €p.TreLpCa, undergo the coming-to-be of

the universal in the soul (or, perhaps, then become capable of efiTretpLa).

Aristotle proceeds to give us a famous image, that of the army in retreat.

As I understand the application of that image, the initial condition of one

who has no universals but is exercising perception (in the narrow sense of

aL(j0r|CTLg, that is, perception that is not conceptually appropriated and thus

rather like Kant’s ‘manifold of sense’) is like the very confused situation

of an army in headlong retreat and total confusion. The coming-to-be of

the first universal in the soul is like having a single soldier turn around and

take his stand. With increasing numbers of universals in the soul and with

the formation of generic as well as specific universals, more soldiers take

their stands, and the ordering of the army by squads, platoons, companies,

and so on, emerges. And Aristotle proceeds to explain very briefly the as-

cending order of universals or concepts in the soul. Before saying anything

about that, however, I should like to turn to another matter, one raised

by Aristotle in this same chapter.

It is a cliche of standard Aristotelian interpretation that knowledge is

of the universal and that perception is of the individual. And, indeed,

Aristotle says as much. But a common way of understanding that merits

criticism and rejection. For ‘the universal’ is, in this way, understood as

claiming that, if someone knows something, what one is aware of and knows

is a universal. But what this would seem to require is that the object of

a knowing state of a person is either something ‘in the soul’ or some sort of

Platonic Form. The first alternative is absurd; the second impossible (since

Aristotle emphatically rejects Platonic Forms). As noted above concerning

Plato, the trouble with such reading of Aristotle lies in treating the genitive

c£Lse as signifying some sort of intentionality.

The clarifying but very brief passage is An. post. 100al5-bl, which reads

as follows:

When one among the indiscriminables has made a stand, the first

universal is in the soul: for, though one perceives the individual, the

5 For a more detailed account, with translation of this passage, see Turnbull 1976,
28-56.
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perception is of the universal; it is, for example, of man, not of a

man, Callias.

I think the proper sense of this passage is:

Before the earliest universal is present in the soul, there is no dis-

crimination of what is presented to sense. With a universal in the

soul, a person can recognize as standing out from the confusion one

'

individual as belonging to a kind. Thus, one can, in perception,

recognize an individual as being a man.

Unless perception is conceptually informed, there is nothing that produces

the discrimination necessary for recognizing an individual. In this interpre-

tation the genitive of man is used to qualify the kind of awareness one may
have if one has the concept man—in the illustration, an of-man awareness

of the object of perception (while bare ataSriais is confused of-particular

awareness).

Attic Greek does not have separate terms distinguishing perception from

mere sensation, and thus the single term, aLa0r|aL9, slides between the two.

Some niceties aside, the English terms treat perception as requiring sen-

sation plus some sort of conceptual appropriation and sensation as not

requiring such appropriation. Sensations are indeed individual and can

hardly be taken as ‘holding for many’. The conceptual element in per-

ception, of course, holds for many and makes possible the awareness of

something as being of a kind.

With this understanding of An. post, ii 19, the universal in the soul

is not an objectum but rather an instrumentum a quo, that is, a means

by which things can be recognized as being of a kind. This accords with

the medieval understanding of first intentional consciousness and with the

medieval idea of second intentional consciousness as awareness of the ‘con-

tents’ of concepts, to say nothing of the medieval understanding of concepts

as instrumenta a quibus.

But now return to the army in retreat with the soldiers taking their

stands, first individually and then as ordered groups of individuals. With
the idea of universals as concepts, one can understand this as the concep-

tual analogue of the predicational scheme of Categories. Thus, even as the

concepts, man, mammal, animal, and living thing, can be predicated of

precisely the same thing (say, Callias) and illustrate a species/genus order-

ing, so one may have of-man, of-mammal, of-animal, and of-living thing

conceptual awarenesses of the same thing. And, of course, in the process of

acquiring higher-level concepts, one may also link kinds of things together

and not merely ‘bare’ individuals.
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In describing this process of acquiring higher-level universals or concepts,

Aristotle uses eTraycoyq, a term commonly translated as ‘induction’.6 This

translation is quite misleading, especially since it invites the ghosts of the

modern ‘problem of induction’. A more perspicuous translation is ‘as-

semblage’, for what Aristotle describes is the assemblage of kinds under

a genus, of genera under a higher genus, and so on. Strictly speaking, of

course, eTiaycoyq is the assemblage of conceptual means under higher con-

ceptual means: as we shall shortly see, Aristotle thinks we can by rather

clear-cut means modify and improve our concepts (though we could hardly

improve objective species and genera). And, of course, objective species

and genera would come perilously close to being Platonic Forms.

Physics i 1 is a major key to understanding Aristotle’s ideas about the

possible improvement of our concepts [see Turnbull 1976]. It is one of the

passages where Aristotle distinguishes between what is clear and lucid to

us and what is clear and lucid in nature. Improvement of our concepts is,

of course, movement from the former to the latter. In the same chapter

he says of our primitive concepts (if you please, first universals in the soul)

that they are close to sense and very confused indeed. And he illustrates

the movement from what is clear to us to what is clear in nature with

the movement from a confused (and sensible) concept of (a) triangle to a

concept articulately incorporating the definition of (a) triangle.

The accounts of An. post, ii 19 and Phys. i 1 get us into the neighborhood

of Plato’s procedure of collection and division. And, indeed, Aristotle

is well aware in Posterior Analytics that the procedure he is clarifying

and defending is very close to Plato’s. I turn, therefore, from this rather

quick account of concepts in Plato and in Aristotle to the attempts of

both to improve our concepts and thus our ability to offer explanations,

explanations which I think can plausibly be thought of as scientific.

2. The patterns of explanation

Aristotle is at some pains in Posterior Analytics to distinguish his procedure

for arriving at acceptable explanatory ‘middles’ from Plato’s procedure of

collection and division. I shall get to that in the next section of the paper.

Here I should like to emphasize the similarity of the procedures of Aristotle

and Plato.

The pattern of explanation both subscribe to is that of explanation by

means of definitions. Thus, should one wish explanation of X’s being F,

6 For a discussion of uses of this term in Aristotle’s Analytics^ see McKirahan
1983.
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one will find it in the definition of X, a definition which, in the cases where

there is scientific explanation, will include F. From the definition, one can

see, e.g., the necessity of a (or this) triangle’s having three sides. And
one may also be able to explain how it is that an animal may be (i.e., in

Aristotle’s terms, is deiCTLKog) well or ill.

Plato’s insistence in the ‘Prometheus’ passage at Phil. 16c-17a that in

division one determine exactly how many something is before letting -the

dTT6Lpoy intrude is an insistence that one determine exactly how many in-

tervening genera and species there are between the object of inquiry and

the ‘one’ chosen as a genus under which the object falls. Given that it

has been determined just how many the object of inquiry is, it has ipso

facto been determined what the definition is—indeed, the definitions of all

or most of the intervening genera and species. Thus, Socrates says that the

old procedure (presumably, e.g., that of Phaedo) of going directly from the

form to the world of becoming does not really explain anything. What he

has in mind is, of course, the old way of explaining Helen’s being beau-

tiful by saying that she has a share of the Beautiful Itself. But the new
procedure of Philebus (and the collection and division dialogues) provides

an explanation of X’s being F by means of the definition of X (and that

definition’s including F).

It is worth underlining that this mode of explanation (explaining why X
is necessarily or Ka0’ airro F), though applicable in universal propositions,

does not make individual propositions claiming necessity depend upon uni-

versal propositions. Given that the definition of X includes F, ‘This X
is F’ has as much or as little necessity as ‘All Xs are F’. The burden of

necessity is carried by the subject term and its definition, quite aside from

quantification. If one includes propensities or potentialities in the definition

(whether directly so or as a result of higher generic classification), then,

again regardless of quantification, one may claim that this X is possibly F,

i.e. that it is 8€KTLKog.7

The senses of ‘necessity’ and ‘possibility’ so explained are quite different

from those invoked in contemporary modal logic. And I believe it is a

mistake to interpret Aristotle’s use of such modal terms simply using the

resources of contemporary logic. I think it is also a mistake to explain

Aristotle’s syllogistic by adversion to Boolean logic with its functional no-

tation. Without attempting full-scale demonstration of these claims but

7 As this paragraph suggests, I am prepared to argue that for ‘possible’ Aristotle

uses SeKTLKo? (receptive). Thus, an animal is possibly (SetcriKov) well or ill; but

it is impossible for a stone to be either. See Cat. 13bl3-19, where it is noted

that only if something is SeimKO? can one or the other of a pair of contraries hold

for it—otherwise neither can.
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attempting some explanation of them, I shall quickly note what I take to

be the proper form of the standard Aristotelian syllogism in Barbara, in

so doing, hoping to make clear the divergence from Boolean syllogistic.^

The standard Aristotelian syllogism in Barbara has the form,

C holds for B holds for A.

Thus, for example, ‘three-sided’ holds for plane figure bounded by three

straight lines, and ‘plane figure bounded by three straight lines’ holds for

triangle. The middle term, a definitional formula, explains A’s being C
(or C’s holding for A). Less obvious invocation of definitory middles could

explain, e.g., why ‘having a backbone’ holds for a mammal. And, of course,

‘if receptive of illness’ holds for man (or any other animal), then a man is

possibly ill (though a stone would presumably not have such a possibility).

It goes without saying that Barbara is Aristotle’s standard form for the

demonstrative syllogism, i.e., the syllogism used in scientific explanation.

Though Plato does not use Aristotle’s terms (in the ‘Prometheus’ passage

or elsewhere), I think that Aristotle, in Posterior Analytics, is in his own
way detailing Plato’s explanatory pattern in Philebus. And I do not believe

that Aristotle’s explicit rejection of Platonic Forms in the Analytics makes

any difference for my argument in this paper. Give both Plato and Aristotle

doctrines of concepts (which make possible awareness of things a,s what they

are or as qualified in various ways), and Aristotle can readily claim that

there is no need for Platonic separated Forms in explanation.

At bottom, Plato needs the world of forms to give legitimacy to the

process of collection and division with its exercise of conceptual ability.

And, at bottom, Aristotle needs the De anima identification of form in the

soul and form in the thing (and, perhaps, the remarkable ability of voO?

TTOLqjLKog) for the same reason.9 One may, therefore, object that Aristotle’s

quick rejection of Platonic Forms in the Analytics is illegitimate. But what

is at issue is the conduct of inquiry, not the invoking of the frame or frames

which make it and its results fully legitimate.

8 See Corcoran 1972, for a formal treatment of important divergences.

^ What I have in mind is, of course, the grounding of concepts in rerum natura.

Plato, if I am right about Cratylus and Parmenides, finds in collection and di-

vision a means of linking concepts with the world of Forms, i.e., by virtue of

concepts’ being shares of appropriate Name and Knowledge Forms. Aristotle,

though denying Platonic ‘separated’ Forms, insists that there are Forms in things

and that the universals in the soul (concepts) can conform to them.
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3 . Conceptual improvement: From ‘clear to us’ to ‘clear in nature’

What I hope to show in this section is that Plato’s procedures of collection

and division and Aristotle’s procedures for arriving at explanatory middles

are, in slightly different ways, procedures for improving our concepts (or,

if you please, for improving the clarity and precision of the concepts we
have). Both procedures are in a sense to be explained, empirical; and both

allow for an appropriate sort of testing of proposed definitory formulae. In

section 4 I shall make brief reference to the rationalists’ (especially Leibniz’)

use of analysis and synthesis and attempt to show the similarity of that

use to the procedures ascribed to Plato and Aristotle.

Plato. According to my story so far, Plato assumes that Attic Greek is a

perspicuous language (i.e., one produced by a Name-Giver who constructed

it to accord with the Name-Forms) and that people who have learned it in

standard perception and conversational contexts are generally capable of

recognizing a variety of things around them as what they are and as being

characterized in a variety of ways. They may well have that capability,

however, and yet never have reflected on the usage of those terms, much less

have attempted to determine or discover precise definitions. The procedure

of collection and division seems clearly to be a remarkable aid to such

reflection, determination, and discovery.

One starts with a given term, say, X, assumes for the purpose of inquiry

that A (another term) is such that anything which is X must surely be

A. But if, after a moment’s thought, one can suppose that an X might

not be A, one had better try again. Still let us stay with A. Then one

tries to determine what ‘immediate’ kinds of A there are, say Ai ,
A2

,
and

A3 . Once again one must be sure that anything which is any of these must

be A. And one must be sure that anything which is X must be one or

the other of them, say Ai. Then one must ask what feature it is which

divides A into Ai, A2, and A3. Call that feature /. / must be, as it

were, a generic feature, species of which characterize Ai ,
A2

,
and A3 and

which, together, exhaust the immediate species of /. Call them /i, /2, and

fs . The presumed appropriate difFerentia of A is thus /, species of which

dilFerentia characterize the immediate species of A. A", whose definition

is sought, must be such that whatever is X must be A, as well as / (and

thus either /i, /2, or /3), and A\. Strictly Ai is redundant, for to be Ai is

simply to be A which is fi .

It must be noted that there is an ‘empirical’ test for each of these moves.

Can one imagine anything which falls under the concept ofX which fails to
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fall under the concept of A? One may in response to the question ‘discover’

that one is not quite clear about A and temporarily or permanently adjust

the concept. Or, in the search for what might do the job of A, one might

temporarily or permanently adjust one’s concept of X. Can one imagine

anything which falls under X failing to fall under /i? Again adjustments

may be necessary, this time in the concept of / or of A or of X. And one

may not simply imagine. If the concept of X is that of a natural kind, one

may, at any stage, go out and look at or handle or listen to things which one

takes to be of that kind. At any stage in the division, one may, e.g., go out

and look and discover that one’s concept of squirrel confuses squirrels and

chipmunks. If JA is a concept of social interaction, say, lying, one may dis-

cover by investigation that one’s concept confuses saying what is false with

deliberate deception in speech. My point is, of course, that the Platonic

procedure, undertaken seriously, is very likely to involve empirical inves-

tigation and thus attention to likenesses and differences with consequent

adjustment of the proposed explanatory scheme of classification.

Even in earlier dialogues, Socrates is represented as testing proposed

definitions by reference to what would fall under a proposed definition.

In the famous first definition of Euthyphro, if piety should be dearness

to the gods, one and the same act could be both pious and impious. In

Meno, if virtue could be taught, then there would be teachers of it. But,

after a brief survey, it is concluded that there are no teachers of virtue.

In Phaedo, if the soul were a harmony of bodily parts, then it could not

be an initiator of changes in the body. But we observe (and attribute to

soul) any number of such initiations of bodily changes. Examples abound.

Never mind that some of the concepts do not appear to be ‘empirical’. And
never mind that some of Plato’s own examples, notably those in Statesman,

seem pretty farfetched and remote from empirical test. The back and
forth procedure of collection and division, with the making of appropriate

conceptual adjustments, in principle at least requires the applicability of

the relevant concepts and, with increasing use of the procedure in different

contexts, a virtual mapping of the sensible world.

To return to the example of the application of collection and division to

X and its ‘one’, namely. A, it should be clear that the process of division

can go on in the manner which used / (and its species) as the differentia of

A. The choice of differentia for Ai is, of course, somewhat determined by

the choice of / for A. (This is what I was getting at in the reference in

earlier sections to ‘congruent’ differentiae.) If one chooses, e.g., ‘linearity’ as

the differentia for plane figure, the species will be straight and curved. For

straight plane figure, the appropriate differentia will probably be sidedness,

and species of it will be three-sided, four-sided, and so on (not, say color);
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for one is dividing plane figure and not colored plane figure or color. And,

to return to the definition of JA, there will be introduced once more with the

differentia of A\
,
the back and forth checking, now with A\

,
its proposed

differentia, and X.

If one supposes the completion of the process, what is obtained is an

explanation-pattern, a pattern explaining why anything which is X must

be fi or whatever. And, with sufficient sophistication, the pattern provides

means of explaining why X may be characterized in some way or other (or,

pari passu, why it is impossible for X to be characterized in some way or

other).

Plato, of course, is interested in our being able to discern the patterning

of his changeless and timeless Forms, not simply with the improvement

of our conceptual life by revising and adjusting our concepts to fit some

conceptual ordering. But, as we have noted, Plato does not invite us to

some sort of non-visual staring at forms. He insists that our awareness of

the structure of the forms is the product of SiaXeKTUcn. He thinks that the

practice of collection and division leads to discernment of the structure of

Forms. And he thinks that exposing the structure of the language and so

improving our conceptual life leads to improved sharing in the structure of

name-forms and thus, in refiective use, awareness of what the Name-Forms
are of.

Aristotle. In Posterior Analytics Aristotle’s announced purpose is to state,

explain, and defend an account of demonstration, where demonstration is

syllogism whose premisses are apodeictic (or, at any rate, likely to be nec-

essary). And Aristotle regards demonstrated results (as demonstrated) as

constituting science (eiTLCTn^iiTi). The search for premisses in such demon-

stration is, he believes, a search for middles. (Thus, science is ‘middled’

knowledge.) As noted earlier, the desirable middles are definitory formulae

which assure that C must hold for A, given that B is a definitory formula

for A, and C is contained in B.

Aristotle is a bit bedeviled by the problem of what assures that a string

of words constituting the definitory formula is one and not merely a string

(like the Iliad). In De interpretatione he finds the ovo^a-pfjpa linkage to

constitute one X0709, provided that neither of the items linked overtly or

covertly proves to be compound. (If one of them should be, then there

is more than one Xoyog linked by ‘and’.) But what makes a definition or

definitory formula one? Without going into the detail of the Analytics, I

^OSee Cohen 1981, 229-240 for an account of the unity of definition in the general

terms assumed here.
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think that he finds the ground for a formula’s being one in the form, genus-

cum-differentia; and he takes this to be as one-making as the 6vop.a-with-

pfjfia formula for single sentences. Thus, definitory formulae can function

as single terms constituting middles in demonstrative syllogisms.

Aristotle’s procedure for arriving at such middles is, obviously, very close

to Plato’s procedure of collection and division; and I shall ignore the details

of what he takes to be differences from Plato’s procedure for the present

purposes. As noted concerning An. post, ii 19, Aristotle assumes that we
acquire our first universals as a result of sense experience and memory.

He assumes as well that we are capable of eTraywyi] (assemblage), and so

able to move from original sense universals to ‘higher’ species and genera

universals. And, as noted, this movement parallels the increasingly remote

applicability of, say, the concepts, man, animal, living thing, and so on to

one and the same thing which he speaks of in Categories.

Physics i 1 speaks of original sense universals as blurring together a num-
ber of components (even principles: dpxaC) which are only later separated

out, where ‘later’ seems to mean ‘after appropriate inquiry’. I think it clear

enough that the sense universals are those spoken of as ‘clear and lucid to

us’ and those resulting from serious inquiry are or may be those ‘clear and

lucid in nature’. It should be noted, however, that Aristotle is, in practice,

fairly modest in claiming any sort of certainty for the results of inquiry. He
is not so modest, however, in his claims concerning either what scientific

demonstration must be or how one should proceed in arriving at definitory

middles.

The actual procedure of inquiry, utilizing eTrayco'yq in working from sense

universals, taking note of differences and trying explanatory patterns on

for size, differs little from that described by Plato in Philebus. In the

schematic example used in discussing Plato, what is needed is explanation

of JA’s being F. For the explanation, Aristotle needs a definition of X
which includes F, and to get it he may have to find a ‘one’ which like A
in the example is rather removed from X (and thus requires a good deal

of division). And, in the process of inquiry, there may well be a great

deal of what I called ‘back and forth’ in discussing Plato. Thus, there will

either be concept change or careful articulation of concept contents in the

process, and much of it will be due to the ‘empirical’ business of attending

to sensible things made known by the use of the tentative or permanent
concepts.il

11 1 am indebted for the general spirit and some of the details of my account of

Aristotle’s procedure for arriving at definitions which can be used in scientific

explanations to Bolton 1976.
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4. Concluding comments

I hope that the above remarks, though all too brief for the complex matters

involved, make it clear enough that both Plato and Aristotle have intelligent

and intelligible procedures for explanation and that those procedures allow

for testing proposed definitions and correcting mistaken or omitted steps in

the genera/species trees. There remain three comments which I believe will

help to clarify those procedures. The last two of those comments, though

clarifying, introduce complex and difficult discussions that can only be

hinted at in this paper.

First, I must note that philosophers using the apparatus of contempo-

rary logic are prone to locating necessity in combinatorics. And they are

equally prone to finding scientific explanation in syllogisms consisting of a

universally quantified ‘if/then’ proposition (major premiss), an existentially

quantified (or individual) proposition (minor premiss), and an existentially

quantified (or individual) proposition (conclusion). In such explanatory

patterns, terms for individuals have the form of proper names, and such

individuals figure in explanations only as having some characteristic or

other and not as being the individuals they are.

In the reading I have been giving Plato and Aristotle, individuals are not

‘bare’ but, if you please, ‘sortally’ qualified or ‘natured’, as, in the example

cited from Aristotle, the man, Callias. Such individuals, by virtue of being

what they are (i.e., gotten at by definitory formulae), are necessarily (Ka0'

auTo) qualified in various ways. Obviously individual characterization of

this sort equally supports universal quantification. If, e.g., this triangle nec-

essarily (kuS’ airro) has three sides, then all triangles necessarily have three

sides. But there is in this no notion that universally quantified propositions

of this sort can be falsified simply by finding that some ‘bare’ particular

fails to be appropriately qualified. Even so, as I have tried to show above,

there is an empirical element in the development of classificatory schemata;

and neither Aristotle nor Plato is prepared to say that such schemata are

not subject to improvement.

Second, I noted earlier that there is in the procedures of Plato and Aris-

totle some similarity to what the so-called rationalists speak of as analysis

and synthesis, in particular, Leibniz. Analysis for Leibniz is the effort to

clarify an ‘idea’, to be assured of its possibility, and to arrive at a definition.

He distinguishes several sorts of definition: nominal, merely real, real, and

causal. Real and causal definitions figure into the highest level explanatory

patterns. They are arrived at by something akin to what I have called

above the back and forth of testing possible definitions against their fit
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in genera/species trees, their providing clear-cut explanations, and their

fit in a pattern which leaves out no steps. Synthesis is in Leibniz’ prac-

tice the process of determining the place of a definition in an explanatory

pattern. In Leibniz’ view, both analysis and synthesis are involved in seri-

ous scientific investigation. With the additional dictum, praedicatum inest

subjecto, Leibniz is prepared to carry the principle of Ka0’ auTO-predication

far beyond the standard uses in Aristotle (though our finite intellects are

incapable of determining the content of individual concepts). The use of

definitions and definitory formulae in scientific explanation was widespread

in the 17th and 18th centuries, even among philosophers who expressly

rejected Aristotelianism.

Third, with the mention of Leibniz and analysis and synthesis, it is diffi-

cult not to say something about axioms and theorems. In the first chapter

of Physics (to which I attended earlier), Aristotle links together ‘principles

(dpxaC), causes (alTLat), and elements (oTOLX^ia)’, with the suggestion that

we really get to know something when we have followed through ‘right up

to the elements (oTOixeta)’. The notion of an element here is that of an

indefinable which figures into the definition (and explanation) of the gen-

era and species which make a subject-matter. Aristotle illustrates which

he has in mind in Physics i by arriving at the principles (dpxa.C) needed

for the general science of physics, namely, some sort of continuing matter

or substratum that remains through a change and the coming to be of a

having or lacking. 12 But what I wish to focus on is the notion of elements

(oTOLxeXa).

Euclid’s Elements (same term) is a paradigm of the use of primitive terms

in axioms, some definitions, and some common notions in demonstrating a

set of theorems and corollaries for a given subject matter. Ignoring for the

present purpose the problems (if they are such) of construction-proofs, I

wish to point out that the use of OTOLxeXa by both Aristotle (in Physics)

and Euclid is not adventitious. Aristotle’s use is to call attention to the

ultimate terms used in demonstrations of the sort this paper discusses,

and Euclid’s use is to provide those terms by means of which a coherent

and successive set of demonstrations can be made. Though the procedures

described in this paper do not have the form of demonstrations from ax-

ioms, the OTOixeta of a given subject-matter provide for the genera/species

patterns which make possible the sorts of demonstrations I have been call-

ing ‘explanations’. Indeed, I am prepared to argue that the procedure of

explanation defended in An. post, ii and the axiomatization procedure are

formally equivalent. The procedure of arriving at definitory formulae for

12 For a defense (against Barrington Jones) of taking of matter as persisting

through change, see Code 1976.
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use as middles in demonstrations would, in the form suggested both by

Aristotle and by Plato, be excessively cumbersome; but the relation be-

tween the ‘elements’ and the explanations or demonstrations is essentially

the same. The argument to show their formal equivalence is, however, well

beyond the scope of this paper.
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On the Notion of a Mathematical Starting Point

in Plato, Aristotle, and Euclid

IAN MUELLER

In this paper I wish to discuss the question of the status of the starting

points of mathematics in the philosophies of Plato and Aristotle and in

Euclid’s Elements. 1 I will be mainly concerned with Aristotle since he has

a good deal more to say on the question than Plato, and for Euclid we
have only his practice to interpret. It is useful to have as a model for

discussion some modern conception of mathematical starting points. I

here present one briefly; it is designed to accommodate discussion of the

ancients. We may begin with a division of starting points into terms,

assertions, and rules; and a second division into logical and material. I

give a rough illustration of each of the six resulting categories:

• primitive logical term: not {->)

• primitive material term: point

• primitive logical assertion

For any assertion P, -> both P and -iP (law of non-contradiction)

• primitive material assertion

If a and b are distinct points, there exists a third point c between

a and b

1 1 use the term ‘starting point’ as a general term to cover a multitude of Greek
expressions. I do not use the word ‘principle’, which scholars often use in the

way I am using ‘starting point’, in order to avoid giving the impression that I

am discussing the Greek word dpXTl. In the Elements the starting points are the

propositions Euclid labels definitions (bpot), postulates, and common notions. In

the case of Plato I will be dealing primarily with the passage in the Republic in

which Socrates talks about what he calls the hypotheses of the mathematicians.
Aristotle uses a variety of terms in this connection, as will be seen in Section 2.

59
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• primitive logical rule

If the assumption of P leads to a contradiction, then you may
take -iP to be true (rule of reductio); if you have proved P and

if P then Q you may say you have proved Q (modus ponens)

• primitive material rule

If you have proved A and B to be congruent to C, you may
take A to be congruent to

The distinction between logical and material starting points is usually made
by specifying certain terms as logical, and making it a necessary condition

for something to be a logical assertion or rule that it employ only logical

terms. The distinction between logical and material has been argued to

be arbitrary or at least unjustified; but these arguments are of no concern

here. I shall simply assume that we have made a division about which

we can all agree, and that the primitive logical terms include those of a

standard formulation of the predicate calculus. I shall also assume that

all theories use the same primitive logical terms, assertions, and rules,

since to do otherwise needlessly complicates discussion. It will, however,

be necessary to return briefly to the distinction between the logical and

material in discussing Aristotle.

I shall also have nothing more to say about the notion of a primitive

material rule until I discuss Euclid in the next section, since one of the

simplifying features of standard specifications of the logical is to make
material rules unnecessary. So, for example, standard specifications of the

logical will allow one to infer that A is congruent to B from ‘A is congruent

to C\ ‘‘B is congruent to C\ and the material assertion ‘If A and B are

congruent to C, then A is congruent to P’; hence, the example of a material

rule just given can be replaced by this assertion as a starting point. We
can, therefore, assume that material rules are absent from a typical theory.

I shall also assume that our primitive logical rules and assertions and our

primitive material assertions are minimal in the sense that we could not

prove the same set of assertions using a proper subset of the starting points.

2 The qualifying adjective, ‘primitive’, indicates that what is qualified is a starting

point.

In standard accounts the only material rules will be ones permitting the trans-

formation of given assertions into other assertions on the basis of material facts,

e.g., that congruence is a transitive relation. Primitive material assertions are

themselves a rule of this kind, since they permit one to make assertions on the

basis of no previous ones. In the Elements the first three postulates are material

rules of a kind quite unlike any in standard modern theories, since these pos-

tulates license the construction of new objects rather than the introduction of

new assertions.
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And I shall assume as well that the set of primitive material terms is mini-

mal, though saying precisely what that means is too complicated to merit

the time it would take.3 The rough idea is that the provable assertions of the

theory do not include a ‘definition’ of any of the primitive material terms of

the theory, i.e., an assertion enabling one to translate every assertion P of

the theory into an assertion P' not containing a primitive term t and such

that P is provable if and only if P' is. I make an analogous assumption for

primitive logical terms, but only because it enables me to say the following

briefly: I call a theory the starting points of which are minimal, minimal.

Hereafter, unless I use the qualifier ‘logical’, terms should be understood to

be material terms.

There are two further points I wish to make about the starting points

of a theory. The first is that a standard theory may have no logical as-

sertions, but it cannot get by without at least one logical rule. However,

it is of some significance, at least historically, that there is a logical as-

sertion corresponding to any rule, one which, it is tempting to say, is the

assumption made by the person using the rule. One might think of the

law of non-contradiction as an expression of the rule of reductio, and of the

assertion ‘If both P and if P then Q, then Q’ as an expression of modus
ponens. However, the more important philosophical point is that even if

it is possible to replace any particular logical rule with a logical proposi-

tion, no reasoning can proceed without some rules. In general, switching

back and forth between rules and their propositional expression obfuscates

issues, and it seems best to imagine that the distinction between the two is

fixed for any particular theory.

The second point concerns definitions. In modern discussions definitions

are not treated as starting points. They are simply abbreviations of com-

plex expressions introduced to make complex assertions more intelligible to

us, e.g., enabling us to say ‘28 is perfect’ rather than ‘28 is the sum of all its

factors less than it, including 1’. The only terms which are starting points

are the primitive ones. However, Aristotle seems to think of definitions as

starting points, and they are the most common kind of starting point in

the Elements. Perhaps the simplest way to accommodate this discrepancy

is to add to the starting points of a minimal theory, a set of defined terms

and a set of definitions, where for simplicity one assumes that the definition

of a defined term contains only primitives. Since I want to use the word
‘definition’ in my discussion of Greek authors I shall call defined terms

non-primitive and definitions abbreviations. Ignoring logical terms, we can

3 Throughout this introductory discussion I pass over formal complexities involved

in the treatment of definitions because taking them into account would not affect

the issues I treat.
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say that the starting points of a minimal theory with abbreviations include

the following:

the material component

—

primitive terms

non-primitive terms

primitive material assertions

abbreviations,

the logical component (identical for all theories)

—

primitive logical assertions (possibly empty)

primitive logical rules.

1. Euclid’s Elements

Euclid’s Elements may be divided as follows:

a. books 1-4, plane geometry

b. book 5, proportion theory

c. book 6, plane geometry, presupposing proportion theory

d. books 7-9, number theory

e. book 10, plane geometry presupposing proportion theory and

number theory

f. books 11-13, solid geometry presupposing plane geometry, pro-

portion theory, and (via book 10) number theory.

I have formulated this description to stress the sense in which the Elements

builds on previously developed theories, even though it is clear that Euclid

develops theories much further then his subsequent applications of them
require.4 However, despite this building it is also the case that new theories

are introduced in books 5, 7, and 11, that is to say, theories with previ-

ously unused primitive material terms and assertions. Obviously I make
this point from a modern perspective; and I mean that if we were to repre-

sent the Elements as a formal theory corresponding as closely as possible

to the original, we would be forced to introduce new primitives at those

^The only case of possible building which I have not included is Euclid’s alleged

use of proportion theory in number theory. I have omitted this because I believe

Euclid conceived book 5 as a geometric proportion theory, introduced a theory

of proportions for numbers in book 7, and then took for granted correlations

between the two theories in book 10. However, nothing I say here is altered

by supposing that Euclid’s number theory presupposes the proportion theory of

book 5. For this and other claims about the Elements, see Mueller 1981.
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points. However, if we look at the Elements, although we find at the be-

ginning of book 1 definitions, postulates, and common notions—postulates

corresponding loosely to primitive material assertions, common notions to

either primitive material assertions or primitive logical assertions—at the

beginning of the remaining books we find only definitions. I believe there

are two related inferences we can draw from this: (1) Euclid did not believe

that proportion theory, number theory, or solid geometry required its own
postulates; (2) at the end of the fourth century there were no accepted

presentations of these theories which included postulates, and probably no

such presentations at all, presumably because no mathematician recognized

the need for them. A further inference I draw is that the idea of such pre-

sentations of any mathematical theory was relatively new in Euclid’s time,

i.e., did not precede Plato’s maturity. I believe the evidence suggests that

Euclid himself is responsible for the postulates, but for the moment I will

only say that, even if they are thought to predate, say, Plato’s Republic,

they should still be seen as the exception rather than the rule by Euclid’s

time.

The rule in the Elements and, I am suggesting, earlier in the history of

Greek mathematics is a theory, the only explicit starting points of which

are definitions. These definitions are, for the most part, either explications,

which perhaps clarify the significance of a term to the reader but play no

formal role in subsequent argument, or abbreviations in the modern man-
ner. Examples of the former are ‘A point is that which has no part’ and

‘A unit is that in virtue of which each thing is called one’; an example

of the latter is ‘An obtuse angle is an angle greater than a right angle.’

Occasionally an assertion creeps its way into a definition as when Euclid

adds to the definition of the diameter of a circle that the diameter bisects

the circle; but these exceptions may, I think, be disregarded as indications

of what Euclid thought he was doing; and, in any case, the assertions which

do appear in the Elements after book 1 come nowhere close to overcoming

the absence of postulates. In Euclid’s practice the terms which are expli-

cated play something like the role of primitive terms in modern theories;

but, except in his practice, Euclid shows no sense of a distinction between

abbreviations, which play or could play a role in argument, and explications

which do not and hardly could. Moreover, the comparison with primitive

terms is very limited, since in a modern presentation one expects all and

only primitive terms to occur among the material terms of the primitive

assertions in their unabbreviated form; whereas in book 1 Euclid does not

include (even implicitly) all explicated terms in the postulates and com-

mon notions, and he uses a lot more terms than anyone with some notion

of modern axiomatic method could possibly hope to characterize satisfac-

torily in five propositions. The impression one gets from reading the whole
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Elements is that the fundamental operative notion of a material starting

point is a definition. One defines the things one is going to reason about

in order to make sure others understand what one is talking about; some of

these definitions are formally usable abbreviations; the others serve only

to help the reader grasp what is being talked about.

5

We know that the question of the appropriate postulates and common
notions for book 1 was a matter of much discussion in later antiquity, and

that the manuscripts of the Elements were affected by that discussion.

We have no way of being certain what Euclid’s lists included, but the most

plausible course would seem to be to follow Heiberg and Proclus, and accept

the following:

Postulates

1. Let it be postulated to draw a straight line from any point to any

point, and

2. to produce a limited straight line in a straight line,

3. to describe a circle with any center and distance,

4. that all right angles are equal to each other,

5. that, if one straight line falling on two straight lines makes the

interior angles in the same direction less than two right angles,

the two straight lines, if produced ad inEnitum, meet one another

in that direction in which the angles less than two right angles

are.

Common Notions

1. Things equal to the same thing are also equal to one another.

2. If equals are added to equals the wholes are equal.

3. If equals are subtracted from equals the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

The first thing I wish to point out is that the postulates include both

assertions and rules. There corresponds to this division not only the dis-

tinction between theorems and problems, the latter being what we would

call constructions, but also the distinction between the reasoning part of a

proof (dTrodetJus in Proclus’ terminology) and the construction (KaraaKeuq)

which precedes it. Euclid’s geometric reasoning is highly constructional

in this way, and I see no reason to doubt that Greek geometry always

was. However, even when this aspect of geometric reasoning is recognized.

5 For detailed discussion of some of the material in this paragraph, see von Fritz

1971, 393-414.
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there is a tendency to focus on assertions and proofs rather than rules

and constructions and, in particular, to speak of geometry as a matter of

proving assertions from assumed assertions. This tendency may represent a

philosophical bias, but, at least since Aristotle, accounts of reasoning have

standardly focused on procedures by which assertions are transformed into

other assertions and not on procedures by which constructions are built out

of other constructions. The fact that Aristotle does not recognize primitive

constructions as starting points of geometry suggests, although it hardly

proves, that they did not occur among the presentations of geometry acces-

sible to him. Since it also seems likely that the assertional postulates 4 and

5 are no earlier than the other three, there is some reason to think that

nothing like Euclid’s postulates was known to Aristotle [cf. Heath 1956,

i 202] .6 This is a point to which I return at the end of my discussion of

Aristotle.

The common notions appear to be assertions relating to quantitative

reasoning. Each could be transformed into a rule for such reasoning, com-

mon notion [5], for example, allowing one to go from ‘a is part of 6’ to ‘6

is greater than a\ Euclid’s formulation of them as assertions is perhaps

another reflection of the tendency to think of rules as founded on assertions.

In any case, Euclid’s list is quite inadequate to the quantitative reasoning

he actually applies; and it is sufficiently inadequate to make me believe that

Euclid had no desire to formulate a complete list, but settled for the most

prominent principles he employs. A perhaps more interesting question is

whether Euclid thought of the common notions as logical or material. From
the point of view of standard predicate logic there is no question that the

common notions are material; but I know of no fully satisfactory reason

for denying argument about equality, addition, subtraction, coincidence,

parts, and wholes, the status of logical reasoning. Here, as in the case of

set theory, the division between logical and non-logical may be arbitrary.

However, in the case of Euclid the issue may be refined by asking whether

Euclid has a notion of rules of reasoning corresponding to our predicate

calculus (or Aristotle’s syllogistic). To be more specific: we know that

Euclid follows such rules, and we know that he did not try to formulate the

rules. Should we say that the absence of such an attempt reflects a lack of

self-consciousness about these rules and, hence, an at least tacit belief that

quantitative principles are the closest one comes to logical principles? Or
should we suppose that Euclid acknowledged the use of logical principles,

^The fourth postulate is much the most difficult to explain. Heath [1956, i 201]

argues for an association with the fifth, but see Mueller 1981, 29-30.
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but did not consider them to be his concern? The text does not allow us

to decide between these alternatives, and to that extent supports the first.

7

I conclude this section with a summary. The explicit starting points in

the Elements are definitions, postulates, and common notions. Of these

the definitions either correspond to abbreviations or they are what I have

called explications. In thinking about starting points in the Elements and,

hence, in thinking about them in Greek mathematics, we ought to think

primarily about these definitions, even though explications play no offi-

cicd role in modern theories and abbreviations are starting points only by

courtesy. In book 1 Euclid adds to the first definitions for plane geometry

the postulates and common notions. The postulates correspond to prim-

itive material rules and assertions. The common notions are general truths

about quantities almost certainly intended to apply to numbers cls well as

geometricals. These assertions could be turned inta rules without altering

the character of the Elements. The questions whether they are logical or

material starting points and whether they are the most general reasoning

principles recognized by EucHd does not admit a clear answer. Certainly

Euclid uses general logical principles, just as he uses primitive material

and quantitative rules and assertions he has not made explicit. But using

such principles does not constitute recognizing them. The following, then,

is my list of acknowledged starting points in the Elements: explications,

abbreviations, material rules, material assertions, quantitative assertions.

2. Aristotle

Aristotle’s notion of mathematical starting points has been much discussed

by historians of mathematics and historians of philosophy. In general the

main passages which have to be looked at are well known, but no consensus

on an overall reading of them seems to have emerged. In this section of

my paper I will go through the passages in an order which facilitates what

I think is their correct interpretation. For I believe that it is possible to

find a relatively coherent and uniform view of mathematical starting points

in Aristotle, and that standard accounts of the relationship between this

view and Greek mathematical practice are not justified. Unfortunately,

the content of the relevant passages overlaps and diverges in ways which

necessitate discussing a variety of topics partially until, if all goes well, a

total picture emerges.

7 That is to say, the absence of a distinction in an author is prima facie (but only

prima facie) evidence that the author did not make it.
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When Aristotle sets out in An. post, i 7 to establish the impossibility

of showing something by applying a proof in one genus to another, he

announces that there are three things involved in proofs:

One is what is proved, the conclusion (this is a matter of belonging

to some genus per se), one is the axioms (axioms are from which),

and third is the subject genus, the properties and per se attributes

of which are made clear by the proof.8 [An. post. 75a39-b2]

I will refer to this triad as the elements of a deductive science, and I will try

to render plausible the view that these elements also represent Aristotle’s

basic conception of the starting points of a science. Aristotle offers other

versions of the triad in other places.9 For example, in An. post, i 10 he

writes.

Every demonstrative science concerns three things: the things it

hypothesizes to be (these things constitute the genus of which it

studies the per se properties), the so-called common axioms from

which first things it proves, and third the attributes of which it

assumes what each signifies. [An. post. 76bll-16]

8 My translations are not always literal. They are designed to facilitate my argu-

ment, but only by taking for granted what I think are relatively non-controversial

interpretations.

9 In addition to the passages quoted in the text, the following one is generally

thought to express the same doctrine.

Every demonstrative science investigates concerning some subject the per

se attributes from the common opinions. Therefore, it belongs to the same
science to investigate concerning the same genus the per se attributes from
the same opinions. For that concerning which belongs to one science, that

from which to one, whether it is the same or a different one, so that also

either they investigate the attributes or one science composed of them does.

[Meta. 997al9-25]

It seems clear that the common opinions in this last passage are the same as

the common axioms: cf. Lee 1935, 113-114. But Aristotle’s considered view

seems to be that although there is a single genus belonging to each science, all

sciences share the common axioms, which are themselves the domain of no single

demonstrative science. Hence, Aristotle’s view on the point raised in the last

sentence quoted would be something like that one science investigates one genus
from the common axioms, so that this science must necessarily investigate the

attributes of that genus. Here he wants to leave open the possibility that there is

a science of the common axioms (an issue raised in the preceding diropCa); but
it is surprising that he goes so far in the direction of openness as to omit his

own view, leaving only the possibility that two sciences or a composite science

investigates the attributes.



68 IAN MUELLER

After a brief excursus in which he points out that sometimes one or the

other of these things is not explicitly hypothesized, he insists that by nature

there are three things—the thing about which one shows, the things one

shows, and the things from which one shows (ire pi o re ScLKVuaL koX d

SeLKiAJOL Kttl (Sv).lO In Meta. B 2 Aristotle writes.

If there is a demonstrative science of them, there will have to be some

subject genus, and some of the principles will have to be properties,

some axioms . .
. ;

for it is necessary for proof to be from some things,

'

about some thing, and of some things. [Meta. 997a5-9]

On the basis of these and other passages it seems to me reasonable to say

that for Aristotle the elements of a demonstrative science are the common
axioms, the subject genus, and the properties associated with the genus.

But there are several things to notice about Aristotle’s characterization.

First, the axioms are thought of as the premisses of scientific proof, the

things from which one proves;H but the genus and the properties are ap-

parently not thought of in this way. Secondly, Aristotle can speak of the

genus in the singular or the plural, but presumably when he speaks of

hypothesizing the existence of the genus he means hypothesizing the ex-

istence of things in the genus. However, it is important to see that even

if Aristotle has in mind the hypothesis that, say, number or numbers exist,

he does not seem to think of the hypothesis as a premiss of mathematical

argument. In this sense, it does not matter much whether one speaks of

hypothesizing the genus or hypothesizing its existence. Similarly, it seems

to make no difference to Aristotle whether one speaks of the third element

in demonstrative science as the conclusions or the properties shown in the

conclusions to hold of subjects in the genus, but the latter formulation

is somewhat more typical. Finally Aristotle speaks of assuming what the

properties signify, and although this almost certainly relates to definitions,

again the definitions are apparently not seen as premisses of argument. The
picture one gets of a science then is that it proves properties of subjects

in a genus from the common axioms. To do so it must take for granted

the existence of the subjects and the significations of the properties. There

10 See also An. post. 77a27-29: ‘I call common the things which all sciences use in

the sense of proving from them, but not that about which they show things or

the thing they show.’

11 1 emphasize that for Aristotle the common principles are assertions (upoTaaeL?),

things from which one proves, premisses, and not rules. Ross [1949, 531] places

great stress on two passages. An. post. 76b9-ll and 88bl-3, in which Aristotle

speaks of proving through (Sid) common things; but I agree with Barnes [1975a,

135] that no great significance should be attached to this preposition.
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are many problems in this picture, including questions of its consistency

with other things Aristotle says. I shall attempt to address these problems

only after I have attempted to clarify the picture.

a. The common axioms

Since the mathematician also uses the common things but restricted

to his own science, it also belongs to first philosophy to investigate

the principles of mathematics. For that when equals are taken from

equals the results are equal, is common to all quantities, but mathe-

matics studies a certain part of the domain of the axiom in isola-

tion, e.g., it studies lines or angles or numbers or some of the other

quantities . .
.
[Meta. 1061bl7-24]

Here Aristotle explicitly mentions as an axiom or common principle of

mathematics what we know as common notion 3 of the Elements. However,

in the parallel passage at the beginning of Meta. F 3 he only refers to ‘what

are called axioms in mathematics’, without giving any examples, and he

stresses the idea that these axioms are true of all things and are used by

all reasoning. This characterization is obviously more appropriate to the

context in which Aristotle is concerned with versions of the fundamental

logical laws which we call non-contradiction and excluded middle, a point

which is brought out clearly in the two statements of the dTTopCa which is

being addressed in both passages:

Whether it belongs to the science [first philosophy] to consider only

the first principles of substance or whether it also deals with the

principles from which everyone proves, e.g., whether or not it is

possible simultaneously to assert and deny one and the same thing,

and the other things of this kind [Meta. 995b6-10]

and

It is an open question whether it belongs to one science or several

to deal with the principles of proof. By principles of proof I mean
the common opinions from which everyone shows things, e.g., that

it is necessary to affirm or deny each thing, and that it is impossible

for something simultaneously to be and not be, and all other such

assertions. [Meta. 996b26-31]

One sees from these passages that Aristotle includes among the common
principles of the special sciences clear instances of what we would call logical

assertions and the common notions of Euclid’s Elements, which I have

called quantitative assertions to avoid having to settle the issue of whether
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they are logical or material. It is possible that Aristotle acknowledges some

distinction between these two kinds of common assertion, since he rarely

mentions both kinds together. 12 However, he talks about the two kinds in

essentially the same way, so that the one passage [An. post. 77a26-31] in

which he does mention the two together as common things can be taken

as quite decisive evidence that Aristotle does not distinguish them.l^

b. Problematic passages in the Posterior Analytics. In his translation of

and commentary on the Posterior Analytics^ Barnes [1975a, 136] provides

a list of ‘various classifications of the elements of demonstrative science’

given by Aristotle, and says that ‘Aristotle himself makes no attempt to

coordinate them.’ I believe that one can make reasonably good sense of

all of these classifications in terms of the triad genus, properties, common
axioms, and in this section I attempt to do so.l^

At the start of An. post, i 10 Aristotle says,

I call the principles in each genus the things which cannot be shown

to exist. Thus, what the first things [i.e., principles] and the things

composed of them axe is assumed; on the other hand it is necessary

to assume that the principles exist, but to show that other things

12 In An. post, i 10 76a41, 76b20-21 Aristotle mentions ‘equals from equals’ as a

common thing, but never gives a logical example of an axiom in that chapter.

At 88a36-bl, he cites the law of the excluded middle as a common principle.

13 Theophrastus apparently did distinguish them. For Themistius [In an. post.

7.3-5] tells us that he defined axioms as certain opinions, some concerning things

of the same category, e.g., ‘equals from equals’, some concerning absolutely ev-

erything, e.g., the law of the excluded middle.

I"! I do not discuss the last two paragraphs of An. post, i 10 (76b23-77a4). In

the first of these Aristotle distinguishes propositions which must be believed,

hypotheses, provable propositions which the teacher assumes without proof and
the student accepts, and postulates which the teacher assumes and the student

does not accept. This categorization does seem to me quite independent of all

the others. (See on this passage von Fritz 1971, 365-366. I note that there are no

other passages listed under alrripa in Bonitz’ index which help to clarify the pos-

sible logical or scientific sense Aristotle attaches to the word ‘postulate’, although

chapter 20 of the Rhetorica ad Alexandrum discusses rhetorical postulates.)

In the other paragraph Aristotle distinguishes opoL from hypotheses. I take

hypotheses to be premisses in general (oacav ovrav tc5 eKetva elvai -yLyv/eTaL to (TupTre*

paapa), but I am not certain whether a 6po9 is a definition or a term. (I am not

inclined to think it is a dehniens^ although this cannot be ruled out. See, e.g.,

Mignucci 1975, ad loc. or Landor 1981.) Since the point Aristotle is making is

that a 6po? is not an assertion, taking opoL to be definitions would lend support to

my overall interpretation; but I do not see any way to rule out the possibility

that 6poL here are terms and Aristotle’s point a relatively trivial one.
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[i.e., the things composed of the first things] exist. For example we

assume what monad or straight and triangle signify; and we assume

that monad and magnitude exist, but we show that the others exist.

[An. post. 76a31-36]l5

Aristotle here contrasts the principles in a genus with the things composed

of them, giving monad and magnitude as examples of principles, straight

and triangle as examples of composites. The contrast between monad and

magnitude represents the contrast between arithmetic and geometry, and

it seems reasonable to assume that they represent the genera of the two

sciences. Other passages suggest that magnitude is a stand-in for point,

line, surface, and solid, although Aristotle usually uses as illustrations only

the first one or two of these rather than all four. Similarly he sometimes

speaks of number rather than monad as the genus of arithmetic, as he does

in the passage from the same chapter quoted above. The fact that Aristotle

here speaks of hypothesizing both that these principles exist and what they

signify should be seen as an amplification of passages in which Aristotle

only mentions the first kind of hypothesis in connection with the genus.

For it seems obvious that one must know what the genus signifies as well

as that it exists if one is to prove things about it; however, for Aristotle the

hypothesis of existence is associated uniquely with the genus and, hence, is

the most interesting one to mention in connection with the genus.

Triangle and straight are both geometric items, and I believe they should

be placed in the class of what I have been calling properties. It does not

seem to me to count heavily against this assumption either that Aristotle

calls these things composites or that he speaks of proving their existence.

For in the next passage in chapter 10 he speaks of proving the existence of

the properties. In the passage Aristotle makes explicit another distinction

he sometimes invokes in discussions of mathematical starting points, the

distinction between two kinds of things used in demonstrative sciences,

common ones, such as ‘equals from equals’, and special ones, the examples

of which include both definitions (‘A line is such and such, and the straight

is such and such’ [An. post. 76a40j) and

the things which are assumed to exist and concerning which the

science investigates the per se features, e.g., monads in arithmetic,

points and lines in geometry. For it is assumed that these things

This passage should be compared with the more obscure An. post. 87a38-40

for which Barnes’ notes [1975a] are very helpful:

The science of one genus, i.e., things which are composed from the primary
things and are parts or per se pathe of these things, is one science.



72 IAN MUELLER

exist and that they are such and such. But what each of the per

se properties of these things signifies is assumed, e.g., in the case of

arithmetic, what odd and even and square and cube signify, and, in

the case of geometry, what irrational and being broken and verging

signify; but that these things exist is proved through the common
things and from what has already been proved. [An. post. 76b3-ll]

It is difficult to see that any sense can be attached to the notion of prov-

ing that these properties exist other than proving that they apply to their

subjects [cf. Ferejohn 1982-1983, 394-395]. 16 Thus, if the composites men-

tioned at the beginning of chapter 10 are to be identified with these prop-

erties, proving their existence will also be proving that they apply to their

subjects. Aristotle speaks of these properties as composites because he is

thinking of them as defined in terms of the simple objects of the subject

genus. In this sense the properties are not principles or starting points since

they depend for their definition on other things, just as they exist only as

belonging to other things. 17 But they or their definitions are starting points

in another way since they are taken for granted by the mathematician in

his argumentation. What Aristotle has in mind by assuming existence is

brought out in the next passage in chapter 10, the beginning of which was

quoted early in this paper. In the part not quoted Aristotle mentions cases

in which a science does not assume explicitly one of the three elements he

has identified. He contrasts the necessary assumption of the existence of

number, the genus of arithmetic, and assuming the existence of hot and

cold, which it is not necessary to do because existence in this case is obvious.

It seems to me relatively clear that the notion of existence involved here

16 Such a proof might be a construction; for example, Euclid’s construction of an

equilateral triangle in book 1 prop. 1 might constitute a proof of existence for

Aristotle; but there is no textual reason for denying that Aristotle would think of

the proof of the incommensurability of the side and diagonal of a square as a

proof of the existence of incommensurability. I know of no good evidence for the

frequently repeated suggestion that for Aristotle existence in mathematics was
somehow connected with constructibility. Cf. Barnes 1975a, 92.

17 Cf. Meta. 1077b3-4 (where Aristotle says that a is prior in definition to b

if the definition of 6 is composed out of the definition of a), 1035b4-14. Else-

where Aristotle illustrates this priority in terms of point and line, and of line and
triangle:

A belongs to B per se if A is in the definition of B; for example, line belongs

per se to triangle and point to line since the substance of triangle and line

are composed from line and point, which are present in the formula which

says what they are. [An. post. 73a34-37]

In Top. 108b26-31 Aristotle mentions definers who treat the point as principle of

the line and the monad as principle of number.
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is neither technical nor profound. The ‘assumption’ that hot and cold exist

is something we all make in our everyday conversation about the weather.

When the arithmetician hypothesizes that there are numbers or units, he

is only insisting that he is talking about something and asking that philo-

sophical or ontological questions be put aside, just as, for the most part,

such questions can be put aside when one talks about heat or cold. Only

a philosophically trained (or mistrained) person would ask why he should

believe there are such things as hot and cold. In the Republic Socrates

indicates the kind of question which might be asked of the arithmetician:

What kind of number are you talking about in which the one is such

as you demand, each equal to every other and not differing in the

least and having in itself no part? [Plato, Resp. 526a2-4]

Socrates goes on to suggest that the arithmetician’s response will bring out

the intelligible non-sensible character of his objects, but Aristotle’s position

seems to be that the arithmetician will simply insist that he be granted that

there are such things so he can proceed. My suggestion, then, is that when
Aristotle speaks of hypothesizing the existence of the subject genus of a

science, he has in mind a broad sense of existence precision about which

serves no scientific purpose. The idea that a single science deals with a

single genus is very important in Aristotle’s doctrine that there cannot be a

single universal science. But where did Aristotle get this idea? He does not

offer any real argument for it. And it seems quite independent of syllogistic,

which is a purely formal theory, although the idea of proving properties of

a subject is undoubtedly related to the subject-predicate conception of an

assertion (TTpoTaatg) underlying Aristotle’s syllogistic. Nor, I think, should

the idea be connected with the doctrine of categories or highest genera of

being. For although that doctrine might be taken to exclude the possibility

of a transcategorial science, Aristotle’s favorite example to illustrate the

‘one science/one genus’ doctrine is arithmetic and geometry, both of which

presumably deal with species of the category quantity. In fact it seems

likely that Aristotle takes restriction to a single genus as an observed fact

about actual sciences, and that in this connection he uses the word ‘genus’

rather informally. All he is saying is that every demonstrative science deals

with only one kind of thing.

In An. post, i 1 Aristotle describes the kinds of prior knowledge presup-

posed by learning:

In the case of some things it is necessary to assume in advance that

they exist, and in the case of others it is necessary to apprehend what

the thing said is; and in still others both are required. For example,

one must assume that the law of the excluded middle exists, what
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triangle signifies, and for the monad, both what it signifies and that

it exists. For each of these is not equally obvious to us. [An. post.

71al2-17]

It is clear that we have to interpret the assertion that ‘the law of the

excluded middle exists’ as the assertion that the law is true, but it should

also be clear that the need for this interpretation in this passage does not

by itself warrant interpreting ‘exist’ (eXvat) as ‘is true’ in cases where the

text does not require it. For in this passage Aristotle is trying to illustrate

the trichotomy he applies in chapter 10 to the special starting points only

(oTL €<m* TL cnr)[iaLV€L* tl OT][iaLV6L KUL OTL €0X1) in terms of the trichotomy

of common axioms, properties, and subject genus. The result is perfectly

defensible, but misleading in so far as it blurs distinctions made clearly

elsewhere.

In An. post. 72a7 Aristotle defines a principle as an immediate TTpoxaaLS,

and goes on to describe TTpoxaacLg as assertions and denials. 18 He then says,

I call an immediate syllogistic principle which cannot be shown and

which it is not necessary for a person to have to learn something

a Oeatg. But an axiom is something which a person must have if

he or she is to learn anything whatsoever; for there are some things

of this kind, and it is our custom to apply the term ‘axiom’ to them
especially. One kind of Oeai? is a hypothesis; it assumes one half of a

contradiction, e.g., I mean, that something exists or does not exist;

another kind, without this, is a definition. For a definition is a Oeaig,

since the arithmetician lays down that the monad is indivisible in

quantity. But a definition is not a hypothesis; for what a monad
is and that a monad exists is not the same. [An. post. 72al4-24]

All commentators point out that Aristotle rarely, if ever, uses the words

Oeatg and ‘hypothesis’ in the way explained here; and normally he does not

refer to the learning situation in explaining axioms. But there seems to me
no reason to doubt the text: the things which a person must acknowledge

to be able to learn anything are the axioms, principles presupposed in all

scientific argument, and Geaeig are the special principles for individual sci-

ences. ‘Hypothesis’ appears to have the more general sense of assumption

The fact that Aristotle’s formulation very early in the Posterior Analytics is

thoroughly propositional has had great influence on accounts of his doctrine of

the starting points. For one attempt to minimize this passage, see Ferejohn

1982-1983, 382-383, nl6.

Cf. Meta. 1005b5-23, where Aristotle describes the law of non-contradiction

as something which one must know if one is to know anything.
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at the beginning of this passage, but the contrast between hypotheses and

definitions depends on treating them as existential assumptions. The tran-

sition from the general to the specific sense proceeds by the opaque phrase

‘e.g., I mean, that something exists or does not exist’, which is sometimes

interpreted as ‘i.e., I mean, that something is or is not the case’. This

interpretation has the advantage of giving a clearer sense to the negative

alternative, but makes Aristotle’s opposition of definitions and hypothe-

ses an apparent equivocation. It seems to me preferable to say that the

negative alternative is included because of the general sense of ‘hypothesis’

introduced here, but that the concrete examples Aristotle has in mind are

affirmations of the existence of the genus of a science.

I conclude that Aristotle’s doctrine of the starting points of demonstra-

tive science involves the division of starting points into common and special

ones. The common ones or axioms include both quantitative and logical

assertions, but Aristotle probably does not distinguish the two. The special

ones are the subject genus and the properties of the genus. Aristotle fre-

quently speaks of hypothesizing the existence of the genus or its members,

and refers to definitions of the properties as well as of the genus and its

members.20 In this sense the special starting points can be thought of as

propositional, but it is important to bear in mind that Aristotle thinks of

the axioms as the only premisses used in demonstration. The hypothesis

of the existence of the genus is the assumption that one is talking about

something real in a science, and the definitions are simply determinations

of the genus and the properties one is going to discuss. However, to say

that the axioms are the only premisses of a science is not to say, at least

for Aristotle, that all the theorems could be derived from them. For the

axioms are too general to permit the derivation of specific truths. One
needs to particularize them by bringing in a genus and its properties.21

20 There is a close correlation between the elements of Aristotle’s subject genus

and the things whose definitions in the Elements I have called explications, and
also between his properties and those whose definitions I have called abbrevi-

ations. However, I am not sure that Aristotle noticed this difference. And I

certainly agree with Barnes [1975a, 134] that he did not distinguish primitive

and defined terms.

21 See An. post. 88a36-b3, where Aristotle, in arguing that ‘it is impossible for all

syllogisms to have the same principles’, considers the possibility that some of the

common principles (of which he gives excluded middle as an example) might play

the role of universal principles. Aristotle does not say that these principles are

insufficient but only that the genera are different and that one proves with these

genera through the common things. Shortly thereafter, in a very difficult passage,

Aristotle considers the possibility that the primary immediate propositions are

the principles and makes the curious remark that there is one for each genus,

by which he perhaps means the definition of the genus [so Ross 1949, ad ioc.j.
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That is to say, even if one could prove all the premisses of a science (the

axioms) in a higher science, one would not thereby be able to prove all the

theorems in the higher science.

c. The mathematics known to Aristotle. Aristotle sometimes mentions

the common axioms in ways which would seem to insure that he is talking

about a feature of mathematics known to his audience,22 and it seems safe

to assume that mathematical texts known to him included ‘equals from

equals’ and presumably at least the first three of Euclid’s common notions.

On the other hand, the absence of fundamental logical laws from Euclid’s

list of common notions suggests to me that Aristotle’s inclusion of them

among the axioms is a refiection of philosophical discussion in the Academy
concerning the general principles of reasoning, discussion having no direct

impact on Euclid. Philosophical discussion in the Academy and the alleged

Platonic ‘reform of mathematics’ may also underlie the inclusion of the

common notions in mathematical texts, but I can think of no considerations

which weigh particularly heavily for or against this suggestion.

From a modern point of view the idea that the common axioms might

be the only premisses of, say, geometric proof is incredible. There are at

least two factors which may help explain why Aristotle adopted it.23 The

Finally, Aristotle takes up the suggestion that although different principles are

used in different proofs, they are all of a piece (ouyyeveLOs). Aristotle responds

by reasserting his doctrine that ‘the principles of things differing in genus are

different in genus’. ‘For’, he says, ‘the principles are twofold, those from which

and those concerning which; the former are common, the latter, e.g., number and
magnitude, special.’ Thus, even here, in the context of a discussion which relies

heavily on the doctrine of the categorical syllogism, Aristotle on the whole treats

the common principles as the only premisses and makes their non-universality

turn on the fact that they are specialized through restriction to a genus.

22 See especially Meta. 1005a20, where Aristotle mentions ‘the things called ax-

ioms in mathematics’, von Fritz [1971, 421-422] argues with considerable plau-

sibility that Aristotle’s analysis of the axioms as common as opposed to spe-

cial starting points is Aristotle’s own contribution and not a reflection of the

mathematicians’ understanding of their own practice.

23 The fact that the common notions could not be employed reasonably in an

Aristotelian syllogism does not strike me as particularly problematic in this con-

nection, since Aristotle does not attend to issues of formalization in a rigorous

way: see Mueller 1974, 48-55. The same relaxed standards are evident in his

discussion of the way in which the laws of non-contradiction and excluded mid-

dle are used in demonstrations: cf. An. post. 77al0-25. He says that the latter

is assumed in every reductio argument, but that the former is only used when
the conclusion is in the form P &: ->-> P. This second claim is bizarre not only

because it is hard to envision a scientist trying to prove such a proposition, but

also because non-contradiction is used in any reductio. To argue for the claim
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first is drawn from the Elements. As I have already mentioned, what we

would call a Euclidean geometric proof is customarily divided into two parts

called by Proclus the KaTaaKeuTi (construction) and the aTTodeLfig (proof).

Roughly, the KaraaKeuT^ depends on the postulates and previously estab-

lished constructions, whereas the aTTodet^L? depends on the common notions

and previously proved theorems. Thus, there is at least the possibility of

thinking that the only ultimate assumptions used in geometric proofs (i.e.,

the ‘real’ proofs, the dirodeL^eL?) are the common notions. The supposition

that Aristotle did think of proof this way would be strengthened if it could

be rendered plausible that the geometry texts known to Aristotle included

no postulates among their starting points. For if they contained only defi-

nitions and common notions, then Aristotle would have at least empirical

grounds for thinking of the common axioms as the only substantive as-

sumptions made by the mathematician. The argument from Aristotle’s

silence with regard to the Euclidean postulates seems to me quite strong

in this case [cf. Heath 1921, i 336] ,2^ but a number of scholars25 have ar-

gued that at least Euclid’s first three postulates correspond to Aristotelian

existence assumptions. I wish to argue briefly that the correspondences are

at best very tenuous and probably non-existent.

I have argued elsewhere [Mueller 1981] that the first three postulates

are not existence assertions at all, but licenses to carry out certain con-

structions. This position is, of course, quite compatible with the fact that

they play a role analogous to the existence assumptions in modern formu-

lations of geometry, as well as with the possibility that Aristotle thought of

the postulates as existence assertions. However, Aristotle’s description of

scientific existence hypotheses corresponds neither to Euclid’s postulates

nor their modern analogues, but to the modern logical notion of a theory

Aristotle invokes features of the categorical syllogism, and it is true that any
provable categorical proposition is provable without using non-contradiction.

24 However, Heath [1949, 56] maintains that Euclid’s first three postulates ‘are

equivalent to existence assumptions and therefore correspond to Aristotle’s “hy-

potheses’”. I discuss briefly what seems to me the strongest evidence for a pre-

Euclidean formulation of the postulates in two appendices.

25 Most notably Lee 1935, 115-117. It is difficult to characterize von Fritz’ posi-

tion on the question of the correlation between Aristotelian existence assumptions
and Euclid’s construction postulates. He seems to concede all the difficulties but

nevertheless insist on the correlation.
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presupposing a domain or having an intended interpretation.26 Euclid’s

postulates allow one to move from given objects of a certain kind (two

points, a straight line, a point and a ‘distance’) to others (a straight line,

a longer straight line, a circle). None of the objects constructed using

Euclid’s postulates is mentioned by Aristotle as an element of the genus;

indeed, straight is mentioned as something whose signification we assume

but whose existence we prove, and it seems to me reasonable to suppose

that circle would fall into the same category, as triangle does. Moreover,

Aristotle thinks there are existence hypotheses in arithmetic, but there is

no trace of postulates of any kind ever being used in ancient number theory

[cf. Kullmann 1981, 248-249].

For these reasons the attempt to correlate Aristotle’s existence assump-

tions with Euclid’s constructional postulates seems to me quite implausible.

Moreover, the intepretation I have offered of these assumptions seems to

me to correlate well with what Aristotle says about them and to cohere

with Aristotle’s general conception of reasoning and scientific knowledge.

We cannot know whether or not the geometry of Aristotle’s time included

postulates in Euclid’s manner; but Aristotle, who provides us with our best

evidence for fourth-century mathematics, gives us no grounds for thinking

it did.

Prima facie it would seem highly likely that the texts in mathematics

known to Aristotle included definitions of the kind familiar to us from

Euclid. Moreover, some passages in Aristotle suggest that definitions are

the only starting points of a science. For example, at An. post. 90b24

(an aporematic passage) he calls definitions the principles of proofs, and

at 99a22-23 he says that ‘all sciences come about through definitions’.27

Aristotle’s recognition that these definitions do not or should not involve

any existential implications, and that the source of these implications must

lie elsewhere is a tribute to his powers of analysis. On the other hand, it is

somewhat curious that he downplays the use of definitions as premisses.

For in Euclid and in mathematical reasoning generally they do have this

role; and Aristotle himself treats definitions as premisses in book 2 of the

Posterior Analytics. However, the discussion of definitions in book 2 is

notoriously problematic in itself and in relation to the account of starting

26 I am not sure what von Fritz means when he says [1971, 393] that Greek

mathematicians did not find it necessary to formulate the Aristotelian existential

starting points explicitly. If he means that they were aware of these assumptions

but did not formulate them, he is indulging in pure speculation. And if he

means that their mathematics commits them to these assumptions, he is making
a philosophical rather than a historical claim.

27 Barnes [1975a, 109] lists other passages which he thinks express the same view.
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points in book 1. Here I wish only to make a few suggestions which may
help to clarify Aristotle’s conception of starting points.

Aristotle’s specific words for definition are optapog and opog, but he fre-

quently refers to definitions by using the expressions ‘what it is’ (tl ecm)

and ‘what it signifies’ (tl OTipaCveL). In book 2 Aristotle consistently uses

the former expression until chapter 6 in which he raises objections to the

view that one might be able to prove what something is. His second objec-

tion goes as follows:

How is it possible to show what something is? For it is necessary

that a person who knows what a human or anything else is also

know that humans exists; for no one knows what something is if

it does not exist. But when I say ‘unicorn’ I may know what the

expression or name signifies, but it is impossible to know what a

unicorn is. [An. post. 92b4-8]

The text and interpretation of the next objection is disputed, but I need

only a small and relatively clear part of it:

Therefore, there will be a proof that something exists, which is what

sciences now provide. The geometer assumes what triangle signifies

and shows that it exists. [An. post. 92bl4-16]

The distinction Aristotle makes in the first of these passages is normally

expressed as the difference between a real and a nominal definition. Ap-

prehension of a real definition involves an apprehension of the existence of

its subject, whereas a nominal definition only relates to words and, hence,

bears no existential import. The second passage suggests that, at least

in the case of properties, the mathematician uses nominal definitions. I

believe that this is Aristotle’s conception of all mathematical definitions,

although this claim cannot be proved by arguing that Aristotle always uses

the expresssion ‘what something signifies’ in connection with mathemat-

ical definitions. He does not, but it is striking how frequently he does. For

example in An. post, i 1-10, there are seven occurrences of expressions

related to ‘what something signifies’ in the vicinity of references to mathe-

matics [71al4-16, 76a32-36, 76b6-12, 76bl5-21]28 and only two related to

‘what something is’ [72a23; i 10]; moreover, both of these occur in conjunc-

tion with expressions related to ‘that something exists’, so that speaking of

what something is produces a more elegant coupling.

2* The phrase ‘what the thing said is’ (tl to Xey6p.ev6v eori) of An. post. 71al3
seems to me more likely to fall on the side of ‘what something signifies’ than on
that of ‘what something is’.
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The suggestion I wish to make is that in the early chapters of An. post.

i and in other discussions which clearly focus on mathematics, Aristotle

thinks of definitions as nominal, and that the distinctive doctrines con-

cerning definition in book 2 relate to real definition [cf. Gomez-Lobo 1981,

Leszl 1980]. This assumption would explain why Aristotle speaks in book

1 of assuming or proving the existence of things the signification of which

has been determined, but in book 2 he holds that knowing what something

is entails knowing that it exists. It might also help to explain why Aris-

totle does not treat definitions as premisses in his descriptions of the three

elements of deductive science, but does treat them as premisses in book

2. The idea would be that real definitions can play this role, but nominal

ones cannot. Moreover, there seems to be some plausibility in the idea that

nominal definitions are not assertions at all, e.g., that they are not really

capable of truth and falsehood, and so could not play the role of genuine

premisses in a science. In a sense the only truths assumed in mathematics

are the common axioms since mathematical objects^ do not really exist and

the definitions are purely nominal.

If my interpretation of Aristotle is correct, then the only real common
ground between Aristotle’s theory and Euclid’s practice is the common
notions. There is also a kind of commonality in the case of definitions, but

we have no way of knowing whether Euclid understood definitions in the

way Aristotle did. He may have, and he may also have believed that the

different sciences in the Elements treat different genera assumed to exist.

Neither belief is reflected in the way Euclid presents his starting points;

he never asserts the existence of a genus, and he presents his definitions

as if they were premisses of his arguments, or, at least, he uses them in

that way.

To conclude my discussion of Aristotle I want to address what I take to

be the most problematic aspect of my interpretation, my attempt to deny

that for him the special starting points function as ultimate premisses of

scientific proof. Clearly much of Aristotle’s discussion of science is built

around the idea of chains of deductive argument starting from unproved

or immediate premisses frequently called principles (dpxat). And, as I have

mentioned, his discussion of definitions in An. post, ii does treat them as

premisses in scientific arguments. The difficulties involved in harmonizing

all major points made or apparently made by Aristotle in the Posterior

Analytics are well known, but I doubt that it is worthwhile to try to defend

my account by arguing that it is no worse off than other available ones.

Instead I shall attempt to offer a way of explaining this inconsistency.

The logical picture of deductive science provides Aristotle with a strong

argument that the observed situation in which mathematicians do not try
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to prove their starting points is what must always be the case: deductive

proof presupposes premisses which are not proved. These premisses are

principles (dpxaC) for Aristotle, but obviously this fact does not entail that

for him all principles are such premisses. Nor does it even follow that

whenever Aristotle is discussing the question whether the principles can be

proved, he is thinking of the principles as these premisses. That is to say,

it is possible for Aristotle to ask whether it can be proved that number

exists or that a number is a system of monads without his thinking of

these statements as ultimate premisses. My proposal, then, is that we

separate the purely logical notion of a principle as an ultimate premiss of

proof from what might be called the analytic notion of a starting point,

analytic because it is based on an analysis of mathematical practice. The
two notions coincide in so far as one kind of starting point is an ultimate

premiss and in so far as neither starting points nor ultimate premisses

are provable, but they do not coincide completely since not all starting

points are ultimate premisses. This lack of coincidence explains, I believe,

the difficulty of mapping the analytic notion of a starting point onto the

logical conception of an ultimate premiss.29

3. Plato

Toward the end of book 6 of the Republic Socrates introduces Glaucon to

what turns out to be a distinction between two kinds of reasoning, one

exemplified in mathematics, the other in dialectic. He explains one feature

of mathematical method in the following way:

I think you are aware that those who concern themselves with geo-

metrical matters and calculations and such things hypothesize the

even and the odd and figures and three kinds of angles and other

things related to these in the case of each subject; they make these

things hypotheses, as if they were known; they do not see fit to

give any account of them either to themselves or others, as if they

were evident to everyone; they begin from these things and proceed

through the others until they reach by agreement that which they

started out to investigate.

I know that perfectly well, he said. [Plato, Resp. 510c2-d4]

29 The most interesting attempt at a mapping known to me is found in Hintikka

1972. However, the criticisms of it voiced by Ferejohn [1982-1983] and Frede

[1974] seem to me very weighty. I note, however, that in his response to the

latter, Hintikka [1974] virtually abandons the hope of understanding Aristotle’s

conception of starting points independently of his logic.



82 IAN MUELLER

In terms of Aristotle’s categorization of starting points in An. post, the

examples of hypotheses mentioned by Socrates would most plausibly be

interpreted as properties. But it is not clear what Socrates means by giving

no account of these things. The most direct interpretation would be that

the mathematician uses terms like ‘odd’, ‘even’, ‘square’, ‘hexagon’, ‘right’,

‘obtuse’, and ‘acute’ without defining them. I do not wish to rule out this

interpretation, but, as I have indicated, it seems to me quite unlikely that

these terms were used without definition in the mathematics known to

Plato.30 Hence, if Socrates’ description is as obviously correct as Glaucon’s

answer suggests, Socrates may simply mean that the mathematician does

not give justifications for his definitions. He or she says that an even

number is one which is divisible into two equal parts and expects everyone

to agree. In either case the important point is that Socrates focuses on what

Aristotle calls properties, although there is no indication that Plato would

draw any distinction between the underlying genus and these properties.

That is to say, Socrates’ list might have included ‘point’ or ‘line’ without

affecting anything Plato says.

It is also important that Plato does not show any awareness of anything

corresponding to either the axioms or the underlying genus mentioned by

Aristotle or to Euclid’s postulates, although Socrates does mention the

active character of geometry [Plato, Resp. 527a6-bl]. In the Meno Socrates

gives a relatively clear description of a mathematical hypothesis which is

propositional but not a definition; however, the hypothesis is not intended

to be a starting point in the sense I have been discussing, but a provisional

assumption to which an unanswered question can be reduced [cf. Solmsen

1929, 104nl]. Of course the hypotheses of the Republic are also provisional

in a way, but there is no indication that they are conceived propositionally

except possibly in the sense that definitions are propositions. This point,

of course, bears on the interpretation of Socrates’ claim that dialectic can

somehow do away with the hypothetical character of mathematics. The
vocabulary Socrates uses in this passage makes it possible to interpret

what he says as a matter of deducing hypothetical assertions from a single

unhypothetical one. But this interpretation is certainly not necessary, and

the fact that the mathematical hypotheses are properties or definitions and

the unhypothetical starting point is the Good, makes it rather implausible.

To be sure, we do not know what, if any, more precise picture underlies

Socrates’ account of dialectic in the Republic; but it seems to me that, from

a more or less logical perspective, it is best to imagine the task of dialectic

30 This is Solmsen’s view [1929, 96-97]. He imagines that Socrates’ description is

a Platonic transformation of a mathematics based entirely on drawn figures. The
interpretation I offer here is parallel to that of Sidgwick 1869.
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with respect to mathematics as the rendering perspicuous of definitions

through a systematic ordering of the concepts involved with some kind of

non-deductive Ableitung of central concepts from highest ones [cf. Solmsen

1929, 101-103]. We do not know how such an Ableitung would work or

even what good it would do, but we do no service to Plato and we read

him inaccurately if we suppose that he believed in the existence of some

transparent proposition from which all propositions could be deduced.

I suggest then that if we take what Plato says about mathematical hy-

potheses in the Republic at face value, then the mathematics, or at least

the geometry,31 with which Plato was familiar contained as starting points

at most, and probably at least, definitions. His view was that mathemati-

cians proved things from these definitions or from undefined terms. I have

already remarked that the conception of mathematics as resting on defi-

nitions alone is the dominant one in Euclid’s Elements and that there are

certain passages in Aristotle which suggest a similar conception. In any

case Plato saw the hypothetical structure of mathematics as a shortcom-

ing, which he thought could be overcome by justifying correct definitions

of certain terms. Perfect justification would involve incorporation in a con-

ceptual structure covering the whole of reality. This structure is sometimes

called a universal science by modern scholars, but it is probably wrong to

think of it as a universal deductive science. No doubt deduction and argu-

ment would be a part of it, but its upper level, that closer to the absolute

starting point would involve derivation and justification in a much looser

sense. We might then view the Platonic universal science as a two-tiered

system with the following structure:

the dpxT] of all

(‘dialectical Ableitung^)

the ‘hypotheses’ of the special sciences

the special sciences

Of course, one point of the notion of a universal science is precisely to deny

the special sciences their special or isolated position. But to say that a

discipline is part of a whole is not necessarily to deny that the part can

be pursued on its own.

The Timaeus gives us some picture of how Plato conceived one special

science, physics, which for him is, at least in part, subordinate to geometry.

That dialogue also gives some hints that Plato might have espoused a

development of geometry quite different from what we find in the Elements,

Plato’s notion of arithmetic or logistic, as he usually calls it, is not as clear

as it is frequently taken to be. But this is not an issue into which I can enter

here.
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but it seems to me reasonable to suppose that Plato also looked with favor

on more straightforward deductive reasoning of the Euclidean kind. If

we take this part of Platonic geometry as the relevant material for this

paper, we may say that Plato views the science of geometry as using as

starting points, or hypotheses as he calls them, only primitive terms or,

more probably, definitions, where the definitions would presumably include

both explications and abbreviations.

4. Justifying the starting points

For us a proof is primarily a means of justification. To prove P is to show

that P is true in a way which justifies belief in P. However, one can also

prove P as a way of teaching somebody that P is true. I will distinguish

these two ways of using proof by speaking of proof as justification and

proof as instruction. We, I think, tend to play down the notion of proof

as instruction, particularly if the conception of proof is formal. We are

willing to say a person has been taught and hence knows that the contin-

uum hypothesis is independent of standard axioms of set theory if all he or

she knows is classical set theory and that Paul Cohen was given a prize

for the proof of independence. And we would certainly say that a person

who knew the rudiments of Cohen’s proof but not the details of forcing

techniques knew Cohen’s result. But Aristotle holds that we do not know
anything provable unless we know its proof. Hence, if teaching is mak-

ing known, teaching provable things has to be teaching their proofs; and

teaching proofs is quite naturally identified with presenting them. Thus,

for Aristotle, proof is both a means of justification and of instruction; proof

serves to make known and to justify the theorems of a science.

However, for Aristotle, proof can do neither in the case of the starting

points of a science, since he believes those starting points are unprovable.

Sometimes he appears to defend this belief by turning it into the apparently

less controversial doctrine that a science cannot prove its own starting

points. But the more important form of the doctrine is that for certain

sciences, including geometry and arithmetic, there is no higher science from

which their starting points can be derived. In the case of the common
axioms Aristotle appears to believe that they are not only unprovable, but

that there is no way of making them known since he says [An. post. 72al6-

17] that the axioms are a presupposition of learning anything. However,

there are for him ways of making known the other kinds of starting points.

Toward the end of his discussion of definition in An. post, ii, Aristotle

concludes that definitions of the derived concepts are made known through

their use in proofs, even though they are not themselves proved:
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Some things have a cause different from themselves, and some do

not. So it is clear that some definitions are immediate and principles,

namely, the definitions of those things for which it is necessary to

hypothesize or make evident in some other way both that they exist

and what they are. The arithmetician does this, since he or she

hypothesizes what a monad is and that it exists. Of things which

have a middle and of which there is a different cause of the ouaCa it is

possible, as we have said, to make what something is clear through

proof without actually proving it. [An. post. 93b21-28]

Aristotle’s best known discussion of making known the starting points is

the last chapter of the Posterior Analytics, where he describes a process

of induction and speaks of apprehension of the principles by voug. The
description suggests that induction and vofi? relate first and foremost to

the primary concepts or subject genus of a science.32 It is sometimes sup-

posed that the topic of ii 19 is both the learning of starting points and the

justification of our claim to have knowledge of them. The basis for this

supposition is Aristotle’s comparison of voOs and €TTLcrrii[ir| as conditions

of knowledge (dXriSfi deC, An. post. 100b7-8) and contrast of them by say-

ing that v'oCig is the more accurate of the two [cf. Eth. Nic. vi 6]. Thus,

the impression arises that, although induction by itself does not justify

our apprehension of the starting points, there supervenes as a result of it a

self-justifying intuition of them, 1/099.33 I do not believe that it is possible to

dismiss this interpretation entirely, but it does not seem to me to represent

adequately all of Aristotle’s thoughts on the justification of the starting

points of the sciences [cf. Barnes 1975a ad ii 19; Burnyeat 1981, 130-133].

For there are clear indications in other treatises, notably the Topics and

the Metaphysics, that he thinks it possible to provide justifications of a

kind for them. I shall deal briefiy with the three kinds of starting points in

turn.

The only possible candidate for justification in the case of properties

would seem to be justification of their definition and, in so far as a genus

or its elements is also defined in the special sciences, the same notion of

32 Kahn [1981] stresses the fact that this chapter is most simply read as a descrip-

tion of concept formation. Traditionally it has been assumed that Aristotle must
be giving an account of how primary propositions become known: see, e.g., Ross

1953, 58. Barnes [1975a, ad ioc.] shows that one could read the text in terms

of the apprehension of propositions.

33 Cf. Ross 1953, 217: ‘[Induction is] the process whereby after experience of a
certain number of particular instances the mind grasps a universal truth which
then and afterwards is seen to be self-evident. Induction in this sense is the

activity of “intuitive reason”.’
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justification would be relevant to the genus. Evans [1977, 50] argues that

‘Plato conceived dialectic as essentially involving a search for definitions’,

but that Aristotle abandons this conception. Evans does not seem to me
to do justice to a variety of passages in the Aristotelian corpus, including

Topics vi-vii, and, in particular, to Aristotle’s assertion that there can

be a syllogism of the definition and essence [Top. 153al4-15j. This as-

sertion is, to be sure, compatible with the position that there cannot be

a deductive proof of a definition; but it equally does not mean just that

there can be a valid deductive argument with a statement of a definition as

conclusion. Aristotle seems to be saying that there is a kind of reasoning,

usually called dialectical, which can be used to establish definitions. It

goes without saying that this reasoning is not scientific because scientific

reasoning is characterized by proceeding from starting points, including

definitions. Equally, because the reasoning is dialectical, it can only be ad

hominem, not absolute.

I have not found evidence that Aristotle thinks the existence of a genus

can be justified by means of dialectical arguments. And I think it is rea-

sonably clear that he does not think this. Two passages are particularly

useful in this respect. The first occurs in Phys. ii 1 where Aristotle, after

indicating what nature is, says.

To try to show that nature exists is laughable. For it is evident that

many such things exist. But only a person unable to distinguish

what is known through itself and what is not would show evident

things through unevident ones. [Phys. 193a3-6]

In this case Aristotle is dealing with a starting point the existence of which

he thinks is so obvious that anyone who asked to be convinced of its ex-

istence could be dismissed as stupid or merely contentious. The case of

fundamental mathematical objects is not at all the same, but neither is

Aristotle’s attitude to the question of their existence at all as clear. At the

end of Meta. M 1, before turning to this question, Aristotle says.

It is necessary that if mathematical objects exist, they either exist in

sensibles, as some people say, or separate from sensibles—and some

people do say they exist in this way—or, if they exist in neither way,

either they do not exist or they exist in some other way. So that the

issue for us will not concern their existence, but the manner of their

existence. [Meta. 1076a32-37]

Here Aristotle seems to entertain the possibility that one might deny the

existence of mathematical objects and then leave it out of consideration.

Annas [1976, 136] calls the denial of existence absurd, and I suppose that
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if one attenuates the notion of existence enough it is absurd: there must

be some sense in which mathematical objects exist, e.g., as figments of

the imagination, so the only task is to figure out the sense. In Meta. M
2 Aristotle rejects the two alternatives he mentions, and in M 3 he gives his

account of the way in which mathematical objects do exist. This account,

I suggest, provides the justification of the geometer’s or arithmetician’s

postulating of a genus. It embeds those genera into an ontology, but neither

the ontology in general nor the embedding of mathematical objects in it is

a subject of scientific proof. We can, I think, be certain that Plato tried to

embed mathematical objects into a general ontology, and, if we can believe

Aristotle, the method of embedding was some kind of derivation from first

principles. Aristotle has many detailed objections to the derivation, but

his main procedural difference from Plato seems to me to be his insistence

on the difference between scientific proof (in the sense of the Posterior

Analytics) and other kinds of argument.

Aristotle’s complex and obscure treatment of the common axioms in

Meta, r has been the subject of much discussion which I cannot go into

here. Instead I content myself with some general points. Aristotle deals

only with the logical principles and not the quantitative ones; but I am
inclined to think that he would suppose the quantitative principles could be

dealt with in much the same way, although he might imagine a sequence in

which the logical laws were established first and then the quantitative ones.

The method is dialectical or, as Aristotle calls it at 1006al2, refutational

(cXeyTLKO)?; at 1062a3 it is called irpog TOvSe or ad hominem). The passage

in which Aristotle discusses the method is very important for my purposes.

Aristotle first asserts that proof has to start from something unproven to

avoid an infinite regress and that anything one might start from in trying

to prove the law of non-contradiction would be more in need of proof than

it. He continues.

But one can prove that the denial of the law of non-contradiction

is impossible by refutation, if only the person who denies it says

something. But if he or she says nothing, it is absurd to try to say

something against a person who has nothing to say in so far as he or

she has nothing to say. For such a person, in so far as he or she

has nothing to say, is like a vegetable. I say that proof by refutation

differs from proof because a person who proves might be thought to

be taking as a starting point what is to be proved, but if another

person provides the starting point, there will be refutation and not

proof. The starting point in all such cases is not the demand that

the person zissert or deny some proposition, since one might take

this to be a begging of the question, but that the person signify
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something both to himself or herself and to someone else. For this

is necessary if the person is to say anything at all. But for someone

who will not signify anything there will be no such thing as speaking

either to himself or herself or to another person. But if someone will

give this much, there will be a proof. [Meta. 1006a! 1-24]

As I understand Aristotle’s position, it is that the law of non-contradiction

is an assertion P which cannot be proved in the strict sense because the

premisses needed for such a proof would be more doubtful than P. But P
can be derived from any premiss at all, so that all we need to refute anyone

who denies P is the person’s willingness to say something and mean it.

Now from a modern point of view if P can be derived from any premiss at

all it is provable, since, e.g., it can be derived from its own denial. The fact

that the would-be prover has to provide this premiss is irrelevant, since as

the argument proceeds the premiss is eliminated, and P is proved without

assumption.34

It seems to me that Aristotle has been misled here by a certain asym-

metry in the way he treats dialectic and demonstrative science. At its

center dialectic is for Aristotle a procedure of argumentation involving two

people, a questioner (Q) and an answerer (A). Q’s questions are designed to

elicit assertions from A from which inferences are drawn until a proposition

(possibly the denial of one of A’s original assertions) is reached. Aristotle

frequently abstracts from the human situation of dialectic to the extent of

ignoring the possibility that inferences are incorrectly drawn, but not to

the extent of thinking that the results of dialectic could be severed from

their connection with the opinions of A. For Aristotle dialectic can serve to

defend one person’s opinion against another’s objections or refute a per-

son’s opinions, but its success is strictly relevant to individuals. Plato, on

the other hand, seems to have felt that prolonged and strenuous dialectical

exercise could yield a profound insight, an insight transcending what we

would call the strictly logical implications of dialectical exchange.

In this respect Aristotle’s treatment of dialectic is quite unlike his treat-

ment of scientific reasoning, which he seems to sever more or less completely

from its human practitioners. In doing so he gives the appearance of a total

and naive faith in the science of his day; but we may, if we like, suppose him
to be adopting the position that, at least with respect to the mathematical

34 Further evidence that Aristotle misses this point is provided by An. post.

77a31-35. There Aristotle argues that dialectic cannot prove any proposition

because the dialectician argues on the basis of answers to questions and so could

prove a proposition only if he could establish it from opposite assumptions. Aris-

totle assumes this cannot be done, but, of course, it can if the proposition is

logically true.
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sciences, his role is descriptive rather than prescriptive. However, it seems

fairly clear that Aristotle thinks some of the features of science he takes for

granted must be the way they are. In any case, for Aristotle science consists

first and foremost, if not entirely, in the correct derivation of truths on the

basis of the starting points. Moreover, he thinks of derivation as direct,

since he believes that reductio arguments play no essential role in science

[see An. prior. 62b38-40; An. post, i 26]. If we allow indirect proof based

on the refutation of assumptions introduced by the prover, then there is no

reason why the refutation Aristotle thinks possible could not be counted as

an assumptionless proof.35

It is frequently pointed out that the refutations Aristotle provides in

Meta, r presuppose the law of non-contradiction. I do not think Aristotle

would find this presupposition an objection to his procedure, for, as we have

seen, a person who does not already know the law of non-contradiction is

incapable of learning anything and, hence, in particular, of learning some-

thing by having it proved. Another way of putting this point is to say

that Aristotle thinks the non-vegetable already ‘knows’ the law of non-

contradiction and merely has to be shown that his pretence not to know
it is indefensible.36 From the formal point of view it seems to me best to

say that Aristotle uses a rule corresponding to the law in order to prove its

formulation as an assertion. This way of putting the matter makes clear

how little Aristotle’s refutations actually accomplish, while also making
clear that there is a sense in which he accomplishes what he sets out to

do, i.e., to justify one of the common axioms of the sciences. The real

shortcoming in Aristotle’s approach to the common principles is his failure

to recognize explicitly that these principles also include rules, and that rea-

soning cannot justify rules of reasoning. But for purposes of my historical

analysis the important point is that Aristotle thought the common prin-

ciples were assertions which could be justified dialectically, and that, from

our point of view, the justification, if it were possible, would constitute a

proof. By insisting that the justification is not a proof Aristotle separates

himself from Plato, but once again the separation would seem to be much
more a matter of distinguishing what Plato does not than of refusing to

35 In my discussion I have not made use of the interesting suggestion by Irwin

[1977-1978] that the treatment of the law of non-contradiction in book F is a

model for a broadened Aristotelian conception of science which treats a restricted

class of dialectical arguments as scientific. As far as I can see, what I have
said would not be much affected if my contrast between scientific and dialectical

argument was transformed into one between a narrower and a broader kind of

scientific argument.

36 Cf. Meta. 1005b23-26 where Aristotle suggests that anyone who denies the law

of non-contradiction does not believe what he says.
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engage in a kind of reasoning about mathematical starting points which

Plato enthusiastically espoused.

6. Summary and conclusion

I conclude by presenting the sketch I have offered in a more chronological

sequence, leaving out certain alternative possibilities I have considered, and

adding some small details.

1. The mathematics known to Plato at the time of the writing of the

Republic probably acknowledged only definitions as starting points. Plato

called these definitions or the things defined hypotheses and believed that

the definitions and hence mathematical theories could be encompassed in a

universal body of knowledge which justified the definitions and performed

some kind of ontological derivation of all entities. The evidence suggests

that Plato did not distinguish, at least clearly, between these justifica-

tions and derivations, on the one hand, and strict deduction of the kind

associated with, say, Euclid, on the other.

2. The mathematics known to Aristotle included as starting points in addi-

tion to definitions at least the first three common notions of the Elements^

perhaps called axioms or common axioms. We cannot know why or how
these principles were added, but they may be associated with Academic re-

flection on reasoning and argument. Aristotle includes fundamental logical

laws among the axioms, and tends to think of them as the only premisses

used in mathematical demonstration. The other starting points of a sci-

ence for Aristotle are unique to each science. He sometimes thinks of these

special starting points as things: the underlying genus consisting of fun-

damental objects and the properties which are proved of these objects.

But frequently he treats them as assertions, namely, the assertion of the

existence of the fundamental things and the definitions of them and of the

properties. But for Aristotle these starting points, even construed proposi-

tionally, function as presuppositions of argument rather than as premisses.

This conception of the genus and its properties as starting points of the

science is Aristotle’s philosophical interpretation and not a pure description

of the science of his day.

Like Plato, Aristotle thinks of the practice of science as the derivation

of conclusions based on starting points not to be discussed in the science.

But whereas Plato sees this practice as inadequate and to be superceded

by a universal science, Aristotle sees it as inherent in the nature of science.

Hence, he argues that no science can justify its own starting points because

the only justification it can offer is a proof based on its starting points.

Aristotle also argues that no higher science can prove the starting points
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of sciences like geometry and arithmetic, but here he ultimately has to

rely on his theory that every science must presuppose a genus. Aristotle

usually makes this point by denying a universal science. Here he is arguing

against Plato, but ultimately his disagreement comes to an insistence on the

distinction between deduction and looser forms of reasoning. For Aristotle

allows metaphysical or dialectical justifications of the starting points; and

in the cetse of the common axioms the justification he envisages would, if it

worked, amount to a proof.

3. In Euclid’s Elements we find definitions, postulates, and common no-

tions as starting points. The definitions predominate, and confirm one’s

sense that the introduction of postulates and common notions into Greek

mathematics was relatively late. Indeed, it seems to me reasonable to think

that the postulates are due to Euclid himself, and result from an analysis

of the propositions and constructions needed to reach the major results of

the end of book 1. The common notions are more problematic, but we can

be virtually certain that their explicit formulation in mathematical texts

predates Euclid. In any case, I see nothing in Euclid’s starting points which

would suggest to an unbiased reader influence from the work of Plato or

Aristotle. If I had to choose between Plato and Aristotle in this regard, cer-

tainly I would choose Aristotle. But the greater plausibility of this choice

is surely satisfactorily explained in terms of Aristotle’s concern to describe

the sciences as they are rather than in terms of his alleged influence on the

way sciences turned out to be.

Appendix 1: On Speusippus and Menaechmus in Proclus

In his commentary on Euclid’s Elements Proclus says some things about

the fourth-century figures Menaechmus and Speusippus. What he says

about the latter has been taken by some^7 as evidence that Euclid’s con-

structional postulates were already known in the fourth century. I have

nothing to add to the arguments which have already been given against

this reading of the evidence,38 but it is worthwhile to look at the relevant

passages since they provide a good example of how cautiously the reports

of Proclus on early mathematics and philosophy have to be treated. At

Friedlein 1873, 77.7 Proclus introduces the now commonplace division of

propositions (TTpoTaaet?) into problems (TrpopXi^paTa) or constructions and

^7 Notably von Fritz [1971, 392]. von Fritz 1969, 94-95 offers a brief response

to critics, which perhaps shows that Speusippus might have formulated the con-

structional postulates but does not make the possibility any more likely.

Notably by Taran [1981, 427-428].
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theorems (SecopT^fiaTa). In practice the distinction is quite clear, although

formulating it in general terms is not entirely easy. Proclus says,

Problems include the generations of figures, the divisions of them
into sections, subtractions from and additions to them, and in gen-

eral the characters that result from such procedures [i.e., the objects

constructed?], and theorems are concerned with showing the essen-

tial attributes of each [of the things constructed]. [Friedlein 1873,

77.8-11]

He then tells us that certain fourth-century thinkers, notably Plato’s nephew

and successor Speusippus, thought it right to call all these things theorems

rather than problems on the grounds that theoretical sciences deal with

eternal things in which there is no generation. Hence, it is better to say

that constructed objects exist and that ‘we look on our construction of

them not as mahing but as understanding them, taking eternal things as if

they were in a process of coming to be’ [Friedlein 1873, 78.4-6].

This passage clearly suggests that Speusippus collapsed an already exist-

ing distinction of mathematical propositions into theorems and problems

by insisting that all problems are really theorems. But there are a number
of reasons for initial skepticism about this. One is that we have no indepen-

dent evidence for the existence in the fourth century of the later distinction

between theorems and problems. In the fourth century theorems are things

contemplated, problems are things proposed for investigation. Second, the

attempt to collapse the distinction seems misguided: to say that construc-

tions are ways of apprehending eternal things is not to deny that there is

a difference between constructing a square and proving the Pythagorean

theorem, a distinction which is marked grammatically by Euclid, who for-

mulates theorems as assertions, problems using the infinitive (‘to construct

a square on a given straight line’, and so on). I suggest that if Speusippus

wanted to substitute the word ‘theorem’ for the word ‘problem’, he simply

wanted to get away from the conception of science as answering questions

raised or carrying out tasks assigned (whether of constructing or proving)

and over to the conception of it as apprehending eternal truths. He might

have referred to constructions39 to underline the inappropriateness of geo-

metrical language (as Plato does in the Republic), but his doing so need

not imply that the process of apprehending truths through proofs is any

less misleading about the character of the world of theoretical science.

39 Proclus gives three examples of constructions (corresponding to Elem. i props.

1, 2, and 46) in his presentation of Speusippus’ view. I see no more reason

to suppose that these particular examples derive from Speusippus than any of

Proclus’ other examples which I discuss in this appendix.
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This interpretation is confirmed by what Proclus says about Speusippus’

alleged adversary Menaechmus. Mena^chmus, he tells us, wanted to call

all inquiries problems, but he distinguished two kinds of problems which

might be proposed: one to provide what is sought, the other to see whether

a thing has a certain property. To suppose that Menaechmus abolished

the distinction made by Proclus necessitates saying that he restored it as a

dichotomy in the class of problems. The word ‘inquiries’, which Proclus

has no motivation to supply, is a good indication that Menaechmus was

speaking not about propositions, but about kinds of things into which one

might inquire, i.e., problems in the standard dialectical sense.41 Menaech-

mus’ division of problems may, indeed, be the origin of Proclus’ (or even

Euclid’s) division of propositions into theorems and problems; but it is

important to see that Menaechmus’ relates to kinds of inquiries, not to

mathematical texts like Euclid’s Elements. Proclus’ report on Menaech-

mus confirms what one would already expect, namely, that fourth-century

geometers both proved theorems and carried out constructions; but it does

not provide any evidence that the geometry textbooks of the fourth century

marked the distinction in anything like the way Euclid does.

We are entitled to infer from this passage only that Speusippus called all

geometrical knowledge theorems, i.e., matters of contemplation, for platon-

ist reasons, and that Menaechmus made a distinction between two kinds of

things into which a mathematician might inquire, i.e., between two kinds

of problems. Sometime later Menaechmus’ distinction was turned into one

between two kinds of results (propositions) a mathematician might achieve,

a construction (problem) and a theorem.

At Friedlein 1873, 178.1 Proclus turns to Euclid’s postulates and axioms,

which he considers to be kinds of principles (dpxctC). He suggests that the

distinction between postulates and axioms parallels that between problems

and theorems; but that principles must always be superior to the things

after them in simplicity, unprovability, and self-evidence. He then cites

Speusippus:

Friedlein 1873, 78.10-13: ore |iev TropCaaa0aL to ^TlTOufievov, ore Se TTepLCopLOfievov

XoPovrag I6elv f] tl[s1 eariv, f] ttolov tl f] tl TTeTToi/0ev, f] Tim? axeoeL?. I

see no reason to accept Becker’s suggestion [1959, 213] that TTepuDpLap-evov should

be -iTe-rTopLap.evoi/ and, therefore, no reason to accept his claim that the distinction

made by Menaechmus was between solving a problem constructively and then
investigating what has been constructed (for which reading one might expect to

'TT€TTOpLCrp.€VOv).

'*1 Bowen [1983, 27n36], whose account of the Proclus passages discussed in this

appendix differs considerably from mine, suggests that 'rrpopXT^p.a has another sense

in the fourth century, namely geometrical demonstration or scientific deduction.

The passages he lists do not seem to me to support the claim.
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In general, says Speusippus, in the hunt for knowledge in which our

mind is engaged, we put forward some things and prepare them for

use in later inquiry without having made any elaborate excursion

and our mind has a clearer contact with them than sight has with

visible objects; but others it is unable to grasp immediately and

therefore advances on them step by step and endeavors to capture

them by their consequences. [Friedlein 1873, 179.14-22: trans. in

Morrow 1970, ad loc.]

Proclus goes on to give examples to illustrate the difference between prin-

ciple and subsequent result, and returns to the comparisons of postulates

with problems and of axioms with theorems. He then says.

However, some people think it right to call all principles postulates,

just as they call all things sought problems. Thus, Archimedes at the

beginning of book 1 of On Equilibria says, ‘We postulate that equal

weights at equal distances are equally balanced.’ But one might

rather call this an axiom. Others call them all axioms, just as they

call all things which need proof theorems. It would seem that these

people have transferred words from special uses to common ones in

accordance with the same analogy. [Friedlein 1873, 181.16-24]

It seems clear that Proclus is talking about Menaechmus and Speusippus;

but it is striking that the example for calling all things postulates is drawn

not from the fourth century but from Archimedes, who died at the end

of the third and certainly did not call all principles postulates, but rather

more or less completely disregarded the terminological distinctions Proclus

thinks are important. We cannot exclude the possibility that Menaechmus
used the word ‘postulate’ in something like the way suggested by Proclus,

but the passage on problems suggests that at most he called anything

taken for granted (or conceded) in a mathematical inquiry a ‘postulate’.

We have no reason to suppose that he distinguished kinds of postulates as

he distinguished kinds of problems, nor that in calling them postulates he

was reacting against a distinction between constructional and propositional

‘principles’.

Proclus gives two pairs of examples to illustrate Speusippus’ distinction

between principles and things subsequent to them: Euclid’s first postulate

and his first proposition (the construction of an equilateral triangle); and

his third postulate and the generation of a spiral by the motion of a point

along the revolving radius of a circle. Tar^ [1981, 427-428] has argued that

42 Possibly relevant to Menaechmus’ discussion is the distinction Aristotle makes
between a postulate and a hypothesis. See nl4, above.
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the examples are not Speusippus’. For my purposes it is sufficient to say

that we cannot assume they are Speusippus’ and, hence, cannot infer from

this passage that Euclid’s first and third postulates were already formulated

as ‘principles’ in the mid-fourth century. We may, I suppose, accept that

Speusippus called all principles axioms, but we have no very clear notion of

why he would choose that word over other possibilities.43 The last sentence

of the last quotation suggests that Proclus had no information about the

reason, but only assumes that the choice of ‘axiom’ as a name for principles

is related to the choice of ‘theorem’ as a name for the things after the

principles.

My conclusion is that the passages from Proclus which I have discussed

tell us very little about fourth-century mathematics and philosophy of

mathematics that we might not have guessed already. The most inter-

esting information we get is perhaps that Menaechmus made a distinction

between assertions to be proved and constructions to be carried out; for

we have no explicit recognition of that distinction in Plato or Aristotle, al-

though I think it must have been applicable to the mathematics they knew.

We get the philological information about Speusippus’ use of the word ‘the-

orem’ and Menaechmus’ of ‘problem’ and perhaps about the former’s use

of ‘axiom’ and the latter’s of ‘postulate’. But none of this information

seems to me to relate in any specific way to the content of fourth-century

mathematics.

Appendix 2: Oenopides and Zenodotus

Proclus mentions [Friedlein 1873, 65.21-66.4] Oenopides of Chios in the

so-called Eudemian summary of the history of geometry. It is natural to

infer from this mention that Oenopides was active ca. 450 BC. Proclus also

tells us [Friedlein 1873, 283.7-8] that Oenopides was the first to investi-

gate the problem of dropping a perpendicular from a point to a straight

line, a problem he thought useful for astronomy, and that [Friedlein 1873,

333.5-6] Oenopides was the first to discover [the solution to] the problem

of copying an angle. In the second of these passages Proclus mentions

Eudemus as source of information, so it is likely that Eudemus is Proclus’

ultimate source for the first as well; there is also no reason to doubt that

we are still dealing with the fifth-century Oenopides of Chios. Since the

time of Heath [cf. 1921, i 175] it has been customary to say that Oenopides’

innovation was to carry out the constructions in question with a ruler and

^3 It is interesting to recall Aristotle’s conceptions of axioms as the common
premisses of all sciences.
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compass, since the dropping of a perpendicular could easily be solved using

a draftsman’s right angle. To this conjecture Szabo [1978, 275] has added

another: Oenopides made conscious use of Euclid’s first three postulates

and is perhaps their originator. There is, however, a big difference be-

tween reducing certain constructions to others and laying down postulates

as starting points. As for Heath’s conjecture itself, it is very probable

that Eudemus attributed to older geometers the solution of problems and

proofs of theorems which he thought were presupposed by other knowledge

ascribed to them [see, e.g., Dicks 1959, 302-303; Gigon 1945, 55; Wehrli

1969, 116]. Discussion of this point has largely focussed on Eudemus’ as-

cription of certain results to Thales, but there is every reason to think he

did the same sort of thing in the case of Oenopides.

Proclus mentions an Oenopides one other time in connection with a more
philosophical matter:

Those around Zenodotus, who belonged to the succession of Oenopi-

des and was a pupil of Andron, distinguished theorems from prob-

lems in the following way: a theorem inquires what property is pred-

icated of its subject matter, a problem what is the case given that

such and such is the case. [Friedlein 1873, 80.15-20]

This passage tells us all we know about Zenodotus, Andron, and the suc-

cession of Oenopides, so there is no real ground for von Fritz’ assertion

[1937, col. 2267] that Zenodotus was an ^Enkelschiiler^ of Oenopides of

Chios.44 The terms in which the distinction between theorem and prob-

lem is made are through and through Peripatetic,'^^ suggesting a Eoruit

44 And even if Zenodotus were the pupil of a pupil of Oenopides, there would
be no more basis for inferring Oenopides’ concerns from Zenodotus’ than for

inferring Socrates’ from Aristotle’s.

45 As formulated by Proclus the distinction in question is almost certainly that

between a categorical and a hypothetical assertion. There is no doubt that the

description of a theorem is a description of a Peripatetic categorical assertion,

the predication of a property of a subject. For evidence that a problem is being

characterized as a hypothetical, consider Galen’s description:

Another kind of proposition is that in which we do not maintain something
about the way things are but about what is the case given that such and
such is or what is the case given that such and such is not the case; we
call such propositions hypothetical. [Galen, Inst. log. Hi 1]

Cf. Aristotle’s use of Ttvog ovto? to TTpoKeCp-evov ecm at Top. Illbl7-18 with

Alexander’s comment ad loc.

If Proclus gives an accurate representation of Zenodotus’ meaning, then Zen-

odotus presumably compared the givens of a problem with the antecedent of a

conditional, the object constructed with the consequent. Thus, he might have
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no earlier than the late fourth century for Zenodotus. Immediately af-

ter Zenodotus Proclus mentions the way Posidonius made the distinction

(problems ask whether or not something exists, theorems what or what

kind of thing something is) as if it were somehow derived from Zenodotus’

(60€v). This indication provides some support for a terminus ad quern

of the 1st century BC, but in the absence of information about Andron

or what is meant by the succession of Oenopides, the question of dating

must be left open. Considerations of simplicity suggest that we identify

this Oenopides with the fifth-century one mentioned by Proclus elsewhere,

but this identification does not help to clarify the character of fifth- or

fourth-century mathematics.
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Ratio and Proportion in

Early Greek Mathematics*

6

D.H. FOWLER

Let Aristotle introduce the subject. His Topics is a manual of syllogis-

tic dialectic, a kind of formal debate between two people called here the

‘questioner’ and the ‘answerer’. At Top. 158a31-159a2 Aristotle writes:

There are certain hypotheses upon which it is at once difficult to

bring, and easy to stand up to, an argument. Such (e.g.) are those

things which stand first and those which stand last in the order of

nature. For the former require definition, while the latter have to be

arrived at though many steps if one wishes to secure a continuous

proof from first principles, or else all discussion about them wears

the air of mere sophistry: for to prove anything is impossible unless

one begins with the appropriate principles, and connects inference

with inference till the last are reached. Now to define first principles

is just what answerers do not care to do, nor do they pay any atten-

tion if the questioner makes a definition: and yet until it is clear

what it is that is proposed, it is not easy to discuss it. This sort

of thing happens particularly in the case of the first principles: for

while the other propositions are shown through these, these cannot

be shown through anything else: we are obliged to understcmd ev-

ery item of that sort by a definition. The inferences, too, that lie

too close to the first principle are hard to treat in argument ....

The hardest, however, of all definitions to treat in argument are

those that employ terms about which, the first place, it is uncertain

whether they are used in one sense or several, and, further, whether

^ I use the phrase ‘early Greek mathematics’ to denote the period up to and
including the time of Archimedes.

98
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they are used literally or metaphorically by the definer. For be-

cause of their obscurity, it is impossible to argue upon such terms;

and because of the impossibility of saying whether this obscurity

is due to their being used metaphorically, it is impossible to refute

them It often happens that a difficulty is found in discussing or

arguing a given position because the definition has not been cor-

rectly rendered In mathematics, too, some things would seem to

be not easily proved for want of a definition, e.g. that the straight

line, parallel to the side, which cuts a plane figure divides similarly

(
6|iOLO)9)

both the line and the area. But, once the definition is

stated, the said property is immediately manifest: for the areas and

the lines have the same dvravatpeaLS and this is the definition of the

same ratio But if the definitions of the principles are not laid

down, it is difficult, and may be quite impossible, to apply them.

There is a close resemblance between dialectical and geometrical

processes.2

In brief: Define your terms! The mathematical proposition that Aristotle

is describing, in his typically vague fashion, must be the following:

Figure 1

If a rectangle or parallelogram is divided by a line parallel to a pair

of sides, as in Figure 1
,
then the ratio of the bases, a:b is equal to

the ratio of the area^, A:B.

1 shall refer to this proposition hereafter as ‘The Topics proposition’: a

similar result is proved by Euclid at Elem. vi prop. 1
,
where it forms the

link between the study of the equaP figures of books 1-4 and the similar

figures of book 6 and later. It is no exaggeration to say that the Elements

2 Most of this translation is taken from Ross 1908-1952 i; the mathematical
example is adapted from Heath 1949, 80.

^ That is, equal in magnitude, according to the Euclidean conception of equality

and inequality, set out in the Common Notions of book 1. This is sometimes
described by mathematicians as ‘cut and paste’ equality.
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hinges on this proposition,4 and so it is worth considering its proof in detail.

This will be the subject of Section 1.

We start from Aristotle’s ‘first principles in need of precise definition’:

What are ‘ratio’ (Xoyog) and/or ‘proportion’ (dvdXoyoi/)?

One difficulty with discussions about these words is that it is often un-

certain, as Aristotle says, whether they are being used ‘in one sense or

in several . . . and literally or metaphorically ’.5 They are often treated by

ancient and modern writers as synonymous; the underlying concepts are

expressed using a number of other apparently equivalent descriptions, and

the words themselves have a very wide variety of non-mathematical conno-

tations. Rather than introduce yet further words to identify the distinction

I want to make and maintain, I shall hereafter use them with the following

precisely differentiated meanings.

Ratio. Euclid states at Elem. v def. 3, that

Aoyog €OtI dvo peyeScav ofioyevaiv f| Kara TTqXLKOTqTa Trotd oxeats.

A ratio is a sort of relation in respect of size between two magnitudes

of the same kind.

So, given these two homogeneous objects,^ a and then the ratio of a to 6

(abbreviated a:b) will be no more and no less than a description of just

how this relation is conceived and expressed.

4 The role of the Topics proposition in the formal theories of proportion and the

classification of incommensurables in the Elements is analysed in detail in Knorr

1975, ch. 8. However, his accompanying thesis depends heavily on the surprising

difficulty of his anthyphairectic proof of Elem. v prop. 9 (that if a:c :: b:c; then a

= b): see Knorr 1975, 338-340. But surely a practicing mathematician, faced

with the difficulty that Knorr has uncovered, would proceed indirectly via the

alternando property that he had just proved. For then a:c :: b:c is equivalent

to a:b :: c:c, whence the result follows immediately.

5 See, for example, the useful description in Mueller 1981, 138 (quoted in this very

context in Berggren 1984, 400) of ‘[Euclid’s] conception of definition as charac-

terisations of independently understood notions’. Here we must draw out what
these ‘independently understood notions’ might be and examine them against

the historical background, such as we know it.

shall use this word ‘object’ as synonymous with ‘magnitude’ or peyeSos'. Euclid

does not give a definition of the ratio of two peyeSri, though he does introduce the

idea, as will be noted below.
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Proportion. We then read in Elem. v defs. 5 and 6 that

’Ev TW airrcj Xoycj [= dvdXoyov] peyeSri XeyeraL ....

[Four] magnitudes are said to be in the same ratio (that is, pro-

portional) if . . . .

This means that proportionality is a condition that may or may not hold

between four objects. Given a, 6, c and d, we then answer with either

‘They satisfy the condition and so are proportional’ (abbreviated a:b ::

c:d); or ‘They do not satisfy the condition so they are not proportional’; or

‘They fail to satisfy some homogeneity condition so the question of pro-

portionality does not apply.’ For example, it would be meaningless to ask,

in the context of the Topics., whether a:b :: A:5.^

The Topics proposition has now two different formulations which I shall

distinguish. Either a, 6, A, and B are proportional, i.e., a:b :: or

the ratio of a to 6 is equal to the ratio of A to B, i.e., a:b = A:B (where we
must now also describe the conditions under which two ratios are equal).

Having taken care of the definitions of the first principles, I shall go

on to the ‘inferences that lie too close to the first principle and which

are therefore hard to treat in argument’, and discuss how the proof of

the Topics proposition depends on the underlying definition of ratio or

proportion. Only when we are aware of the range of possible ways of giving

sense to the concepts involved should we consider what might constitute a

deductive proof of this result in a given historical context. These different

proofs will then illustrate two other contrasts which I wish to emphasise

and discuss: that of arithmetised versus non-arithmetised mathematics,

and that of early versus later Greek mathematics.

7 There are several possible homogeneity conditions: we may have—(i) a, 6, c,

and d all homogeneous magnitudes; (ii) a and b homogeneous magnitudes, c and
d homogeneous magnitudes, but a and c not homogeneous; (iii) a, 6, c, and d all

dpL0[ioC; (iv) a and 6 homogeneous magnitudes, c and d dpL0|iOL; or (v) a and 6

dpL0p.OL, c and d homogeneous magnitudes. Euclid is ambivalent about (i) and
(ii) in Elem. v [see Mueller 1970]; (iii) is the topic of Elem. vii; and the absence
of any link between the theories of Elem. v and vii—hence, the absence of any
discussion of (iv) and (v)—leads to a notorious lacuna in the proof of Elem. x
prop. 5.
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1. Seven proofs of the Topics proposition

1.1 The naive ‘prooT

Find a common measure d of a and b. Then the rectangle D [see Figure 2]

will be a common measure of A and B, and as many times (say n) that

d goes into a, D will go into A; and .... Therefore, ....

D
d

A B

a b

Figure 2

Comments. What does this tell us about ratio or proportion? What is

the underlying definition? Neither of these ideas is mentioned explicitly

and a generous interpretation of the ‘proof’ may suggest no more than

an underlying definition that, for four dpL0p.OL, m:n :: if m = m'

and n = n'\ and a similar definition for four magnitudes a:h :: A:B where

a = nd^ A = nD., b = md, and B = m£), for some magnitudes d and D.

What explicit evidence do we have for this proof, or some variation of

it, as an argument of Greek mathematics of the fifth or fourth centuries

BC? I know of none.

Notwithstanding these reservation, this kind of proof, often only implied,

seems to dominate discussions of pre-Eudoxan ratio- and proportion-theory.

1.2 A geometrical definition and proof

Let a, 6, c, . .

.

denote lines, and A^B,C^ . .

.

plane regions of some suit-

ably restricted kind; here, for example, rectangular regions will suffice.

We suppose that these geometrical objects can be manipulated in the

style of Elements i-iv. Define an operation, written here and later as

a multiplication—0—(but any other word or abbreviation would serve

equally well) as follows:
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The product a (g) 6 of two lines is the rectangle with adjacent sides a

and 6, and the product a 0 B of a line and a plane region is the

rectangular prism with base B and edge a.

And define

The objects x, y, 2
,
and w are proportional if x0w and y^z make

sense and are equal [see n3].

The proof of the Topics proposition then follows immediately [see Fig-

ure 3] since a:b :: A:B means a ^ B = b 0 A,which is true since both are

rectangular parallelopeds with sides a, 6, and c.

Comments. This proof is constructed from impeccably Euclidean ingredi-

ents [see Elem. ii def. 1 and vi prop. 16, where Euclid refers to ‘the rectangle

contained (Treptexopevov) by two lines’; and vii prop. 19, which gives a

similar manipulation for four dptSpot]
,
and it is generally believed that this

material dates from well before the proportion-theory of Elements v. The
other basic results of Euclidean proportion-theory can be handled by an

extension of this procedure. In other words, there is no difficulty in con-

structing a theory of proportionality from the basic techniques available,

say, to Hippocrates and Theodorus. But I am not advancing this here as a

proposal for a reconstruction of an early definition of proportionality; of

this we have little or no evidence one way or the other, and all that we can

say is that this kind of manipulation had become, by the time of Euclid’s

Elements, a standard part of formal proportion-theory in geometry and

dpL0pT]TLKq. It is presented here in this form only to refute common asser-

tions that fifth-century mathematicians did not have available the means
to develop a theory of proportionality that would handle incommensurable

magnitudes.
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This is a proportion-theoretic proof: the ratio x:y is not defined.

1.3 An axithmetised interpretation

For a long time, and explicitly since Descartes, geometry has been ‘arith-

metised’. In this type of interpretation

The letters a, 6, . .
.

;

A, B . .

.

denote, ambiguously, either geomet-

rical objects that are manipulated geometrically, or ‘numbers’ (or

‘numerical quantites’) that are manipulated arithmetically.

The area of a rectangle, a number, is the product of the lengths of

its base and height, e.g., A = a x c in Figure 1.

The ratio of two magnitudes is the quotient of the corresponding

numbers, x:y =

These definitions, and the permitted manipulations of arithmetic, then

yield the following proof:

axe
b X c

Comments. This has nothing to do with early Greek mathematics. The
first time that anything like this is found in Greek geometry is in the

metrical geometry of Heron, in the first century AD. I shall discuss this

issue further in Section 2.

What is a number? Answers to this question are, in fact, easy to sup-

ply and any of the different definitions of ratio to be given below may be

considered as ‘numbers’ in some sense. But a really difficult question is.

How can we describe, correctly and completely, arithmetic with these num-
bers? I believe that this question posed a profound and perplexing problem

to arithmetised mathematics, though the deceptive ease with which post-

Renaissance mathematicians were apparently able to manipulate decimal

numbers, newly introduced in the West at the end of the sixteenth century,

enabled them to set the problem to one side for two centuries. But no sat-

isfactory answer to the question was known before Wednesday, November

24th, 1858, the day when Dedekind says he conceived his construction of

the real numbers. In his Stetigkeit und die irrationale Zahlen [1872, see

Dedekind 1901], Dedekind defines addition in detail and then goes on to

say:
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Just as addition is defined, so can the other operations of the so-

called elementary arithmetic be defined, viz., the formation of dif-

ferences, products, quotients, powers, roots, logarithms, and in this

way we arrive at real proofs of theorems as, e.g., \/2 • \/3 =
which to the best of my knowledge, have never been established

before.8

This is a ratio-theoretic proof: ratio is first defined and then proportion

is defined to be equality of ratio. This last step is often assumed to be a

mere formality, but in fact it can be very subtle. For decimal numbers, for

example, the statement ‘0.999 ... = 1’ evokes the mathematical ingredients

of Zeno’s paradox of Achilles.

Interlude: the historical context

In Elem. v we find a theory of proportion, based on v def. 5, which is

believed either to be due to Eudoxus or to be a development of Eudoxus’

ideas, and which is dated, in conception at least, to around 350 BC, just

before Plato’s death.

The Elements is dominated by the sheer bulk of book 10 and the sub-

tlety of its application in book 13: book 10 sets up a classification of certain

kinds of mutually incommensurable lines, and book 13 applies this classifi-

cation to the lines that arise in the construction of regular polygons and
polyhedra. Although it contains few explicit references to the idea of ratio,

this material is clearly connected with the idea of the ratio (not propor-

tion) of these lines. See, for example, the terminology of the definitions of

Elem. X, where new lines are described by their relation to an assigned line

and distinguished according as this relation is either expressible (priTog) or

without ratio (dXoyog). See also the description in the culminating Elem.

xiii prop. 18:

The said sides, therefore, of the three figures, I mean the pyramid,

the octahedron, and the cube, are to one another in expressible

ratios (XoyoL pqroC). But the remaining two, I mean the side of the

icosahedron and the side of the dodecahedron, are not in expressible

ratios either to one another or to the aforesaid sides; for they are

dXoyoL, the one being minor, the other apotome.

^Translation from Dedekind 1901, 22. This book also contains the translation

of Was sind under was sollen die Zahlen [1888], in which Dedekind returns to,

repeats, and emphasises this view. He also has some very apposite remarks about
the relation between his definition of the real numbers and Elem. v def. 5. See

Section 1.7 for further comments on arithmetic.
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This programme of Elem. x and xiii is attributed, on reasonably good

authority, to Theaetetus. Plato’s eponymous dialogue is an encomium to

the dying Theaetetus who has just been carried from what is believed to be

the siege of Corinth in 369 BC.

Hence, we have evidence of massive activity in the study of ratios of

incommensurable lines, in which the expressible ratios such as the diagonal

to side of a square play a prominent role, well before the development of

the proportion-theory of Elem. v.

It does not take much space to describe our positive and negative ev-

idence concerning the early Greek mathematical idea of ratio (not propor-

tion). Note first that Elem. v and vii describe theories of proportion for

magnitudes and dpL0poC respectively, though some definitions in book 5

—

namely, definitions 3, 4, 9, 12, 13, 14, 16, and 17—refer to ratio. If we
exclude material which, though it is expressed in terms of ratio is then

immediately reformulated and used in terms of proportion, we have in the

Elem. V def. 3 (quoted above), x and xiii (described above), vi def. 5, vi

prop. 23, and vii prop. 5 (which refer to an operation of compounding ratios

which then plays no further part in the Elements) and some definitions

and propositions on the extreme and mean ratio, reciprocal ratios, and du-

plicate and triplicate ratios mainly to be found in Elem. vi. To this material

in the Elements, we can add Data def. 2 (‘A ratio is said to be given when
we can make another equal to it’) and the passage in Aristotle, Top. viii

3 with which we started and which may refer either to ratio or proportion.

There are allusions to ratio in technical passages in Plato and Aristotle.

That exhausts the positive surviving evidence. Our negative evidence is

that we have no explicit sign whatsoever that early Greek mathematicians

worked with any arithmetised conception of ratio: see Section 2 for further

elaboration of this remark.

Let us now return to the Topics proposition.

1.4 Aristotle’s proof

Aristotle summarises his proof thus:

TT]v yap avTT]v dvrayaCpeaLv 6X€l to. xal al ypappaL* ccjtl 8’

optapog ToO auToO Xoyov ovrog.

For the areas and the lines have the same antanairesis and this is

the definition of the same ratio.

9 This is very clearly and thoroughly analysed in Mueller 1981, 88, 92-93, 135-136,

154, 162, 221, 225-226, and 229.
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^Antanairesis^ is an ordinary Greek word used to describe the subtraction of

one thing from another; for example, we find it used interchangeably with

dvOi;<t>aCp€aLg in commercial accounts on papyrus. 10 The corresponding verb,

with an adverb indicating a repetitive action, is used by Euclid in Elem. vii

props. 1 and 2, x props. 2 and 3. Consider, for example, Elem. x prop. 2:

If, when the less of two unequal magnitudes is continually subtracted

in turn (dv0iK|>aLp€LV det) form the greater, that which is left never

measures the one before it, the magnitudes will be incommensurable.

We can perform this operation of anthyphairesis on any pair of homoge-

neous objects. For example, given the dptSpoC (51,15), we subtract the

smaller from the larger to get (36,15), then (21,15), then (6,15). The origi-

nally larger term is now smaller, so we now subtract it: (6,9), then (6,3). At

this stage we see that the less or term 3 measures the term before it 6, and

so [see Elem. vii prop. 2] the greatest common measure of 51 and 15 is 3.

But also note, with Aristotle, that the relation in respect of size between 51

and 15, the ‘anthyphairetic ratio’, is characterised by this pattern: three

subtractions, two subtractions, two subtractions, and no more. If per-

formed on two dpiGp-oC, the subtraction process will always terminate [see

Elem. vii props. 1 and 2]; for two magnitudes, it may or may not terminate

[see Elem. x props. 2 and 3].

Now consider the Topics proposition. We can characterise the relation

of size, both between the two lines a and b and between the two areas

A and by this subtraction process. But each subtraction of the line

can be made to correspond to each subtraction of the rectangle standing

on that line, and vice-versa [see Figure 4]. Hence, the pattern of the two

subtraction processes will be the same. Moreover, since Aristotle says that

this is the definition of the same ratio, the proposition is proved.

10 For examples taken from the same set of documents, the Zenon archive, see

P. bond, vii 1994.164, 176, 223 and 321 and vii 1995.333 (both dated 251 BC;

here dv0u(j>aLpeLv); and P. Cair. Zen. iii 59355.95 and 150 (243 BC; aviavaipeiv).

Another equivalent, dvra(t)aLpeLv, is found in Nicomachus, Intro, arith. i 13.11.

11 One standard modern notation for this, used in my book and elsewhere, is to

write 3:2 = [3, 2, 2]. But the mathematical explorations can be carried through
in natural language, without any symbolism, or using notations like this only as

a convenient shorthand.
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n

Figure 4

Note that this proof can be interpreted either in terms of ratio or of pro-

portion: it is not entirely clear to which Aristotle refers.

1.5 A proof using astronomical ratios

We consider an idealised model of astronomy, in which all motions are

uniform and go on forever without change or the least deviation. So, for

example, we tally each sunset, the beginning of each day, starting the record

at some arbitrary point:

Then on the same tally, we can mark off some other uniform astronomi-

cal phenomenon like the conjunction of Sun and Moon which marks the

succession of months. Suppose the period of this second motion is between

one and two days long, else our tally will have to go on for a very long time

before we see anything happening. We then will get a pattern like this:

1 r

Mj M. M, M4 M5 A/g M7 Mg Mg Mjo Mj,
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Note that this pattern only describes the order of successive events, and

that we have no precise idea of the distance between them; indeed, for tem-

poral events, the measurements of these time-intervals would pose serious

practical and theoretical problems. So we could just as well represent this

pattern as

D, M, D, M, D, D, M, D, M, D, D, M, D, M, D, D, MD,...

or as

... lor 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1 or 2, . .

.

or in any other such equivalent way. These patterns may or may not contain

coincidences, and may or may not contain repeating blocks. And, in this

theoretical astronomy, we also suppose that there is no problem in detecting

which of two events occurs first, or whether there is a coincidence.

Our fundamental insight is that these patterns also characterise the rela-

tion of size between the period of the two events: they define what may be

called the astronomical ratio. Moreover, we can apply the same procedure

to two geometrical objects. Take, for example, two lines a and b. We can

now start the tally with a coincidence

b b b b b b b b b b b b b b b
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

'a 'a 1. 'a 1 . 'a 'a ‘a 1

and so get a pattern

a and 6, 6, a, 6, a, 6, 6, a, 6,

.

Or we can do the same process with two rectangles [see Figure

b b b b b b b b b b b b b b b

c

a a a a a a a ci a a

Figure 5

In the configuration of the Topics proposition, the tallies of the bases, a

and 6, and the rectangles, A and R, will clearly give rise to the same
pattern. So, again, with this underlying definition of astronomical ratios,

the proposition is proved.
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Again note that this is a ratio-theoretic formulation of the Topics propo-

sition; indeed it is the definition of ratio that underlies the theory of pro-

portion developed in Elements v. Also, in the geometrical context, when
we can arrange for a coincidence with which to begin our tallying, there

is no difficulty in identifying when two ratios are equal, and so converting

this ratio-theoretic formulation and the proof into proportion-theory; we
then get Euclid’s proof of Elem. vi prop. 1. But we have no such liberty

in the astronomical context, and different phase shifts between the two

events will give rise to different patterns. How to recognise when ratios are

equal in respect of size, and only differ in respect of phase, is then very

far from obvious; 12 so one sees again that it is not always easy to pass from

ratio-theory to the corresponding proportion-theory.

1.6 Variations on a theme

If we contemplate the last two proofs, we see that the pattern of many
different addition or subtraction processes, performed on two homogeneous

objects a and 6, may be used to characterise the relation of size between

a and b. For example, instead of using a process of alternating subtraction,

we can always subtract from the first object, or from the second; instead of

always undershooting, so subtracting with remainder, we can overshoot,

and continue with the excess; at each step we can perform some specific

predetermined scaling operation; and so on. The only general properties we
use of the underlying objects is that we can compare any two to determine

if they are equal or which is the greater, and that we can add any two or

subtract the less from the greater.

Any such process, consistently applied, will generate a pattern that will

then characterise the relation of size between the two original objects; and

hence from each idea of ratio there will be a corresponding proof of the

Topics proposition. Here are two examples of what I shall call decimal

ratios and accountant’s ratios.

Decimal ratios. Suppose that a > b. Compare a with 6, 106, 10^6, ... to

locate that index k for which 10*' < a < 10*'“^6. Then define

a = Uk xl0*6 -|- ttk-i where 0 < a^-i < 10*^6

ak-i = njt-i xl0*'“*6 -}- ak-2 where 0 < a)t-2 < 10*'“^6

and so on.

12 Such a procedure, found by E. C. Zeeman, is described in Zeeman 1986 and
Series 1985.
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The process will continue indefinitely; each nj lies between 0 and 9, and

if any remainder aj is zero, then all subsequent terms . . . will

be zero. Also the procedure has been arranged so that this sequence is

uniquely defined and cannot finish with an unending sequence of nines.

The pattern described by this sequence n*, njt-i, . .
. ,

no, n_i, n_2 . .

.

will then characterise the relationship of size between the pair a and 6. For

the first time in these illustrations, the second term b plays a privileged role,

here as a ‘unit’ in a scale of measurement. Conventionally we write this

particular ratio as a decimal number a:b = Ukrik-i . . . niUo •n_in_2
(If a < 6, we compare a with 6, Yio, 0*0... OukUk-i )

Here again we have a proof of the Topics proposition, since the pattern of

the subtraction process generated by a and b will again be the same as the

pattern generated by A and B.

The importance of this algorithm for decimal subtraction is that there

is an almost universal delusion, even among mathematicians, that we can

easily perform arithmetical operations on these decimal ratios—that we
can add, subtract, multiply, or divide decimal ‘numbers’—and that it is

obvious that this arithmetic satisfies the usual manipulations of arithmetic

like

X -^y = {x X z) X z) = {x z) ^{y z)

for any three ‘numbers’ x, y and z. Also ‘:’ and ‘-J-’ are now treated

cis being virtually synonymous. This leads to the following version of the

earlier arithmetised proof of the Topics proposition in Section 1.3.

Let a, 6, c. A, and B be as in Figure 1, and fix some standard

line 1, the unit of length. This unit determines a standard square

1^, the unit of area. Denote the decimal ratios (or ‘numbers’)

a:l, 6:1, c:l, A:l^, and 5:1^, a', 6', c'. A', and jB', respectively.

Then, by the supposed basic properties of arithmetic:

a:b = (a:l):(6:l) = a':6' and A:B = {A:l^):{B:l'^) = A':B\

Use multiplication to define a numerical area, where

area = base x height.

This turns out to be equivalent to the earlier numerical definition

of area:

A' = a' X c', B' = b' X c'

.

Hence,

a:b = a!:y = (a' x c'):(6' x c') = A':B' = A:B
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This ‘proof’ is ridiculous, though it would take a lengthy disgression to

analyse fully its mathematical and historical solecisms. As pointed out

earlier, the flaw is that the proof depends on the underlying arithmetic,

but this will not be properly set up before the development of the idea

of the real numbers. Fortunately this digression is not necessary here;

my concern is early Greek mathematics, and problems with and delusions

about the role of decimal numbers in the arithmetisation of mathematics

are not part of this. However, there is a very similar process that differs only

by a change of base—sexagesimal ratios—that it is necessary to consider

briefly, since sexagesimal arithmetic is found in Babylonia some 1500 years

before the development of early Greek mathematics. Concerning this, I

here make only the following two observations, and defer further comment
to Section 2, below.

First, the problems with decimal and sexagesimal arithmetic arise with

‘non-terminating’ decimal numbers, those ratios in which an infinite num-
ber of the rik are non-zero, and the consequent difficulties that arise from

the possibility of a ‘carry’ through an arbitrarily long sequence of dig-

its. 13 Babylonian arithmetic shows a proper caution about this, since many
(thought not all) of the manipulations that are found are restricted to the

terminating or ‘regular’ sexagesimal numbers.

Second, our earliest trace of sexagesimal numbers in Greek mathematics

are found around the second century BC, in the work of Hypsicles and

Hipparchus. We have as of yet no explicit evidence of any influence of

Babylonian arithmetical procedures on early Greek mathematics. 1"^

Accountant’s ratios. Let me illustrate this final definition by an example.

The ratio 65:24 is more than twice, less than three-times; that is,

65 = 2 x 24-1- 17 or a = nob -j- ai with ai < b.

We now describe 17:24. Since 17 goes once, not twice into 24, this ratio

is more than half:

2x17 = 24-1-10 or niai=b-ha2 with U2 < ui-

13 See Fowler 1985a and 1985b for illustrations of the difficulties with decimal

arithmetic.

14 On this topic, see Berggren 1984, 397-398: ‘If the event [of Babylonian influence

on pre-Euclidean mathematics] cannot be located historically one must recognise

the possibility that it may not have occurred.’



Ratio and Proportion 113

We continue by comparing the remainder 10 with 24; it is more than the

third:

3x10 = 24 + 6 or ri2a2 = b + az with as < a2 -

Finally

4 X 6 = 24 or nsas = h.

Hence, the process is described by the pattern 2, 2, 3, 4, and no more, a kind

of pattern which again gives an immediate proof of the Topics proposition.

Again, this is not a reciprocal subtraction process: after the first step, the

current object is always subtracted from the second term up to the first

overshoot, which then becomes the object for the next step.

The special interest of this process is that we again have an arithmetised

interpretation. In our modern notation.

65 1 1 1— = 2 + — + +
24 2 2x3 2x3x4

1 1 1
= no + — + - — + +

ni rii X U2 Til X U2 X ns

(This is, in fact, not unlike the way fractional quantities were expressed by

Greek accountants and mathematicians, though our evidence also makes
it quite clear that this particular algorithm was not used to generate the

expressions we find them using, since their expressions do not exhibit the

characteristic pattern ni, ni x ri 2 , ni X U2 X ns ) Again, although this

suggests that there may again be an underlying arithmetised proof of the

Topics proposition, the details of such a proof are far from obvious.

2. Arithmetic and dpL0pT]TLKij

The previous section illustrated a series of distinctions between ratio and

proportion, between complete proofs (seven, on my count) founded on ex-

plicit definitions and optimistic pseudo-proofs in which the crucial and

difficult details were omitted (three, one in Section 1.1, two in Section 1.6),

and between arithmetised and non-arithmetised mathematics. It is that

last distinction that I now wish to consider.

In brief, my proposal is that early Greek mathematics and astronomy

show no trace of influence of arithmetisation. The emphasis on ‘early’ in

‘early Greek mathematics’ is essential: after the amalgamation of Baby-

lonian and Greek techniques, which seems to take place from the second

century BC onwards, we do find examples of a Greek arithmetised math-

ematics in Heron and thereafter, and a Greek arithmetised astronomy in
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Ptolemy and thereafter. Thus, there is a profound split between the aims

and conceptions of early and later Greek 15 mathematics, such as I conceive

them: note, for example, how neither Theaetetus’ programme of Elements x

and its application in Elements xiii nor the sophisticated Eudoxan astron-

omy seem to have anyplace in these later arithmetised traditions. What is

more, today’s mathematics is profoundly arithmetised, founded as it is on

the use and intuition of what has come to be known, comically, as ‘the real

numbers’. 16 This again interferes with our understanding of early Greek

mathematics; indeed one of the difficulties in the way of understanding my
reconstruction is the problem of purging one’s mind of this arithmetised

way of thinking.

Early Greek mathematics does, of course, draw on the use and intuition

of some kinds of numbers, as I shall describe briefly. Most fundamental are

the dpL0[iOL, conceived in a very concrete sense which is best conveyed in

English by the series

solo, duet, trio, quartet, ....

Moreover, the words usually occur with the deflnite article, which enhances

further their concreteness. In formal mathematics the unit has a different

status from the rest [see Elem. vii defs. 1-2], which means that sometimes

this case has to be distinguished as, e.g., in Elem, vii prop. 2. The dpL0-

[iOL are also found in different grammatical forms, such as the repetition-

numbers

once, twice, three-times, four-times, ....

The grammar of natural language describes the manipulations of the dpL0"

P-OL. For example, contrast ‘four-times the duet gives the octet’ with the

abstract manipulations of abstract symbols, ‘4x2 = 8’, that we tend to

learn and use today. So there would not be the same temptation among
early Greek mathematicians to extend the scope of these abstract manip-

ulations and objects, for example, to extend 8-^4 = 2 to the case of

15 ‘Greek’ means ‘written in Greek’. Early Greek mathematics is geographically

Greek: our evidence points to Ionia, Magna Graecia (Southern Italy and Sicily),

mainland Greece, and then the Greek colony of Egypt. This portmanteau desig-

nation, ‘Greek’, later comes to encompass a vast collection of different traditions

and influences.

16 See, for example, Mueller 1981, ch. 7 for recognition of the difficulty of incorpo-

rating Elem. X into arithmetised mathematics (e.g., 1981, 271: ‘One would, of

course, prefer an explanation that involved a clear mathematical goal intelligible

to us in terms of our own notions of mathematics .... Unfortunately book 10

has never been explicated successfully in this way, nor does it appear amenable

to explication of this sort’).
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8 -f 3 =?, or to move to higher degrees of abstraction such as a x 6 = c.

The Greek formulation of division in formal mathematics tends rather to

the use of manipulations such as ‘the trio goes into the octet twice leav-

ing a duet as remainder’ [see Elem. vii props. 1-4], or the general verbal

descriptions to be found in Elem. vii defs. 5-10. I shall refer to these Greek

investigations of the dpL0}iOL by their Greek name, as dpiGpriTLicn, and thus

distinguish between that which we find in early Greek mathematics and

the later arithmetic which concerns more general and abstract kinds of

numerical quantities.

Everyday Greek accounting does employ a system of describing fractional

quantities, traces of which are also found in formal mathematics. This is

based on the system of the pepr|,17 which are best conceived as the series:

the half, the third, the quarter, the fifth, . .

.

and represented by a transcription of their Greek notation: Z, 7, S, e, . .
.

,

for example, as 2, 3, 4, 5, Here the definite article is an essential

aid to understanding: neither the words nor the notation contain those

features that lead easily to our conception of our common fractions, where

we can pass almost imperceptibly from ‘one fifth’ and ‘ 1/5’ to ‘two fifths’

and ‘2/5’? and so on. Moreover, Greek fractional quantities are always

expressed and always seem to be conceived as sums of different [i€pq, in

what is often called the ‘Egyptian’ system. In fact, I do not believe we
have any convincing evidence for anything corresponding to our common
fractions in Greek scientific or everyday life. What is usually taken

as the notation for common fractions 18 seems rather to be an abbreviation

employed extensively by Byzantine scribes but found in very few documents

before then, in which the phrase twv m to n (‘of m the is abbreviated

as ”
. But this phrase ‘of m the the standard phrase used to describe

division, always seems to be conceived and is almost always immediately

expressed as a sum of pep-q, for example

T0)v 1/3 [to /.IjSL^XSi'a^'q

of the 12 [the 17^^ is] 2121734M68

for what we now write as

17 “ 2
'''

12
'''

17
'''

34 51 68'

Greek has two words, pepog and popiov (plural: pepr| and popia), which appear
to be perfectly synonymous.

For an influential description, see Heath 1956, i 42-45.
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These expressions would have been looked up in division tables, of which

many examples have now been published. The only manipulations of these

expressions that are found are very restricted: ‘of m the is seen to be

the same as ‘of km the and ‘of m the and ‘of p the can be

added or subtracted to give ‘of m ±p the where all of the expressions

are, I repeat, still conceived as sums of pepT]. Nowhere, to my knowledge,

do we get an example where two general expressions ‘of m the and

‘of p the are directly combined without going through some sequence

of these basic manipulations.

Most of our evidence comes from school or commercial texts, far removed

from the kind of mathematics in which we are primarily interested here.

Unfortunately the most pertinent mathematical text, Archimedes’ Mea-
surement of a Circle, survives only in a very late and corrupt version which

shows clear signs of interference by scribes and commentators. Aristarchus’

On the Sizes and Distances of the Sun and Moon has survived in a less cor-

rupt state though, here again, as with almost all of our evidence, our only

text is a Byzantine copy made in the ninth century AD. Nevertheless,

my description above also fits the evidence that we find in both of these

calculations. 19

The arithmetic of these sums of [icpri is very clumsy and does not show

any promise of an interesting or useful mathematical theory. This might be

interpreted as an explanation why early Greek mathematicians do not seem

to bring to bear on their mathematics any intuitions about arithmetical

manipulations with fractional quantities, if such an explanation is needed

for us, today, to come to terms with what seems to be an uncomfortable

feature of our evidence. My own preference is to state boldly and accept

completely that such evidence we have of early Greek mathematics shows no

influence of arithmetisation; and not, at this stage, to attempt to fabricate

any further explanation.

3. Envoi

It may be difficult for someone brought up within the now universal and

highly successful tradition of arithmetised mathematics to conceive that

there are many ways of handling ratios other than as something that is, or

is approximated by, some suitably formulated kind of numerical quantity,

such as common fractions ^/n for commensurable ratios, or some systemat-

ically organised collection of common fractions, like decimal or sexagesimal

^9 A much more complete description of our evidence concerning Greek calcula-

tions appears in Fowler 1987.
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fractions, for incommensurable ratios. I, at least, once found this difficult,

so that the substantial explorations of non-arithmetised ratio theories set

out in my book [Fowler 1987] were a liberating experience. Moreover, the

exploration of these ideas revealed many remarkable and unexpected math-

ematical and historical insights. I do not wish to attempt to summarise

this material here, so I will finish with one illustration and refer the reader

to the book for more details.

s d

Let us work out the anthyphairetic ratio of the diagonal to side of some
regular polygons. We start with the square. Let s and d denote the diagonal

and side of some given square. The beginning of Socrates’ encounter with

the slaveboy at Plato, Meno 82a-85c brings out that s < d < 2s; hence, the

first step of the anthyphaireses of d:s will be one subtraction and not two,

and the remaining steps will then be described by the ratio s:(d— s). In the

notation of nil we can write this as d:s = [1, s:{d— s)]. The idea is general:

ao'Mi = [no, ai'.a2] = [no, ni, a2‘ct3] =

We now need to evaluate s:{d— s). Perhaps, like Meno’s slaveboy, we also

need the help of a diagram such as is given in Figure 6. Here we construct

a new larger square whose side 5 is the side plus diagonal of the smaller

oblique square in the left-hand corner:

S = s -{ d;

then, by filling in some lines in the figure, we see that the larger diagonal is

equal to two small sides plus the small diagonal:

D = 2s -|- d.

Since the size, location, and orientation of our square are immaterial,

s:{d — s) = S:{D — S) = {s d):s
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which we can now evaluate as two subtractions, followed by the ratio s:(d—

s). We now go round and round: s:(d—s) is therefore, twice, twice, followed

by itself, so it is twice, twice, twice, twice, followed by itself, and so on.

Hence, the anthyphairetic ratio of the diagonal to side of a square is once,

twice, twice, twice, ....

Figure 7 Figure 8

The reader is recommended to use a similar argument, applied to Fig-

ure 7, to evaluate the ratio of the diagonal to side of a pentagon. Now
consider the ratio of a diagonal to the side of a hexagon [see Figure 8]. The
longer diagonal is twice the side—that is a description of the anthyphairetic

ratio—while the square on the shorter diagonal is three-times the square

on side [for details, see Euclid, Elem. xiii prop. 12]. This ratio can be

evaluated in the context of the following more general programme: Given

a line and two dpL0|ioC n and m, we can use Elem. ii prop. 14 to construct

squares equal to n-times and m-times the square on the given line. What
can we say about the anthyphairetic ratio of their sides? The answer to

this question plays a central role in my reconstruction: it involves heuristic

explorations followed by a range of different proofs based on the figures

of Elements ii; and it leads to a motivation for Elements x, and to a new
description of the problems and motivations of early Greek mathematics. 20

20 An outline of some of these interpretations may also be found in Fowler 1979

and 1980-1982.

An earlier version of this paper was presented at a colloquium, ‘Logos et theorie

des catastrophes: A partier de travail de R. Thom’ (Centre culturel Cerisy la

Salle, September 1982), and has subsequently circulated in duplicated form. I

wish to thank the many people who have offered comments. Some of the topics

discussed here are treated more fully in Fowler 1987.
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What Euclid Meant: On the Use of _^
Evidence in Studying Ancient Mathematics

WILBUR R.KNORR

For most historians of mathematics the principal data are documents—
records of past thoughts preserved in writing. It follows that the interpre-

tation of documents is central to the methodology of historians and, hence,

that discussions of the principles of interpretation can be brought to bear

on efforts in this field.

As a specialist in mathematical history, I have found that my colleagues

in the areas of literary studies tend to register surprise at the thought

that mathematical texts are subject to interpretation, even as they take

for granted that all literary texts require interpretation. Moreover, I would

anticipate that associates in the disciplines of mathematics and the physical

sciences would be surprised—perhaps appalled—at the suggestion that the

understanding of technical documents could be illuminated through the

insights of theorists of literary criticism. Somehow, the patent universality

of mathematical discourse might be construed as precluding the relevance

of critical principles whose objective is to offer guidance in the study of

individuals in their special historical circumstances. ^

My project in the present essay is to explore this meeting ground between

historical study and literary theory. My focus will be on the particular issue

of the role of authorial meaning in the work of the critic. After a brief syn-

opsis of some ideas from recent debates, I will discuss their bearing on three

problems in the interpretation of Euclid’s mathematics: his conceptions of

ratio and proportion, his notion of fraction, and the aim over all of the Ele-

ments. From the outset I must emphatically disclaim any special expertise

1 This ahistorical, Platonizing tendency of mathematicians and mathematical
historians is noted and criticized in Unguru 1979.

119
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in the wide-ranging field of hermeneutics. My approach here is entirely

pragmatic: to select from the diversity of views those which I perceive can

assist the historian in the effort to understand why disagreements arise in

the examination of such problems and what is implied within the different

options that one might espouse in their interpretation.

1. Authorial meaning in literary criticism

We all continually subscribe to the view that we can formulate our ideas

in writing and successfully communicate them to others. After all, did

the ancients not invent writing precisely for this end? But contemporary

critics have come to recognize the difficulties in applying this common sense

notion toward the interpretation of literature.2 In the old regime one ap-

proached a text with the assumption that there was a datum, designated as

the author’s meaning or intention, which was the "object of critical exegesis.

Within the ‘new criticism’ of this century, however, profound doubts were

expressed: one could multiply examples of how one and the same case had

received diverse, incompatible accounts of its author’s meaning; one could

note the drastic consequences that the assumption of irony has for the in-

terpretation of a text, yet the frequent difficulty of establishing an author’s

ironic intentions; and so on.3 By way of reaction, comes scepticism which

emphasizes the problems of access and relevance: How can we presume to

enter into the mind of an author? and Why should we even want to do

this as part of our critical efforts?

A particularly trenchant statement of the sceptical position was put for-

ward by W. K. Wimsatt, Jr. and M. C. Beardsley under the rubric of the

‘intentional fallacy’.*^ In the course of time, their essay has been invoked in

support of positions far more extreme than theirs, so that the ‘intentional

fallacy’ has come to signify for some the impossibility of any critical use of

the concept of authorial meaning.5 In such exaggerated formulations, one

maintains that the special, private circumstances of an author are beyond

2 H. Parker [1984, 213-243] sketches some main currents in modern criticism,

with particular emphasis on the teaching of American literature. He is decidedly

more antithetical to the new criticism, even than Hirsch [see below].

3 See the synopsis of the arguments in Hirsch 1967, ch. 1.

4 Cf. Wimsatt and Beardsley 1946: their sceptical position on authorial meaning

extends the views expressed in Richards 1929.

5 Hirsch [1967, 11-12] notes that the ‘popular version’ has severely exaggerated

the claims that Wimsatt and Beardsley actually maintain in their essay. Cf. also

H. Parker 1984, 214-215.
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our ken and irrelevant to the critical task anyway; that one can consider

only the public meanings attributable to the text. A text has no fixed

meaning; the process of interpretation is dynamic, as readers respond to

it in their individual ways. As critics, we are bound to our own historical

circumstances. Instead of aiming to render a historically correct account

of the text’s original meaning, then, we should seek to articulate our own
responses.^

Even those unsympathetic to this position admit to the positive effects

its adoption has had on the critical disciplines and the teaching of literature

in recent decades.7 Whereas it had been common earlier to glean literature

as a source of historical, social or political information, for instance, one

now could analyze literary products for themselves: a poem is a poem, and

only incidentally, say, a record for the reconstruction of the author’s biogra-

phy.8 Nevertheless, the sceptical position effectively abandons the historical

project: if no interpretation of a text is privileged, all are equivalent and it

becomes meaningless to examine historical texts for their historical content.

While the sceptical vein represented by the intentional-fallacy argument

has been intensified in some circles, others have proposed counter-arguments

in defense of a more traditional literary methodology. A particularly thor-

ough venture of the latter type is the hermeneutical study by E. D. Hirsch,

Jr.9 A brief account can presume neither to do justice to the richness and

subtlety of his discussion, nor to give due coverage to the rejoinders from

advocates of other positions. I hope merely to provide here a synopsis of

^ I venture to note a certain parallel with contemporary developments in the

philosophy of science: the older objectivist-positivist views now seem naive, as

the subjective elements implicit in scientific theory and research have come to

be recognized even by those who would still favor some form of scientific realism.

Cf. Hough 1966, 62 which maintains that for students of literature, Richards’

theory was ‘extremely fruitful’ for providing ‘a means of compelling close atten-

tion to the work itself and the processes involved in reading it, as a prophylactic

against conventional and secondhand judgments .... But it is not the normal
kind of reading.’

*A pertinent example appears in the essay by Charles Kahn [see ch. 1, above]:

that the older view of Hesiod’s work had inclined toward an anthropological

analysis, while recent efforts have attempted instead to grasp the impact and
purposes of his poetry as poetry.

9 Hirsch ’s account is widely known among a diverse range of scholars in the

humanities, and is highly respected even among those who do not adopt his

relatively traditional position. Needless to say, the field of criticism over the past

two decades has grown enormously, and one might incline to view such efforts

as Hirsch’s as outdated. My objective here, however, is not to show that one or

the other critical theory is correct (whatever that could mean), but rather that

Hirsch’s views in particular can be useful for the practicing historian.
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some key notions that will be of service in the subsequent discussion of

ancient texts.

In Hirsch’s view [1967, ch. 4], the author’s meaning is not only a legit-

imate aim of criticism, it-is the only possible aim: for it alone is shared

by all interpreters of the given text. 10 The critic’s work, he maintains, is

of two basic sorts: to give an account of the meaning of the text and of

its signiGcance. The latter embraces the major portion of criticism as such

(indeed, the whole of it, in the sceptical view): the connections between

the text and whatever else the critic chooses, the critic’s personal response

to the text, and so on. But a precondition of any discussion of a text’s sig-

nificance, Hirsch continues, must be an accurate grasp of its meaning. This

entails two projects: to understand the text and to explain (or interpret)

it. In explaining a text, the interpreter seeks to communicate its meaning

to others. To this end, one typically resorts to paraphrases, recasting the

text in terms calculated to be familiar to the audience.H One may well

introduce elements entirely extraneous to the text itself, and it is a subtle

demand on the interpreter to make sure the meaning of the text is not

violated in the process.

To explain the text, the interpreter must already understand the meaning

of the text, that is, the meaning intended by the author. The sceptics

maintain, however, that this sort of meaning is inaccessible to us. But

Hirsch [1967, ch. 5 and app. 1, sect, c] here introduces another distinction:

if we insisted on certainty in our understanding of the author’s meaning,

the sceptics would be sustained. But the critic seeks not certainty, but

validity of interpretation. Validity is a probabilistic notion; the interpreter

engages in a heuristic process, refining and modifying tentative conceptions

of the text’s meaning, and so achieving interpretations of progressively

increasing probability of being correct. In effect, the author’s meaning is

the limit of this heuristic process; without it, the process would have no

object or criterion of accuracy. But how does one gauge the validity of

one’s account—that is, as being highly probable, or plausible, or merely

possible? Hirsch cites four criteria: legitimacy (e.g., the account must

10 A useful synopsis of Hirsch’s position on the verification of meaning appears in

1967, app. 1, esp. sect. c.

11 Hirsch’s distinction of the interpretive and critical functions of textual com-

mentary [1967, ch. 4, sect, b] might be used to suggest a position on the issue

of geometrical algebra, currently debated among historians of ancient mathemat-
ics [see Unguru 1979]. To explain certain aspects of ancient geometry, it may
become advisable, even necessary, to import notions from more recent fields, like

algebra. This raises the possibility of anachronism, as is present in all analogical

forms of exegesis. That risk becomes acceptable if the alternative is the learner’s

incomprehension.
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assign to words of the text only those meanings which are possible for the

author and his contemporaries); correspondence (each linguistic component

of the text must be accounted for); genre appropriateness (where ‘genre’

embraces those conventions and expectations pertinent to the text which

the author and his audience will share); and coherence (the interpretation

must be plausible in the context of the whole of which it is part).

Hirsch [1967, 76-77, 237-238] observes that the criteria of genre and

coherence sometimes lead into a hermeneutic circle. The broad notions of

genre with which we initiate the examination of a text, for instance, have

limited explanatory value; indeed, they function only as heuristic guides,

ELS one refines one’s conception of the text’s meaning. Ultimately, knowing

the intrinsic genre of the text is tantamount to understanding its mean-

ing. 12 Similarly, in assessing the coherence of our interpretation, the whole

against which we set our text will depend on our interpretation. Initially,

when our view of its meaning is still open, the correlative ensemble of

texts will be large; but as we sharpen our conception, the context will nar-

row. Testing an interpretation will involve showing that the author means
precisely this in texts just like our text. As before, Hirsch obviates the

problem of circularity by consideration of the heuristic element in interpre-

tation. If we aspired to certainty, he argues, the reservations of the sceptics

would be sustained, rendering the quest for author’s meaning futile. But

we do not demand certainty in most contexts of thought and action, and

need not do so in hermeneutics either. Our aim ought to be to hit upon
accounts of high probability; the process of validation of interpretations

is precisely that of gauging the relative probabilities of competing inter-

pretations. Thus, the uncertainties, the possibility of alternative views,

the role of subjective factors—altogether familiar within a spectrum of

human pursuits—are natural adjuncts of the interpretive enterprise. To
propose these els fundamental objections against the viability of the search

for author’s meaning merely misconstrues what one’s goals ought to be.

Thus, interpretation is not mechanical: it is a dynamic heuristic process,

where one seeks to measure the validity of interpretations. This is enough,

in Hirsch’s view, to dispel the greatest difficulties raised by the sceptics.

One can engage in an orderly quest for a valid interpretation of author’s

^2 Hirsch [1967, 86] defines ‘intrinsic genre’ as ‘that sense of the whole by means
of which an interpreter can correctly understand any part in its determinacy’. By
this he of course specializes the notion of genre, which in common usage denotes

much broader categories of literary effort. Hirsch hereby captures the extremely
close connection between grasping the meaning of a text and specifying its genre,

but avoids the tautology whereby every text would constitute its own separate

intrinsic genre.
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meaning; author’s meaning is the objective toward which this process is

and must be directed. Hirsch observes that the sceptics admit this de facto

by virtue of their participation in criticism: for inquiry would be senseless if

all conceivable claims about a text had equivalent validity. Finally, under-

standing the author’s meaning is the precondition for all the other inquiries

in which critics engage, since it is the only feature of a text common to

all potential critics.

This critical scheme provides a basis for examining the interpretation

of texts from ancient mathematics. It also provides a cautionary note, by

alerting the interpreter to the subtle difficulties that this activity poses,

in particular, the hazards entailed in the interplay between the objective

content of the texts and the subjective elements present in the experience

of the interpreter. Mathematical texts a.e especially susceptible to being

read in the context of the philosophical and mathematical predispositions of

readers trained in the modern disciplines. Avoiding the misconstructions of

authorial meaning that can result becomes, as we shall see in the following

examples, the particular concern of the historian of mathematics.

2. The Euclidean concepts of ratio and proportion

As one would expect, the interpretation of ancient mathematical texts is

strongly influenced by considerations grounded in modern mathematical

theory, and these may introduce anachronizing tendencies. The discus-

sion of the ancient convergence principles, specifically as they relate to

the definitions given by Euclid at the beginning of his proportion theory

[Elem. v], provides an interesting example. It is widely maintained that

Euclid’s definitions (in particular, def. 4) have the aim of excluding non-

Archimedean magnitudes from the domain of geometry, a claim that is

supported through consideration of subtle requirements of the Euclidean

proofs. Similar observations are made for Archimedes’ convergence theo-

rems and his application of the so-called Archimedean axiom, with which

the Euclidean definition is typically associated. But if one moves from the

mathematics to the text, a different story emerges. 13

Among the definitions prefacing the theory of proportions in Elem. v are

the following:!^

13 My account will be in substantial agreement with that presented in Mueller

1981, 138-145.

I'lMy translation from the text of Heiberg [1883, ii 2].
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‘Ratio’ is of two homogeneous magnitudes the manner of relation

[they have to each other] with respect to size. 15 [def. 3]

‘Having a ratio to each other’ is predicated of magnitudes which

when multiplied can exceed each other, [def. 4]

With reference to the latter definition, T. L. Heath offers this commentary:

De Morgan says that it amounts to saying that the magnitudes

are of the same species. But this can hardly be all; the definition

seems rather to be meant, on the one hand, to exclude the rela-

tion of a finite magnitude to a magnitude of the same kind which

is either infinitely great or infinitely small, and, even more, to em-

phasize the fact that the term ratio, as defined in the preceding

definition, . . . includes the relation between any two incommensu-

rable as well as between any two commensurable finite magnitudes

of the same kind. [Heath 1956, ii 120: his emphasis]

By the phrases ‘to be meant’ and ‘to emphasize’. Heath clearly indicates

his own intent to articulate the meaning Euclid himself had in mind. But

it must seem remarkable that three such different meanings—homogeneity,

the exclusion of non-finite (i.e., non-Archimedean) magnitudes, and the in-

clusion of incommensurables—could be covered in a single expression, and

further, that Euclid could emphasize a claim about incommensurables with-

out actually using the term. 16 We thus confront a situation where, to use

Hirsch’s terminology, the effort to understand (or interpret) Euclid’s text

is separate from its criticism, that is, the elaboration of its mathematical

implications.

Read in isolation. Definition 4 may indeed be construed as a condition

intended to exclude non-Archimedean magnitudes. It would then be tran-

scribed in the form that magnitudes A and B (for A < B) have a ratio

15 Contrast Heath 1956, ii 114 (emphasis his): ‘A ratio is a sort of relation in

respect of size between two magnitudes of the same kind.’ Doubtless, Heath’s

rendition now would be considered standard. But in employing the indefinite

article (‘a sort of relation’), he appears to have lost a nuance of the Greek definite

article (cf. my ‘the manner of relation’ for f| . .

.

TTOLd axeoL?). More important.
Heath’s version is vacuous, since in his rendering nothing is actually being defined

(Mueller [1981, 126] calls this sense of the definition ‘mathematically useless’, but
sets the onus of the difficulty on Euclid.) In my version, Euclid is specifying ‘ratio’

as a relation of quantitative measures of homogeneous figures. That is an essential

and non-trivial condition, and would qualify as a definition on the supposition

that the reader already grasps the notion of quantity or size (TrqXLKOTq?).

^6 The terms for ‘commensurable’ and ‘incommensurable’ first appear in the first

definition of book 10.
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if and only if there exists a finite integer m such that mA > B. Thus, for

instance, for the indivisible element A of a finite figure there could be

no ratio between A and B, since A taken any finite number of times could

not be made to exceed BA'^ The proofs of Elem. v prop. 8 and x prop. 1

both depend on such an assumption: that the smaller of two given magni-

tudes, when multiplied, will eventually become greater than the other. 18

Since, furthermore, indivisibles were debated within early Greek natural

philosophy and played a role in the heuristic analysis of figures by -some

precursors of Archimedes, 19 one might accept that Euclid (or Eudoxus, the

author of the source version of the theory) chose to exclude such cases from

the formal theory of proportions of magnitudes. Indeed, already among an-

cient writers, the definition was read as a condition for convergence by the

exclusion of non-finite magnitudes.20

Nevertheless, this view of Euclid’s principle runs into several difficulties.

Most notably, Euclid’s definition sets up a symruetrical relation between

two given magnitudes, whereas the cited applications require only a prop-

erty relating the smaller to the greater. These aspects of the question are

well summarized by Mueller, so that I can omit their discussion here and

turn at once to the presentation of an alternative view.21

Let us first take note of the definition of proportion on which Euclid’s

theory depends; it is announced immediately after the principle we have

just considered:22

The use of indivisible elements of figures, most familiar in the context of the

work of B. Cavalieri (1598-1647), is characteristic of Archimedes’ heuristic mea-
surements in the Method: see Dijksterhuis 1956, ch. x, esp. 318-322. I am
preparing a study of the Archimedean method of indivisibles and the evidence

for precursors in the older Greek geometric tradition.

18 A statement of their critical assumption appears in n24 below. For an account

of these propositions, see Mueller 1981, 139-142; van der Waerden 1954, 185-186,

188.

19 For a discussion of the evidence of pre-Archimedean uses of indivisibles, see

Knorr 1982a, 135-142.

20 In Hero, Def. no. 123, the Euclidean definition of ratio is observed not to apply

to the class of points; that is, the comparison property of multiples is essential to

finite homogeneous magnitudes: cf. Schone and Heiberg 1903-1914, iv 78. By
contrast, the scholiasts on Euclid’s Elements call attention to the condition of

homogeneity [cf. Heiberg and Stamatis 1969-1977, i 215-216: nos. 13, 15-17]

or to the inclusion of irrationals [no. 14]. While these Heronian and Euclidean

writers may draw on authentic critical traditions, their dating is obscure and
their authority questionable in determining Euclid’s actual purposes.

21 For additional details, see Mueller 1981, 138-145.

22 My translation is based on Heiberg’s text [Heiberg and Stamatis 1969-1977,
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‘Being in the same ratio’—a first [magnitude] to a second and a third

to a fourth—is predicated whenever, in regard to the equimultiples

of the first and third relative to the equimultiples of the second

and fourth, according to any multiplication whatever, the former

[equimultiples] alike exceed the latter, or alike equal [them]
,
or alike

fall short, taken in the same order, [def. 5]

That is, for magnitudes A, B, C, D, the ratio A:B is the same as the

ratio C:D if, for arbitrary integers m, n, mA > nB and mC > nD obtain

together, mA = nB and mC = nD obtain together, and mA < nB and

mC < nD obtain together. Euclid’s scheme for proportions thus turns on

the formation and comparison of equimultiples of given magnitudes. Every

application of the definition depends on the hypotheses, that mA > nB^

that mA = nB, or that mA < nB.'^^

The fourth definition, which has just preceded, may be read in the con-

text of this statement of proportionality. It thus stipulates that magnitudes

A, B will be said to have a ratio if the inequalities between their multiples

can be satisfied; i.e., that there exist m, n such that mA > nB and also

m', n' such that m'A < n'B. This is the reading favored by Mueller, but

does not appear to have been recognized by other commentators.24 The
condition, as now formulated, simply refers to the comparability of arbi-

trary multiples, just as the fifth definition and all the proofs dependent on
it thereafter require.

The fourth definition does of course exclude non-Archimedean magni-

tudes. For it supplies a gap which the fifth definition by itself would suffer:

if B and D were indivisible (that is, zero) magnitudes, for instance, then

only the inequalities mA > nB and mC > nD would be possible; it might

then be technically possible to prove the proportionality A:B = C:D^ since

the condition for the opposite inequalities would be vacuously true. But

in view of the terms of its formulation, the definition is not easily seen to

bear this latter consequence as its principal aim. Indeed, since it has been

phrased in precise conformity to the demands of the definition of proportion

in def. 5—whence one would locate the intention of def. 4 as the explicit

23 One may note a degree of redundancy. The condition mA = nB can be satisfied

only if A, B are commensurable; in this case, the conditions on inequalities are un-

necessary. On the other hand, if the inequalities alone are satisfied (this, of course,

is the only possible situation for incommensurables), then this would suffice for

establishing proportionality, even without reference to the case of equality.

24 The usual transcription is that ‘for some m, mA > B, where B > A’. Cf. Heath
1956, ii 120; Dijksterhuis 1929-1930, ii 58; van der Waerden 1954, 186n; Frajese

and Maccioni 1970, 298. This assumption, which indeed is made in Elem. v prop.

8 and x prop. 1, is taken by Mueller to be different from Elem. v def. 4 [see below].



128 WILBUR R. KNORR

precondition for def. 5—one may doubt that Euclid even recognized its

implication for the elimination of non-finites. As all applications of the

proportionality theorems (in books 6, 11-13) are in fact for cases of finite

magnitudes, the difficulty does not there arise. On the other hand, the

general theorems of book 5 do require a conditional restricting the domain

to finites. One is free to judge as one likes how serious is Euclid’s omission

of an appropriate qualifying statement. It is clear, at any rate, that def.

4, as proposed in the Elements, does not expressly fill that role.

Evidence from Archimedes and the later commentators provides materi-

als for sketching out the origins of these Euclidean definitions, by revealing

the form of a technique of proportions alternative to what we now have

in Elem. v. I have argued elsewhere [Knorr 1978b] that a certain technique

evident in these sources can be assigned to the pre-Euclidean period, in-

deed, to Eudoxus himself. In the sketch I give here, I will refer to it as

‘Eudoxan’, with quotation marks to indicate the circumstantial nature of

the attribution.

To prove a given theorem according to the ‘Eudoxan’ technique, one first

takes up the commensurable case, usually a straightforward consequence

of the assumption of a common measuring magnitude. To establish the

incommensurable case, one adopts an indirect reasoning: if the ratios are

unequal (say, A:B is greater), one can construct a suitable magnitude B'

commensurable with A, such that A:B > A:B' > C:D. (A construct-

ing procedure is reported in an extant fragment and is comparable to the

construction in Elem. xii prop. 16 [see Knorr 1978b, 187-188].) This condi-

tion is then shown to contradict geometric properties already shown for

the commensurable case. In similar fashion, one shows that the contrary

supposition (that A:B is the lesser ratio) also leads to contradiction.

If we replace the ratio of commensurable magnitudes A:B' with a ratio of

integers equal to it, say m:n, the inequality just mentioned can be expressed

in an equivalent form: that there exist integers m, n such that mA > nB at

the same time that mC < nD. This happens to be precisely the condition

by which Euclid defines ‘greater ratio’ in Elem. v def. 7. Inverting the

inequalities, we obtain the conditions for A:B to be the lesser ratio (not,

however, defined separately by Euclid). Equality of ratio would follow if

there exist no integers for which either set of inequalities obtains; that is, if

for all multiples, mA > nB entails that mC > nD, while mA < nB entails

that mC < nD. In this way, the definition of ‘same ratio’ adopted in def. 5

can be deduced as the logical inverse of the definitions of ‘greater ratio’

and ‘lesser ratio’.
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Three considerations indicate that Euclid’s definition of ‘greater ratio’

is a vestige of an earlier form of the theory, as my proposal for the gen-

esis of the Euclidean definitions suggests. First, the notion of a greater

ratio is not developed as such; indeed, its definition is directly invoked only

twice (namely, in Elem. v props. 8 and 13), in lemmas auxiliary to effecting

proofs of proportionality in accordance with def. 5.^^ For instance, Elem.

V prop. 8 establishes that A > B implies that A:C > B.C., and similarly

for the reverse inequalities; it is applied in v prop. 10, but the manner of

appeal here is flawed, and an alternative proof founded directly on def. 7

would have been preferable.26 Both theorems, in conjunction with v prop.

13, lead to the establishment of inequalities critical for the proofs of v

prop. 16 and the following. For such uses, the concept of greater ratio

is effectively superfluous, however, since it serves merely as an abbrevi-

ation for certain inequalities among multiples of given magnitudes. By
contrast, in the ‘Eudoxan’ technique, manipulations of greater and lesser

ratios are characteristic. This manner is imitated within the indirect ar-

guments of book 12 (specifically, the theorems on the measurement of the

circle, pyramid, cone, and sphere), where also the inequalities of v prop.

8 are conspicuous. Moreover, it is surprising that these same propositions

do not exploit the definition of ‘greater ratio’, for that would have been

natural and convenient. By here invoking the alternative assumptions of

the sort characteristic of the ‘Eudoxan’ technique, Euclid appears to pre-

serve marks of the older base of the theory of book 5.27 Second, Euclid

provides no construction for the integers whose existence is postulated in

def. 7. This would doubtless cause uneasiness, were Euclid to have pro-

posed theorems on inequalities of ratios corresponding to the proportion

theorems of book 5. A construction lemma for the equivalent assumption

does, however, appear among the texts associated with the alternative ‘Eu-

doxan’ technique [see Knorr 1978b, 187-188]. Third, as noted above, the

convergence assumption alleged for the meaning of def. 4 is invoked only

twice (namely, in Elem. v prop. 8 and x prop. 1), in the form that, given

magnitudes A, B, where A < B, there exists a multiple m of B such that

mA > B. But even here, one may question whether Euclid intends this

25 For a criticism of the proofs, see Heath 1956, ii 152-153, 161-162; Mueller 1981,

130-131, 139.

26 On the proof of Elem. v prop. 10, see Heath 1956, ii 156-157; Mueller 1981,

130.

27 The basic similarity of technique between the proofs in book 12 and those in

the alternative proportion theory is used to argue the Eudoxan provenance of the

latter: cf. Knorr 1978b. For an account of Euclid’s proof of the circle theorem
[Elem. xii prop. 2] and the expected alternative method in the manner of the

theory of book 5, see Knorr 1982a, 124-127; 1986a, 78-80.
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assumption to be covered by his def. 4. For in general, Euclid manages
cross-referencing via the literary device of verbal reminiscence; if he re-

quires a previous theorem or postulate to justify the step in a proof, he

will typically restate the terms of its enunciation in a paraphrase tailored

to the present context.28 It is remarkable, then, that in v prop. 8 and x

prop. 1 the assumption of convergence is stated in terms quite different,

indeed gratuitously different, from those in v def. 4.29 I would thus infer

that Euclid himself has formulated this assumption in the proofs, without

perceiving—or, at the least, without wishing to mark—the connection with

def. 4.

It thus seems far less clear than the usual view supposes, that Euclid’s

def. 4 was intended as a convergence assumption to exclude the case of

non-finite magnitudes. The present account has shown how this defini-

tion is bound into the logical structure of the whole Euclidean theory of

proportion. I think it possible that Euclid, in reworking the materials on

proportion and convergence, as in v prop. 8 and x prop. 1, felt that the

assumption he there had to make on the comparison of magnitudes was

sufficiently obvious as not to require a special postulate. Certainly, there is

no attempt to derive his assumption from def. 4, even though one could

do that. Whatever textual affinities one can detect between the conver-

gence assumption and the definition—and these are surprisingly few—can

be accounted for through parallel developments from older sources.

Thus, far from being the definition’s primary role, these applications in

the convergence theorems are at best derivable consequences from it which

Euclid appears not to have perceived. Significantly, when Archimedes for-

mulates his own condition on convergence (Archimedean axiom), his terms

28 Neuenschwander [cf. 1972-1973, 339-352] has discerned a pattern of close, often

literal, recapitulation as Euclid’s manner of cross-referencing in the planimetric

books, especially prominent in book 2 and reasonably so in books 3-4. Com-
parable examples can be found in books 10, 12-13. van der Waerden [1979,

352-353] cites these insights as confirmation of a Pythagorean origin of books
2 and 4, a view with which Neuenschwander [1972-1973, 369-78] himself is in

substantial, if not complete, agreement. It seems to me that the device of verbal

cross-referencing is established; whether that owes to Euclid’s editorial hand or is

a feature of his sources, however, is a separate matter, by no means as clearly

decided.

29 In both of these propositions, the following formula is used: ‘X when multiplied

shall sometime be greater than Y; let it be multiplied, and let Z, a multiple of

X, be greater than K’
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indicate no linguistic affinity with Euclid’s definition. For Archimedes as-

serts,

of unequal areas the excess by which the greater exceeds the lesser

can, added itself to itself, exceed any preassigned finite area. [Heiberg

1910-1915, ii 264] 30

Any effort to view the intent of Archimedes’ postulate to be an explicit

extension of Euclid’s definition falters through the absence of verbal reso-

nances between the texts. Indeed, the template for Archimedes’ wording is

readily detected in the applications of implicit convergence assumptions in

the Eudoxan limiting theorems, e.g., statements of this sort as in Elem.

xii prop. 2:

cutting the arcs in half . . . and doing this continually, we shall leave

certain segments of the circle which shall be less than the excess

by which circle EZH0 exceeds the area S. [Heiberg and Stamatis

1969-1977, iv 80-83]

The origins and meanings of Archimedes’ postulate raise questions that go

beyond the present context. But I would insist that the effort to analyze

it ought to adhere to the same textual procedure that I have proposed for

Euclid’s definition. In both cases, the usual procedure, founded on recourse

to considerations drawn from the modern mathematical field, attempts to

conflate the meaning of the ancient texts with certain implications derivable

from them. In general, this is a dubious interpretive procedure, and in the

particular cases at issue here results in confusion instead of insight.

3. The ancient concept of fraction

Reading David Fowler’s remarks on the ancient technique of ratios [see ch.

6, above], I was struck by the following remark:

[N]either the words nor the notation [employed for the expression

of unit-fractional terms, or proper parts] contain those features that

lead ecLsily to our conception of our common fractions .... In fact, I

do not believe we have any convincing evidence for anything corre-

30 The principle is restated in essentially the same terms in the preface to Archi-

medes, De Un. spir. [Heiberg 1910-1915, ii 12], but quite differently in the fifth

postulate of De sphaer. i [Heiberg 1910-1915, i 8]. For analyses, see Dijksterhuis

1956, 146-149; Knorr 1978b, 205-213.
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Spending to our common fractions ”^/n in Greek scientific or everyday

life.31

The thesis is provocative, challenging the basic intuition that anyone with

the most elementary training in mathematics would today have, namely,

that our own concept of fraction is essentially obvious and, hence an in-

evitable feature of any viable computational tradition. As before, we meet

an interpretive issue centering on intention; for the most part, our texts

present only calculations without conceptual elaborations, so that our at-

tempts to formulate the ancient authors’ concept amounts to our own view

of the intention underlying their technical operations. Fowler is right to

approach the question open to the possibility that the ancient and modern

views could be different, especially in the light of certain special proce-

dures of unit-fractions that mark the ancient practice in distinction from

the modern. He is also right to insist that any, conclusions be persua-

sively documented. Agreeing on these basic principles, we may proceed

to scrutinize more closely his claim, that the Greek arithmetic tradition

never evolved the conception of fraction we now take for granted. My chief

interest here will be to locate the evidence bearing on the question and to

grasp what the range of convincing interpretations could be.

First, a caveat: the discussion of conceptions is a tricky matter and per-

haps better assigned to the philosopher than to the historian. Technical

works, whether ancient or modern, devote little or no space to conceptual

discussions; and it is too easy for us to state our own preferences in such

specific terms that we can discern their presence or absence in older works,

as we choose. What, after all, is the modern conception of fraction? In

any relatively sophisticated modern account [see e.g., Waisman 1951] one

will find an analysis which reduces all the properties of fractional numbers

to relations (specifically, ordered pairs) of integers. Is it impossible, then,

that Plato [Resp. 525e: cf. Lee 1955, 293] has some comparable objective in

view when he insists that ‘the unit is indivisible. . .
’ and that the experts

will ‘make you look absurd by multiplying it if you try to divide it . .

.

.’

Similarly, Euclid might be engaging in such a sophisticated project in the

arithmetic books (7-9) of the Elements, where he may be viewed as han-

dling fractional numbers under the guise of ratios of integers. In such cases,

the restriction of the term dpiOfio? to whole numbers need not betoken a

failure to grasp the concept of fraction.

31 A similar claim is made in D. H. Fowler 1983, 557. It is developed in D. H.

Fowler 1987, ch. 7 (see 193, 226), where its validation depends critically on making
a sharp break within the ancient arithmetical tradition around the 1st century

AD (or earlier). In this way evidence from Hero and Diophantus is taken to attest

only to the later phase of arithmetic technique.
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In what follows, then, I recommend adopting a naive view of the concept

of fraction. Our ancient writers may handle fractions as the quotients of

division of integers, or alternatively, as ratios of integers. It will be enough,

I propose, if the resultant entities in either case are treated as numerical

terms, combinable with each other and with integers according to the rules

of arithmetic. Notations or dictions need not disqualify an ancient effort

prima facie as an acceptable manifestation of the general notion of fraction.

Of particular interest for us is the ancients’ remarkably persistent adherence

to unit-fraction representations. Do these actually prevent the formulation

of the general technique of fractions? As our evidence will derive from

the full span of antiquity, we will also have to consider in what way late

evidence bears on our views of the early (pre-Euclidean) period.

A rich store of fraction computations survive in the Akhmim papyrus

(in Greek, from 6th-century AD Egypt).32 It opens with an enormous

spreadsheet, giving a systematic listing of the results of divisions of se-

ries of integers, first by 3, then 4, and so on up to 20, expressed as

sums of unit-fractions. For instance, the entry for 12 among the ITths

is 2 12 17 34 51 68.33 This table is used repeatedly in the arithmetic prob-

lems which make up the rest of the papyrus. Typical of one kind of fraction

computation, occurring in about 30 of the problems, is this (no. 8 ):

From 2/3 subtract 3 9 99. What computation gives 3 9 99? the 11th

of 5. 2/3 of 11 is 7 3. From 7 3 subtract 5: remainder 2 3. Of 2

3 the 11th is 6 33 66 .
[Baillet 1892, 67]

The unit-fractions strike an alien note for the modern reader. But is it

implausible to describe the writer’s procedure as first raising terms to a

common denominator, then subtracting, and finally simplifying the remain-

der? The subtrahend 3 9 99 is known from the table to be Yu? taking 11

as denominator, the terms become 7 3 and 5, or a difference of 2 3. The
difference of the given fractions is thus the quotient of 2 3 by 11.

We would prefer to simplify this to Yss (raising terms by a factor of 3).

But the ancient scribe is committed to answers in unit-fractional form, and

so performs the division to get 6 33 66 . Nevertheless, the unit-fractions play

no computational role: the scribe first eliminates them by a suitable raising

of terms before actually performing the required arithmetic operation, and
only at the end is the result cast back into unit-fractional form.

32 The Greek text has been edited with French translation and commentary by

Baillet [1892].

33 For a survey of such tables, see Knorr 1982b. For other instances, see D. H.

Fowler and Turner 1983; D. H. Fowler 1987, ch. 7. Our particular example of the

division of 12 byl7 is cited also by D. H. Fowler on pages 115-116 of this volume.
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The mathematical papyri relate to the humblest stratum of ancient math-

ematical instruction, and P. Akhmim happens to be late in the tradition.

From several centuries earlier a set of demotic (Egyptian) papyri contain

problems of a similar kind. I cite one example to illustrate:

Subtract 3 15 from 2/3 21: Take 5, 7 times: 35; its 2/3 21 is 25 and

its 3 15 is 14. Subtract 14 from 25: 11. Find 11 35ths: 4 28 35.

Answer: 4 28 35.34

Like the Greek scribe, the Egyptian works within the format of unit-

fractions, while performing the arithmetic operations only after first clear-

ing fractions, here by multiplying by 35. Presumably, that choice of multi-

plier (i.e., 35 or 5*7) has been hit upon through consultation of a table

of 5ths and 7ths (since 2/3 21 is ^7 and 3 15 is 2
/5 ).

For us, of course, the problem is complete with the value 11
/35 . The

demotic scribe, however, goes on to convert this result into unit form,

by working out the division as 4 28 35. In this he offers a clear prece-

dent for the technique followed by the later Greek scribe of P. Akhmim.
Their procedural agreement, despite their chronological, cultural, and lin-

guistic separation, indicates the stability of the elementary computational

tradition.

From a higher stratum of Greek geometrical writing, the following ex-

amples may be noted: in Dimen. circ. prop. 3, Archimedes (3rd cent. BC)

adjusts both terms of the ratio (5924 2 4):780 by Y13 to obtain 1823:240; he

next approximates an irrational square root as 1838 Vii. His ultimate esti-

mate for the ratio of the circumference and diameter of the circle (our tt) is

given as ‘the triple and greater than 10 71’. [Heiberg 1910-1915, i 242.17-

18].35 Admittedly, the manuscripts are late copies (10th century at the

34 This is no. 60 of the demotic mathematical problems edited by R. Parker [1970].

Similar manipulations appear in nos. 56-59, 61.

35 The result is also phrased as ‘triple and greater by more than 10 71’ [Heiberg,

1910-1915, i 242.19-21]. Yet another phrasing is adopted in the enunciation of

prop. 3: ‘the perimeter is triple of the diameter and moreover exceeds ... by

greater than ten seventy-firsts’ [Heiberg 1910-1915, i 236.8-11]. In Knorr 1989a,

pt. 3, ch. 4, I survey the ancient citations of this result. The oldest extant

reference, it appears, is from Ptolemy, where the ratio is stated simply as greater

than ‘triple plus ten seventy-firsts’ [Heiberg 1910-1915, i 513.4-5]. The wording

in the enunciation of Archimedes’ prop. 3 (as stated above) appears to have been

framed by an editor following a model from Theon.



What Euclid Meant 135

earliest); for the Dimensio circuli in particular, the text has undergone con-

siderable alteration through editorial reworking and scribal carelessness.36

Thus, it would surely be perilous to make claims about Archimedes’ frac-

tional notations on the basis of this textual evidence. But the character of

Archimedes’ computation, including the numerical values here cited, would

not have been significantly tampered with by the later copyists and editors.

Thus, the extant figures can be taken as reliable witness to the sequence of

his computation. In particular, the ploy of attaching fractional increments

(like however denoted, would be indispensable to his procedure.

As far as notation is concerned, it is remarkable that in Eutocius’ com-

mentary on this proposition, where each of the square root values is checked

by a fully worked out multiplication, the term 1838 ^/u is misconstrued as

1838 Vs + Vii [Heiberg 1910-1915, iii 253].37 This must indicate a notation

for the fraction Vi i that closely resembled a common unit-fractional expres-

sion like 9 11. Thus, we can have reason to date the use of general fraction

notations no later than the 6th century. While this may not seem to place

them back very far, it does refute the supposition that such notations are

artefacts of Byzantine scholarship. Moreover, it supports the view that the

earlier traditions stemming from Archimedes, Hero, and Diophantus also

had access to some form of general notation for fractions. Without insisting

that the extant manuscripts preserve those notations with complete accu-

racy, we may assume that the computations with fractions in their works,

which we take up next, were recorded in some comparable form.

From the Metrica of Hero of Alexandria (1st cent. BC) numerous com-

putations with fractions may be cited. For instance, in Metrica iii 3 the

36 My examination of the ancient versions of prop. 1 in Archimedes’ Dimen.
circ. indicates that the extant text is an adaptation from Theon’s commentary
on Ptolemy’s Almagest: cf. Knorr 1986b; 1989a, pt. 3, ch. 1-3. This confirms

widespread doubts about the extant text of this particular Archimedean work,

although it proposes a far greater distance between Archimedes’ original version

and that extant than scholars have heretofore supposed. In a discussion of the

numerical figures in the mss. of prop. 3, D. H. Fowler [1987, ch. 7.3a] emphasizes
the textual corruptions and the great span separating the prototypes of the mss.

from the time of Archimedes and cites these as factors complicating their use as

indicators of the earlier notations.

37 Heiberg gives the correct figure in the body of the passage (line 7), but the

incorrect figure is the basis of the computation in the appended working out of

the computation (col. 3, lines 11 et seq.). In a note on this faulty computation,
D. H. Fowler [1987, 244n] surmises that Eutocius’ procedure is ‘fudged’. But,
examining the passage more closely, I have argued [1989, 522-523] that Eutocius’
own text, which sets out correct figures, must be founded on a correct compu-
tation; the supplementary work sheet, which purports to lead to the same answer
via incorrect figures, would be due to a later editor.
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division of 100 by 10 22/55 is stated to be 9 2 4 [Schone and Heiberg

1903-1914, iii 148]. The method of division is not explained; but since

the result is exact, a measure of contrivance is indicated. Again, in Metrica

iii 8 the result of multiplying 12 Vi4 by 5 5/26 and dividing by 7 is given

as 8 1/4, here also without explanation [Schone and Heiberg 1903-1914, iii

158].39 One suspects that a method of raising terms is employed in cases

like these, comparable to the modern school procedure.

We possess several extensive collections of problems in metrics, contain-

ing series of exercises usable in conjunction with the study of Hero’s Met-

ricaA^ Here examples proliferate in which fractions are manipulated in ways

distinctly comparable to the familiar modern methods. These sometimes

invoke unit-fractions but, as with the papyri, in a merely notational, not

a computational, mode. It is important to note that, whatever notations

or dictions are used for expressing fractions, the scribes freely manipulate

these as numerical terms. For instance, even if the ancient equivalent of

what we write as 5/26 (as above) is expressed as ‘of the 5 the 26th’ or ‘5

26ths’ or ‘5 26’ or even ‘5 26 26’ (where the duplication of 26 indicates

the plural),^! and even if that term is there viewed only as the result of a

division (namely, of 5 by 26), nevertheless, the quotient so found is treated

as a numerical term, attachable to an integral term to produce a sum (the

equivalent of 5 V26), which can then be multiplied or divided by similar

terms.

The six books extant in Greek of Diophantus’ Arithmetica comprise al-

most 200 arithmetic problems whose solutions are as often fractional num-

bers as they are integers.^2 Jn book 2, for instance, in prop. 8 the solutions

—

for which Diophantus employs the term dptOfiog, the standard Greek term

38 The principal ms. (the Codex Constantinopolitanus, pal. vet. 1) dates from

the 11th century. It is reproduced in photofacsimile in Bruins 1964, i.

39A modern procedure, exploiting cancellations, might run thus:
( ^®9/j4^.(

l35/2g)

i- (
53

/7 )
= 13 . 135 212 = 8 V212 ;

this could be reduced to very nearly 8 1/4

^/36, whence Hero’s answer 8 1
/4 .

“^9 These are edited by Heiberg as the Geometrica and Stereometrica in Schone

and Heiberg 1903-1914, iv-v. Some examples of fraction computations from

these works are discussed in Knorr 1982b.

This would be in accordance with a common tachygraphic convention in Byzan-

tine texts. On ancient fraction notations in general, one may consult Heath 1921, i

41-44; D. H. Fowler and Turner 1983; D. H. Fowler 1987, ch. 7. FowJer frequently

remarks on deficiencies in the older standard accounts, such as Heath’s.

^2 See Tannery’s edition of Diophantus [1893-1895], and Heath 1910. The same

prominence of fractional solutions is evident in those portions of the Arith. sur-

viving only in Arabic: cf. Sesiano 1982, Hashed 1984.
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for ‘number’ (that is, ordinarily, ‘integer’)—are 256/25 and The solu-

tions are fractional terms of this type in every problem thereafter in this

book, through prop. 35, its last problem, save for props, 10, 19 and 23

(which result in mixed unit-fractional terms, like 72 4), and 19 (which

results in integral solutions).

It is clear that Diophantus’ effort depends on a supple manipulation of

fractions. This applies not only for explicit constant operands, but also

for variables. For instance, in iv prop. 36 two indefinite fractional terms,

3p/{p — 3) and 4p/(p — 4) [lit.: ‘3p in the part (ev popCco) p — 3’, and so

on] are stated to have the product 12p^/(p^ -f 12 — 7p) [Tannery 1893-

1895, i 288. 9-10]. ‘^3 in the same problem their sum is worked out to be

(7p^ — 24p)/(p^ -f 12 — 7p), with the following explanation:

Whenever it is required to sum parts ([iopta), for instance, 3p pt.

p — 3 and 4p pt. p — 4, the number [scii. numerator] of the part

shall be multiplied into the alternate parts [scii. denominator of the

other], e.g., 3p into the parts [denominator] of the other, scii. p — 4,

and again the 4p into the parts [denominator] of the other, into

p — 3. In this way the addition has made 7p^ — 24p of the part

[denominator] which is the product of the parts, scii. p^ H- 12 — 7pM
[Tannery 1893-1895, i 288.1-9]

Doubtless, the account is cumbersome. But this is an accommodation to

the learner, who is being asked to extend arithmetic operations beyond the

simple manipulation of definite terms to the case of unknowns. The rule

here is only stated, it is not proved. Moreover, it appears as an appendage

to prove (that is, to check) the correctness of the solutions derived in the

main text of the problem. One may well suppose that here, as is suspected

elsewhere in the Arithmetical the added section is due to a later editor, and

that Diophantus himself could assume such operations without comment.

The basic fractional operations thus appear to be taken for granted, while

only the more elaborate extensions need to be explained. Since Diophan-

tus is reported to have written a treatise on fractions (the Moriastica),

it is possible that this work provided the basis for these passages of the

ArithmeticaA^ Although the date of Diophantus is uncertain, the basic ex-

pertise in dealing with fractions can hardly be considered a novel feature of

Here I denote by ‘p’ Diophantus’ symbol for the unknown number.

"^Diophantus’ term ^Loptov (lit. part) here bears the sense of our ‘denominator’,

while he uses the word dpL0p.6? (lit. number) where we would write ‘numerator’.

On lost Diophantine works, see Heath 1910, 3-4.
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his mathematical work: one may note comparable cases in book 6 (props.

12-14, 19, 21-22).

The Greek Anthology contains dozens of epigrams involving arithmetic

word problems, among them the famous epitaph of Diophantus [Tannery

1893-1895, ii 60-61].^ Most of these are accompanied by scholia which

work out the solution, some in considerable detail. In one common type

of problem a whole is diminished by denominated parts leaving a given

remainder. For instance, in no. 2, the provenance of the gold used for

making a statue of Pallas is identified thus:

Charisios has given half the gold, Thespis an eighth and Solon a

tenth part, and Themison an additional twentieth. The remain-

ing nine talents plus his craftsmanship are the gift of Aristodikos.

[Tannery 1893-1895, ii 44]

To find the whole weight of gold, the scholiast instructs us to find the least

number having all of the stated parts, in accordance with the procedure

in Euclid, Elem. vii prop. 39; the number is here 40; its 2 8 10 20 (that

is, 20-f-5-f-4-f2 = 31) when subtracted from 40 leave 9, as required, so

our answer is 40. In the case of another remainder, say 6, he tells us to

adjust the 40 in the ratio of 6 to 9, giving an answer of 26 ^/s-

Dating the epigrams in the Anthology and their scholia is difficult: a

definitive compilation was made early in the 10th century, from elements

of diverse date and provenance. '^7 Tannery holds open the possibility that

the grammarian Metrodorus (assigned to the early 4th century AD) was

responsible not only for the arithmetic epigrams, but also for the scho-

lia. It is certainly clear that any writer with a knowledge of the arith-

metic techniques of Euclid and Diophantus was able to produce such a

commentary.

For our present purposes the central point is the scholiast’s use of Euclid.

The procedure for finding the least number with specified parts [Elem. vii

prop. 39] is a modification of the finding of the least common multiple of

specified integers [vii prop. 36]. Why do these propositions appe2ir in the

Elements? As they bring book 7 to a close, one cannot suppose that they

were needed for the proofs of later propositions. But the examples from

the Anthology reveal how the parts-procedure is neatly tailored for solving

unit-fraction problems, just as the l.c.m.-procedure has an obvious function

46 Epigram no. 13 sets out as an arithmetic problem the finding of Diophantus’

age at death: in effect, his age less its 6th, 12th, 7th, and half parts is nine years.

The scholiast works out the answer as 84 years.

47 On the editing of the epigrams, see Tannery 1893-1894, ii x-xii.
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within the addition and subtraction of general fractions. Further, Euclid’s

inclusion of the parts-procedure, an ostensibly superfluous variant of the

l.c.m.-procedure, can now be perceived as motivated from computational

practice. A view along these lines has been suggested by Itard [1961, 128],

noting possible associations with methods employed in the Rhind Papyrus

[cf. Mueller 1981, 80, 114-115; R. Parker 1970, 8-10].

I believe this survey represents the range of the evidence, although dozens

of additional examples of similar kind could be cited. What claims does

it support as to the presence or absence of a general conception of frac-

tion? First, I question whether it is justified to impose a strict division

between late evidence (e.g., Graeco-Roman and Byzantine) and early ev-

idence (e.g., pre-Euclidean and Egyptian), when the computational tech-

niques are so uniform. If the ‘modern’ techniques are clearest in Byzantine

texts, this need not preclude their use much earlier. Indeed, the exam-

ples from Hero and Archimedes, for instance, recommend assigning them

a very early provenance within the Greek tradition. Second, I consider it

more reasonable that a sophisticated theory like that in Euclid Elem. vii

developed on a sturdy base of practical technique, than that, conversely,

the abstract theory should have arisen spontaneously and preceded its ap-

plication by some long interval. The technical distinctions we can discern

may as well be assignable to pedagogical, as to chronological factors. The
quaint persistence of unit-fraction techniques, for instance, is most strongly

marked in the papyri and the metrical collections, a genre of writing pitched

to novices. Even here, however, the unit mode is a cover for a more gen-

eral computational technique. Doubtless, it was left to the expertise of the

teachers to compensate for the gaps in the papyrus textbooks in explicating

the general procedure.

The pre-Greek tradition in Egypt is represented to us in only a few doc-

uments, like the Rhind Papyrus, dating from over a millennium before the

Greeks.48 Despite their antiquity, these documents appear to foreshadow

the general fraction technique. From the Hellenistic period, the demotic

papyri give evidence of knowing the more general method, as R. Parker

[1970, 9-10] has observed; and they must surely have received this through

the native tradition, rather than by borrowing from the Greeks. This

would plausibly assign familiarity with the general technique of fractions

to the Greeks in the pre-Euclidean period, through their exposure to earlier

Egyptian methods.

The Rhind Papyrus has been edited by Peet [1923] and Chace and Manning

[1927]. For surveys, see van der Waerden 1954, ch. 1; Gillings 1972; Robins and
Shute 1987. Some examples of its fraction computations are examined in Knorr
1982b.
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Sometime in the late 3rd or early 2nd century^the Greek mathematical

tradition came into a windfall, by receiving the Mesopotamian astronomical

and computational techniques.49 The sexagesimal place-system provided a

flexible instrument for elaborate computations far beyond the capacity of

the elementary fraction methods. But as far as numerical conceptions of

Greek arithmetic are concerned, as the evidence from Hero and the papyri

reveal, this exposure made essentially no difference. For the Greeks never

absorbed these new techniques into their elementary lessons on arithmetic.

Indeed, teachers like Theon of Alexandria (4th cent. AD) found it useful

to refer to the conventional notions of fractions in order to explain the

manipulation of sexagesimals.50 The very fact that the Greeks could adopt

the sexagesimal system for the more advanced scientific uses would appear

to indicate the prior existence of an adequate conception of fractions. That

is, they were already prepared to translate their techniques of manipulating

terms of the form ‘n of the mth parts’ into the sexagesimal mode.

Operationally, the new procedures were radically different from the tradi-

tional ones known to the Greeks; to implement them, for instance, a whole

new range of tabular auxiliaries had to be introduced, on the pattern of the

ancient Babylonian computational system. But the introduction of sexa-

gesimals need not have affected the underlying conceptual basis already

established among Greek arithmeticians centuries before. Conversely, we

should not assume that the persistence of unit-fractions in the popular
j

arithmetics entailed any limitations in that underlying concept. In view
|

of the silence of our sources on conceptual matters, we are compelled to

treat the ancient concept of fractions as a sort of ‘black box’ associated

with the technical procedures preserved in the texts. The evidence, in my
view, would have to be far more extensive and explicit than it is to sustain

49 For accounts of the Babylonian computational methods, see van der Waerden
j

1954, 37-45; Neugebauer 1957, 29-35.
j

50 On sexagesimal computation in general, see Theon, In Ptol. ad i 10 [Rome

1936, 452-62]. In particular, Theon refers to the familiar Greek tradition, as

represented by Diophantus, to explicate the operations on sexagesimal parts; for
|

instance, Theon notes [Rome 1936, 453]:

In the case of (fractional) parts of the unit ... in the manner in which,

according to Diophantus, the species are altered in the multiplications of

the parts of the unit, for the reciprocal first power (dpL0poar6v), [e.g.] the

third, multiplied into itself makes the reciprocal second power (Swap-oorov),

[i.e.] the 9th and alters the species, in the same way also here'the parts

of the unit alter the species.

Cf. Tannery 1893-1895, i 8: ‘dpL0pcxjT6v into dpL0|ioaT6v makes Suvapoorov’. Theon
goes on to elaborate case after case of sexagesimal parts (e.g., minutes times

minutes make seconds, minutes times seconds make thirds, and so on).
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the hypothesis of a significant separation between the ancient and modern

concepts.

4. The aim of Euclid’s Elements

In the preceding sections we have taken up difficulties in the interpreta-

tion of Euclid’s theories of proportion and number. Besides clarifying the

meanings of particular passages, we have seen ways to exploit Euclid as

a source for understanding aspects of the pre-Euclidean development of

these theories. But the primary task of a literary analysis of a writing

must be to explicate the meanings and objectives of the work as a whole.

We undertake such an analysis for the Elements in the present section.

What sort of work did Euclid intend the Elements to be? Hirsch’s ac-

count of genre will be useful here. The notion of genre, he proposes [1964,

ch. 3], serves as focus for the external or public determinants of a text,

complementary to the internal or private meanings of the author. Upon
first encountering a text, we begin to construct its meaning on the basis

of provisional views we have as to its genre, or type classification. Our
idea of the genre embraces the expectations we have about the text, as we
pursue our examination of it. At first our genre idea is quite broad; but

it is progressively narrowed, being refined, modified, sometimes discarded

and replaced by an entirely new genre idea, in the course of our reading.

When we ultimately possess an adequate reading of the text, our idea of its

genre (or, intrinsic genre) will be closely accommodated to this.^l What is

notable in this account is the reciprocity between the meanings attributed

to a text and the ideas one has of its genre. The genre delimits at each

moment the possible meanings one can assign to the text; but the genre

idea is always provisional, subject to revision as it comes into conflict with

new details and implications of the text.52

As we approach the particular case of the Elements, we will find that

views of its aim and meaning are accompanied by implicit views of its

genre. Conversely, establishing a credible view of the genre will assist one’s

inquiry into Euclid’s aims.

The question of Euclid’s objectives was already raised in antiquity. His

commentator, Proclus (5th cent. AD), observes [Friedlein 1873, 70-71] that

the aim (aKOTTog) of the Elements can be viewed in two respects, relative to

its research findings and to its instructional uses. In the former regard.

For Hirsch’s definition of ‘intrinsic genre’, see nl2.

^2 Conversely, Hirsch [1967, 71-77] offers interesting examples where misconcep-

tions of the genre can lead to persistent misconstruals of a text.
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Proclus sees the culmination and goal of the work in its elucidation of the

five cosmic figures (that is, the five regular polyhedra, elsewhere styled the

‘Platonic figures’).53 But from the pedagogical viewpoint, he continues,

Euclid aims to provide an introduction (oroLxeCwcJLg) toward perfecting

(reXeLCOOLg) the learner’s understanding (didvoLa) of the whole of geometry.

Proclus’ first surmise, which is probably his own insight,54 may be dis-

missed as the expected emanation of his own Neoplatonism [cf. Heath 1956,

i 115]. To be sure, it is remarkable that so much of the Elements comes

to bear on the constructions of the five solids in book 13—including results

from the plane geometry of books 1-4 and 6, the solid geometry of book

11, and the theory of irrational lines of book 10. Even so, much of the

contents of these books is unrelated to the solid constructions, while the

substantial portion of the Elements contained in its other books would be

wholly left out of account—the proportion theory of book 5, the number

theory of books 7-9, and the exhaustion theorems of book 12. In Pro-

clus’ defense, one might observe that his position is hardly less credible

than modern theories of Euclid’s Platonism, based almost entirely on the

definitions prefacing books 1 and 7.55

But in his second suggestion, about Euclid’s pedagogical aims, Proclus

takes the essence of the work to be its elaboration of complex theorems out

of the simplest and most fundamental starting points. In this he foreshad-

ows certain modern views, which emphasize the axiomatic architecture

of the Elements. A conspicuous feature of the Elements is its deductive

structure.56 As a prototype of modern foundational efforts like Hilbert’s

Foundations of Geometry, it lends itself to a mathematical analysis of its

axiomatic technique—e.g., what changes must be made in Euclid’s scheme

of axioms to make it sufficient for demonstrating the propositions in each

53 Proclus [Friedlein 1873, 23] also mentions the figures in the context of remarks

on Plato’s Timaeus. Referring to the same solids. Pappus once calls them ‘the

five figures of (Trapd) the most divine Plato’ [Hultsch 1876-1878, 352.11-12]. As a

scholiast to the Elements observes [Heiberg and Stamatis 1969-1977, v.2 291.1-9],

the Platonic association is due only to his inclusion of the solids in the Timaeus,

for their discovery, he claims, goes back to the Pythagoreans and to Theaetetus.

54 Proclus qualifies his statement with ‘I would say.’ Heath [1956, i 33-34] notes,

however, that such passages need not indicate Proclus’ originality.

55 The most extensive effort to link Euclid with specifically Pythagorean and

Eleatic precedents is Szabo 1969. I criticize some aspects of the argument in

Knorr 1981b.

56 This is the focus of the analysis by Mueller 1981.
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of the major branches of Euclidean geometry?57 There has also been an ex-

tensive discussion of the related philosophical issue of Euclid’s conception

of first principles: What is it about Euclid’s axioms and postulates that

suits them to be the starting points for his deductive system?, in particular,

How does Euclid’s conception compare with Aristotle’s prescriptions about

the starting points of formal expositions of scientific knowledge?58

Implied in these views are two complementary notions of the genre of

Euclid’s Elements. In looking to the five solids as the focal point, that

is, in defining the work in terms of its subject, Proclus conceives it as the

exposition of a technical field of research. But when he, like the modern

scholars mentioned, emphasizes its deductive system, the work moves into

the category of philosophical exposition—the actualization, as it were, of

some implied program of axiomatics. To these forms of technical exposi-

tion and philosophical exposition, we can add a third, also recognized by

Proclus, the introductory textbook. In the following discussion, we will

explore how the decision relating to genre affects our view of the goals

Euclid pursues and his success at attaining them.

Proclus amplifies his second point on the aim of the Elements by consid-

ering the meanings of the term ‘elements’ (aroLxeta). The characterization

he borrows from Menaechmus, Euclid’s 4th-century precursor, is of par-

ticular interest, since it is one Euclid himself would have known. Mena^ch-

mus, as Proclus [Friedlein 1873, 72-73] reports, recognized two senses for

the elements of a geometric system: in the relative sense, any proposition

can be termed an element in the context of any other proposition whose

demonstration assumes it; in the absolute sense, the elements are those

simpler propositions (e.g., axioms) on which whole bodies of theorems de-

pend. Proclus observes that under the former sense many propositions

could qualify as elements, whereas under the latter sense the term will ap-

ply only to a specific, relatively small set of propositions.59 One may note

in Menaechmus’ first sense of the term the reciprocal character of elements:

two propositions can be elements of each other, if the proof of the one can

be effected by assuming the other and conversely; this indicates a certain

57 In his brief comparison of the formal approaches of Euclid and Hilbert, Mueller

[1981, ch. 1] seeks, rightly I believe, to distinguish the ancient and modern views.

58 Among many discussions of the relation of Aristotle’s theory of deductive sci-

ence and Euclid’s procedure in the Elements, one may note Mueller’s account
in ch. 5, above; Mendell 1986, ch. 6; Hintikka 1981; and Heath 1949, 50-57.

59 For further remarks, see Burkert 1959, 191-192.
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fluidity in the order of proof, which would obtain in the fleld before the

appearance of a deflnitive textbook treatment.60

The second notion of element is reminiscent of the position adopted by

Aristotle in Physics i 1.61 Jn the effort to organize a field of experience

into a deductive science, in his account, we take complex wholes more

knowable to us through sense perception and break these down into their

simple components more knowable by nature; the latter are the elements

or first principles which form the basis of the science. Implied in this

remark is a two-part process in which, first, the analysis of phenomena

leads to the discovery of the primary conceptions, and then the field is

reconstructed deductively on the basis of these conceptions. On this view,

Euclid’s Elements might be viewed as a synthesis of the latter sort, where

the fundamental principles, already discovered, can be stated at the outset

and their consequences worked out as propositions, in systematic order.62

This sense of ‘element’ is linked with the modern views mentioned ear-

lier, not only by virtue of its emphasis on deductive form, but also for an

important nuance in its conception of the geometric field in relation to its

principles. For they all imply an account of a formal system which assigns

priority to its axioms and views its propositions merely as their deductive

consequences. In the modern conception, in fact, the axioms define the

system by specifying the entities it contains and their essential properties;

whatever other properties can be deduced from these may be considered

as already implicit within the axioms.63 In effect, demonstration becomes

a mechanical process, deriving consequences from the first principles in

accordance with deductive rules. In the ancient mathematical terminology,

this process is called synthesis, and it characterizes all the proofs one finds

in Euclid’s ElementsM

60 Barnes [1976] would take these remarks from Menaechmus to indicate the em-

ployment of circular reasonings in the proofs by mathematicians before Aristotle.

This inference is, I think, too bold to be sustained on the evidence at hand.

61 On this passage, see Ross 1936, 456-458.

62 Other Aristotelian passages are cited in Heath 1956, i 116—Top. 158b35,

163b23; Meta. 998a25, 1014a35-b5: cf. also Heath 1949, 205-206. For additional

discussion of the Aristotelian senses of ‘element’, see Mendell 1986, 492ff.

63 One may think of Aristotle’s characteristic distinction between the potential

and the actual, where in the present instance one would refer not to the existence

of derived terms, but to knowledge of their existence: cf. Meta. 1051a30-33, and
the discussion in Mendell 1984.

64 The principal ancient account of the method of analysis and synthesis is from

Pappus [Hultsch 1876-1878, vii 634-636]. The modern literature on the method
is extensive: see, for instance, Knorr 1986a, esp. ch. 8.2; A. Jones 1986, 66-70;

Hintikka and Remes 1974; Mahoney 1968-1969; Gulley 1958; Robinson 1936.
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This conception of the Elements as an inquiry about the first principles

of geometry will undoubtedly sponsor interesting insights into the nature

of formal studies. But it assigns too small a role to the technical content of

the fields of Euclid’s geometry, and thus misses a feature which, I believe,

is critical for a historical understanding of his project.65 In what follows,

I will take up three aspects related to setting the genre of Euclid’s work: its

place as the paradigm of a particular type of technical treatise; the manner

of Euclid’s activity in editing his source materials; and the character of

technical instruction toward which it was applied.

For these purposes, it seems more useful to pursue Menaechmus’ first

sense of the term ‘element’, namely, as any principle or theorem assumed

within the proof of another. That is, all the propositions of Euclid’s treatise

are elements with respect to higher studies in geometry. As Proclus himself

notes, this was precisely how Euclid was used by later geometers:

the most fundamental and simplest theorems and most kin to the

primary hypotheses are here [sell, in the Elements] joined together,

taking the appropriate order, and the proofs of the other (theo-

rems) use them as thoroughly familiar and arise from them. Just

as Archimedes . . . and Apollonius and all the others seem to use the

things proved in this very treatise, as agreed on starting points.

[Friedlein 1873, 71]

Moreover, the title Elements was not restricted to Euclid’s treatise. Pro-

clus [Friedlein 1873, 66-67] denotes by this term geometric works produced

by Euclid’s predecessors Hippocrates, Leon, Theudius, and Hermotimus.

Even if the term derives from Proclus’ possible source, Aristotle’s disciple

Eudemus, rather than from the titles of the works themselves, we can in-

fer its generic use in the 4th century to denote works of Euclid’s kind.66

From another of Aristotle’s disciples, Aristoxenus, we possess a treatise in

A similar distortion of emphasis, I believe, accompanies the familiar view that

the ancients’ geometric constructions played the role of existence proofs: cf. Knorr
1983.

66 Burkert [1959, 193] takes perforce the designation ‘elements’ as the actual title

of the pre-Euclidean works. Mendell [1986, 493] observes, however, that what
these authors titled their works is immaterial; the salient fact is that Proclus’

source, Eudemus, could designate them as ‘Elements’, whence the works them-
selves must have conformed to a Peripatetic conception of the term. In Mendell’s
view, Eudemus would surely have held the second of Menaechmus’ senses for

‘elements’, namely, the simple components into which a complex can be resolved.
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two books, the Harmonic Elements.^'^ Apollonius [Heiberg 1891-1893, i 4]

describes the first four books of his own Conics as ‘falling into (the class

of) elementary training’ [ireTTTCOKev elg dywyfiv aTOLX€LO)8r|], in contrast to

the contents of the last four books, of a more advanced character, which

he terms ‘supplementary’ (TrepLOuaLacjTLKCJTepa); the commentator Eutocius

[Heiberg 1891-1893, ii 176] cites the same work as the Conic Elements.

Pappus [Hultsch 1876-1878, ii 672.12] denotes by the term Elements not

only Euclid’s work, but also treatises by other geometers, e.g., the Conic El-

ements by Aristaeus.68 Archimedes once cites his Elements ofMechanics for

a result we know from his On Plane Equilibria (i 8) [cf. Heiberg 1910-1915,

ii 350.21]; several of his references [Heiberg 1910-1915, i 270.24; ii 268.3,

436.3] to the Conic Elements are likely to denote the works by Euclid or

Aristaeus, precursors of Apollonius.69 Interestingly, Archimedes once uses

the phrase ‘conic elements’ to denote three specific propositions (i.e.. Quad,

parab. props. 1-3) for which he provides only the enunciations, since their

proofs can be assumed from a treatise on conics, itself also called the Conic

Elements [Heiberg 1910-1913, ii 266.3, 268.3]. Among later writers, e.g.

pseudo-Hero [Schone and Heiberg 1903-1914, iv 14.1, 84.18] and Diophan-

tus, the term aTOixeCcooLg becomes synonymous with ‘introduction’.70

These instances make clear that Euclid’s Elements was the paradigm for

a literary genre which embraced technical treatises extending beyond the

specific field of Euclidean geometry. Proclus indicates this when he refers to

the ‘numerous compositions’ falling into the category of elementary treatise

[aroLxeLcacTL?] in the areas of arithmetic and astronomy. In speaking of the

general activity of producing such treatises, he remarks on the diversity

of their editorial styles [Friedlein 1873, 73]:

It is a difficult task in any science to select and arrange properly the

elements out of which all other matters are produced and into which

67 See Barker’s discussion in ch. 9, below. Note that Aristoxenus’ Harm. Elem. is

discursive in style, thus in marked contrast to the rigorously deductive format

of Euclid.

68 Cf. also Hultsch 1876-1878, ii 552.4 (possibly referring to Theodosius or Euclid:

cf. 553n), 608.2 (referring to Euclid’s Phaen.), 660.19 (taken by Hultsch to refer

to Apollonius’ De plan. loc.). It is possible, however, that some of these passages

are interpolations. For other uses of the term, see Hultsch ’s index s.v. crroLxeLOv.

69 Note that two citations of Euclid’s Elements at Heiberg 1910-1915, i 20.15 and
ii 444.28 are certainly interpolations.

70 A scholiast [cf. Tannery 1893-1895, ii 72.16-20] to lamblichus refers to Dio-

phantus’ Arithmetica by this term. In Diophantus’ preface, the initial materials

are said to be elementary (exovra (rroixeLCoScog) [Tannery 1893-1895, i 16.3]. Of
course, Proclus frequently refers to Euclid’s work as aTOLxeCaKJLg.
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they can be resolved. Of those who have attempted it [Morrow

1970, 60: ‘scii. for geometry’] some have brought together more

theorems, some less; some have used rather short demonstrations,

others have extended their treatment to great lengths; some have

avoided the reduction to impossibility, others proportion; some have

devised defenses in advance against attacks upon the starting-points;

and in general many ways of constructing elementary expositions

have been individually invented.71

This passage has sometimes been taken to refer to treatments of elementary

geometry;72 but one would surely find remarkable the implied proliferation

of ancient editions alternative to Euclid.73 Further, Proclus is unlikely to

have had access to pre-Euclidean versions. Proclus’ source in the present

discussion may be Geminus; but only Eudemus could provide Proclus in-

formation on the pre-Euclidean tradition, and Eudemus of course could not

compare such versions with Euclid’s treatment [cf. Heath 1921, i 114].74 But

as Proclus makes clear his interest in the expositions of ‘any science’, we
must suppose that he is considering the whole range of technical treatises,

not just those in geometry. Among extant treatises, reduction-avoidance

happens to be characteristic of Menelaus in the Spherics, while the inclina-

tion toward lengthy proofs typifies Theodosius’ Spherics in contrast with

parallels in Menelaus and Euclid (Phaenomena) [see Heath 1921, ii 248-

249, 263, 265].75 The preface to one of the editions of Euclid’s Optics forms

71 Cf. Morrow 1970, 60, which I here follow. The characterization here of elements

as that ‘out of which all other matters are produced and into which they can be

resolved’ is reminiscent of Aristotle’s passages on elements (in particular, the

material kind of elements): cf. Meta. 983b8-ll; Phys. 194b24, 195al6-19.

72 Cf. Morrow 1970, 60n which explains Proclus’ phrase ‘of those who have at-

tempted it’ by the remark: ‘scil. for geometry’. Artmann [1985] begins with this

very passage as the basis for developing his thesis that some of the proportion-

avoiding proofs in Euclid’s books 1-4 derive from a pre-Euclidean treatise. The
difficulty, however, is that Proclus is not speaking here about pre-Euclidean prece-

dents of the Elements, but rather of the whole ancient tradition of elementary

mathematical treatises.

73 Of course, there were many commentaries on Euclid, such as those by Hero,

Geminus, and Proclus: cf. Heath 1956, i 33-45.

74We return below to the issue of the pre-Euclidean precedents for the proportion-

avoiding proofs in the Elements [see n83, below].

75 Similarly, Autolycus’ De sphaera quae movetur is more abstract and verbose

than the parallels in Euclid’s Phaen.: cf. the specimens cited by Heath [1921,

i 351-352]. For further discussion of these treatises, see Berggren’s essay [ch. 10,

below], Berggren and Thomas 1992, Knorr 1989b.
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a sort of defense of its postulates, in that notions of the nature and trans-

mission of visual rays are explained in a counterfactual manner: hypotheses

different from those implicit in Euclid are refuted through consideration of

associated physical phenomena.76 Thus, Proclus’ remarks on the variety of

styles in this tradition of technical writing can be related to some extant

works, even though most of the works he refers to must be ones that are

now lost.

The Elements is thus the model, if not the first exemplar, of a particular

type of scientific treatise, in which the content of the science is presented in

a formal, systematic, and deductive manner. The exposition develops as a

series of propositions in which the demonstration of each depends on those

preceding and in its turn can serve toward the demonstrations of those

following. The whole series is initiated by the statement of certain primary

terms and propositions (the elements in the absolute sense), in the form

of definitions and postulates, for instance, which in the context of the work

may be taken as inderivable.^7

In studying a treatise of the synthetic type, one will follow its deductive

order. But the project of producing the treatise entailed the discovery of

the appropriate deductive sequence and this heuristic phase will invariably

proceed in the reverse order, that of analysis. In its usual sense in ancient

geometry, ‘analysis’ refers to a method for finding solutions of geometric

problems.78 A targeted result (e.g., a construction satisfying certain spec-

ifications) will first be assumed as known; the quest for a derivation or

proof will then bring forward certain other results, these in their turn still

others, until one obtains a sequence linking the desired end result to ones

76 The preface to one recension of the Optics is thought by Heiberg [1895, vii

144-154] to be based on introductory lectures by Theon. I discuss aspects of the

preface in Knorr 1985b, sect. 9, and argue against Heiberg’s assignment of the

recensions in Knorr 1992.

77 In the absolute sense, such inderivables would be postulates or definitions. But
in advanced treatises, such as Archimedes’ Quad, parab. and Meth., one typically

permits as initial assumptions the results established in more elementary treatises

(such as the Con. elem. or De plan, aequil. i).

78 Pappus [Hultsch 1876-1878, ii 634-636] distinguishes two types of analysis: the

problematic (scii. analysis of problems) and the theoretic (that of theorems), and

clearly he assigns priority to the theoretic type. In this I believe he has severely

undervalued the significance of the analysis of problems: cf. Knorr 1986a, ch. 8.2.

Hintikka and Remes [1974] also find the analysis of problems (constTructions) to

be the more fruitful domain for examination.
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that are already known or admissible per seJ^ Although this method is

usually employed in the investigation of individual constructions or propo-

sitions, a heuristic procedure of the same kind can be applied toward the

organization of systems of constructions and theorems. 80 A nuance we have

noted in Menaechmus’ first account of ‘elements’ is that the deductive order

is relative: within certain limits, the researcher can make the choice as to

which results will be prior and which derived from them. The options will

emerge as one pushes further into the analysis of the principal theorems

and constructions of the field.

In the specific instance of the Elements, however, Euclid is not so much
its composer as its editor. As Proclus informs us (following, it appears,

the authority of Eudemus), other geometric compilations in the form of

‘Elements’ were produced in the century before Euclid, so that his treatise

is a consolidation of several generations of geometric study. Euclid’s sources

must have provided expository models, not only for the proofs of individual

propositions, but in some cases for the substance of major sections and

even of whole books. It seems clear, for instance, that the structure of

his proportion theory in book 5 existed in much this form among disciples

of Eudoxus, and that similarly extensive prototypes existed for his number
theory in book 7, his theory of irrationals in book 10, his exhaustion theory

in book 12, and his constructions of the regular solids in book 13.81

In analysis the examination pursues the deductive consequences of the as-

sumed target; the formal synthesis reverses the logical order. In his account

of the method. Pappus is ambiguous, at one time asserting that the reasoning

in the analysis is deductive, but then describing it as a search for appropriate

antecedents. Older accounts [e.g., Robinson 1936] attempt to reconcile the two
views by emphasizing the convertibility of geometric propositions. Hintikka and
Remes [1974] look toward the special nature of reasoning via geometric diagrams.

Knorr [1986a, ch. 8] prefers a textual explanation, in which Pappus has merged a

mathematical and an Aristotelian account conceived along contrasting lines.

Burkert [1959, 195] suggests that the bi-directional character of research in

geometry—the investigation of deductive consequences on the one hand and the

search for prior principles on the other—gave rise in the 5th century to an appli-

cation of the term oToixetov (until then used only to denote a ‘column’ or ‘file’, as

of soldiers) to designate the ordered sequence of geometric propositions. Knorr
[1985] adopts an analytic strategy to explicate the development of the theory of

irrationals in Euclid, Elem. x.

*Wan der Waerden [1954, 115, 123-124: cf. 1979, 352-353] has striven to assign

the prototypes of books 2, 4, and 7 to the Pythagoreans, that of book 8 to the

Pythagorean Archytas [1954, 112, 149, 153-155], that of book 10 to Theaetetus

[1954, 172], and those of books 5 and 12 to Eudoxus [1954, 184-189]. Neuen-
schwander [1972-1973] sustains some of these claims on the Pythagorean prove-

nance of substantial parts of books 1-4. But I think the effort to view whole
Euclidean books as, in effect, mere transcripts of treatises written a century or
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Presumably, Euclid did not merely transcribe his sources verbatim, how-

ever. Each of the books has a few key problems and theorems [e.g., Elem. i

prop. 47, the ‘Pythagorean theorem’], and Euclid must have been able to

choose from among several variants for his own constructions and proofs.

We can only speculate as to the manner of his examination of these ma-

terials, but one can readily suppose that it took the form of an analysis.

That is, inspecting the preferred variants, Euclid would determine which

prior results were necessary for establishing them; taking these up in their

turn, he would determine what they required; and so on. Eventually, the

backward sequence must terminate in results which can be accepted as

primary, without further proof or justification. In this way, the elements or

first principles, suitable as the basis of the corresponding synthetic exposi-

tion, would emerge as the last terms in the analytic inspection of the major

theorems of each book. One may note, for instance, how the sequence of

problems of construction in Euclid’s book 1 tracer back to the three postu-

lates of construction which preface the book; or further, how the parallel

postulate first enters within the proof of Elem. i prop. 29, and in fact is

stated in precisely the terms that this proof requires [cf. Knorr 1983].

One of the remarkable features of Euclid’s formal style is his deferral of

the methods of proportion until book 5. This commits Euclid to presenting

congruence proofs for all the propositions on plane figures in books 1-4.

At times this results in intricate congruence proofs where the use of the

similarity of figures would be straightforward [cf. Elem. i prop. 47, iii props.

35-37, iv prop. 10]. Indeed, one would presume that simpler vaxicints of

the latter type were employed in Euclid’s sources.83 From the technical

more earlier drastically oversimplifies the likely process of transmission and edit-

ing. One will freely admit that the content of Euclid’s propositions was, for

the most part, entirely familiar among mathematicians by the middle of the 4th

century and, for much of the more elementary material, far earlier than this. But
the organization into treatises closely resembling Euclid’s books was surely still

in progress until very near Euclid’s time and Euclid himself must be assigned a

major role in establishing whatever stylistic unity one can discern in the Elements
over all. Such an account is surely what is suggested by Proclus’ survey [Friedlein

1873, 65-67] of the pre-Euclidean writers on elements.

82 Note that the account in sect. 2 above of the development of proportion theory -

follows a similar pattern of analyzing proofs (i.e. those in the ‘Eudoxan’ style)

back to prior principles which, in turn, become the basis for the synthesis of an

alternative form of the theory (namely, that in Euclid, Elem. v). }

83 A very good resume of these proofs and their alternative versions is given in Art- )

mann 1985. As noted above, however, the evidence from Proclus [Friedlein 1873,

73] does not deal specifically—and perhaps not at all—with treatises from the

early geometric tradition. Thus, we have no grounds for assigning the project of

devising the proportion-avoiding proofs to any pre-Euclidean editor of Elements.
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viewpoint, this is an entirely artificial project, since the results established

in either event are the same. Why does Euclid divide the materials of plane

geometry in this manner? Is it for philosophically interesting reasons, e.g.,

adherence to a principle of economy in setting up a deductive system? Or

for the mathematically interesting reason of determining the precise domain

accessible under specified postulates (e.g., the axioms of congruence)?^^ Yet

the aesthetics of deciding between a simple proof which uses proportions

and a complicated proof which does not would appear to be unclear. More-

over, Euclid is elsewhere not so concerned over formal niceties, as in his

unexplicated assumptions on continuity in books 5 and 12,85 or his appeal

to geometric motions in book 13.86 At best, Euclid’s success in maintaining

such formal restrictions would appear to be uneven.

On the other hand, the attempt to root Euclid’s deferral of proportion

theory in historical reasons does not face the immediate issue. It might be

the case that the avoidance of proportions was recommended after geome-

ters realized how the existence of incommensurable magnitudes rendered

invalid the use of theorems established through an integer-based definition

of ratio. But this state of affairs could have held only briefiy, during the

earlier part of the 4th century.87 By Euclid’s time Eudoxus had long since

Artmann is right, I believe, to see in these Euclidean proofs a subtle project: to

establish as much geometry on as few assumptions as possible. But we can as well

assign this effort to Euclid himself as to any of his precursors, and his motives for

undertaking it could be other than purely mathematical (e.g., pedagogical), as

is maintained below.

One could pose similar questions about the motivation for restricting the means
of construction to compass and straightedge: see n88, below.

85 We have noted already Euclid’s assumption of the existence of finite multiples

of magnitudes greater than other given magnitudes. At several places he also

assumes the existence of the fourth proportional of given magnitudes. Neither

assumption is covered by explicit postulates.

86 The definition of ‘sphere’ in book 11 and its applications in book 13 conceive

this figure as a solid of revolution. Euclid could have defined it statically—as

the locus of points in space equidistant from a given point—by analogy with his

definition of circle in book 1. This is, in fact, the way the sphere is defined by
Theodosius. Attempts to explain away his inconsistency, e.g., as occasioned by
the specific exigencies of the solid constructions in book 13 [cf. Heath 1956, iii

269], seem motivated by the desire to save an interpretive principle (scii. the desire

to avoid assumptions of motion) which did not actually bear on the ancients’ view.

It is clear, for instance, that Archimedes, Apollonius, and Pappus have no qualms
in retaining and exploiting the generational conception of the sphere and other

solids of revolution.

87 It is doubtful, however, that any such dislocation of mathematics ever took

place in antiquity. See the discussion of the alleged foundations crisis in the

pre-Euclidean period in Knorr 1975, ch. 9.
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resolved these difficulties. It would seem merely clumsy on Euclid’s part

to persist in the avoidance of proportions in his pre-Eudoxan sources (if

indeed he did work directly from older sources, rather than contemporary

editions), when the mathematical difficulties had been resolved.

An account along the lines of the pedagogical intent of the Elements

seems possible: for Euclid may have judged that the simple notions of

the congruence of figures constituted a manageable body of material for

introductory purposes. The use of similar figures could extend the field

and facilitate many of the proofs, and these could have been admitted on

the basis of a naive conception of proportion. But Euclid’s plan for the

Elements includes the presentation of proportion theory in a fully rigorous

manner. Set early in the sequence of books, instruction in the logical sub-

tleties of the general proportion theory would distract from the geometric

material, so that one is well advised to postpone this theory until after a

basic block of geometry had been covered. Having made this choice, Euclid

would be compelled to find alternative congruence-based proofs, however

intricate those constructions might turn out. 88

The strategy of avoiding proportions in the earlier books of the Elements

is thus occasioned by the combination of the rigorous proportion theory

with the whole field of plane geometry. Neither body of material, taken

separately, would compel such alternative demonstrations. Presumably,

none of Euclid’s predecessors had attempted to compile such a large portion

of the geometric field within the limits of a single treatise. Hence, our view

carries the implication that the proportion-avoiding proofs were due to

Euclid himself. 89

In setting the genre of the Elements as a systematic geometric treatise,

we thus perceive two different formats as it were, the research monograph

and the introductory textbook. That a study of the elements of a field is the

objective of a work of the latter sort is already attested in Aristotle, Top.

88 One can account for the restriction to planar constructions (that is, circle and

straight line) on similar pedagogical grounds: the use of other methods, such

as neuses (sliding rulers), conics, mechanical curves, and the like, would require

additional postulates and an appreciable body of lemmas, before they could be

admitted into a formal work of the type of the Elements. The narrow base of the

Euclidean postulates opens up a domain of constructions rich enough to make
such additions unnecessary. Of course, the ancients studied the alternative con-

structions extensively [see Knorr 1986a, for a survey]. One might view Apollonius’

Conics as an effort to axiomatize the field of conics on the Euclidean model. But
it is unclear whether any of the other approaches received a comparably rigorous

elaboration. Despite this, they were freely admitted into researches on advanced

problems.

89 Contrast Artmann 1985: cf. n83, above.
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viii 3. As noted above, Apollonius divides his own Conics into two parts, the

first half being elementary—that is, devoted to the systematic presentation

of familiar results, presumably for the purposes of instruction—and the

second half being an advanced supplement comprising new material. Most

of the writings in the Archimedean corpus were produced as research works,

as one can gather from the prefaces;90 the first book On Plane Equilibria,

however, fits better into the instructional category.91 In the case of Euclid’s

work, it was in fact adopted as the standard textbook in its field.92 This

is evident in the manner of its citation throughout the later geometric

tradition and the appearance of a substantial body of commentary on it,

as by Hero, Apollonius, Geminus, and others.93 Proclus [Friedlein 1873,

74], for instance, often alludes to its uses in teaching, as when he lists its

advantages over other textbooks.

Indeed, for Proclus, the Elements defined the scope of an introductory

course in geometry. Euclid’s formal manner would be especially welcome

within the curriculum of the 'Neoplatonic Academy, ultimately geared to-

ward training in Platonic philosophy. But as a technical introduction, the

Elements is surely remarkable—for its sophistication on the one hand, and

its opacity on the other. For a presentation of the basics in geometry, one

would find Hero’s Metrica a more likely text.94 In Metr. i, for instance. Hero

sets out the different kinds of plane figures in order (triangles, regular poly-

gons, circles, parabolas and ellipses, conical and spherical surfaces) with

arithmetical rules for computing their areas, and likewise for the volumes

of solid figures in book 2. (Book 3 is devoted to problems in the division of

plane and solid figures.) In a very few cases derivations are provided (as

for the circle-segment rule in Metr. i). But for the most part, the rules are

only stated, together with details of the working of explicit problems; for

formal justifications the student is referred to the appropriate writings by

90 This does not preclude that some of his writings eventually found their way
into school use. Archimedes’ De sph. et cyL, Dimen. circ., De plan, aequil., and
Meth. are frequently cited by later commentators like Hero, Pappus, Theon, and
Eutocius, who thus assume their availability to students of higher mathematics.

91 Berggren [1976-1977] suggests that the extant De plan, aequil. i is an adap-
tation for school study. The manner of the origin of the extant text of Dimen.
circ., as a reworking of materials from Theon, would indicate the same for this

work: cf. Knorr 1986b.

92A similar status would seem to apply for the Data, Optics, Catoptrics (whether

or not this is an authentic Euclidean work), and the Phaenomena.

93 On Euclid commentaries, see Heath 1956, i ch. 3-4.

9^1 For the text, see Schone and Heiberg 1903-1914, iii and Bruins 1964. For a
survey, see Heath 1921, ii ch. 18.
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Euclid, Archimedes, and others. The same concrete approach is adopted

for an introduction to arithmetic problem solving in Diophantus’ Arith-

metica. Here one encounters sequences of problems, set in terms of explicit

numerical parameters, with complete working out; formal justifications of

any underlying arithmetic or algebraic relations are usually omitted, save

for occasional refer-ences to companion treatises.95 As another example of

an introductory text, Ptolemy’s Almagest covers the more advanced field of

mathematical astronomy, where a thorough grounding in plane and spheri-

cal geometry is assumed [see Toomer 1984, 6]. While Ptolemy’s exposition

shares some features of Euclid’s in that proofs of important geometric rela-

tions are often provided, it includes guidance in the more practical aspects

of the field, like instrumentation, observations, numerical methods, tables,

and so on.^6

In contrast with these examples, Euclid provides no insight into the ap-

plication of his theorems, nor does he take up any of the related practical

aspects, like the nature and manipulation of instruments for the construc-

tion of problems. For all his theorems on prime numbers, perfect numbers,

square and cube numbers, irrational lines, and so on, not one concrete

example is provided of any.97 Because he adopts the synthetic mode exclu-

sively, the reasons behind the steps in his proofs and constructions—why,

for instance, an auxiliary term is introduced or a particular proportion is

used—are left unexplained. At times one is awed, even mystified, at the

denouement of an especially complicated proof.98 Without the heuristic

95 In some instances, Diophantus cites his own Porisms for the derivations of

assumed results: cf. Heath 1910, ch. 5.

96 On Ptolemy’s procedures, see Pedersen 1974. Ptolemy takes pains to derive

from observations the numerical parameters of his planetary models. But he

offers perfunctory explanations at best to justify the specific basic geometric

configurations themselves (e.g., eccenters, epicycles, equants, and so on). Pre-

sumably, the basic geometric options were fixed in the older technical literature,

particularly, the work of Hipparchus, so that only the refinement of parameters

needed detailed commentary.

97 Numerical examples turn up in the scholia to the Elements. By contrast with

Euclid, the arithmetic expositions of the neo-Pythagoreans, following Nicomachus
(2nd cent. AD), are based almost entirely on specific examples. Here, general

results must be inferred on the bcisis of incomplete inductions.

98 Note, as particularly striking instances, the proof of Elem. v prop. 8, the in-

direct limiting arguments in xii props. 2, 5, 10-12, 18, and the solid constructions

in xiii props. 13-17. The Euclidean proof of the ‘Pythagorean theorem’ on right

triangles [Elem. i prop. 47] is frequently held up as a model of contrivance. In the

case of problems, a reconstructed analysis mitigates the element of surprise, for it

reveals, as the synthetic proofs do not, the reason for the critical auxiliary steps:

cf. Knorr 1986a, 9.
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insights that one would obtain from the analyses, Euclid’s moves often

seem arbitrary. Some parts of the Elements—most notably, the elaborate

classification of irrational lines in book 10—evade description as introduc-

tory at all [see Knorr 1985]. In all, the student is drawn into a passive

appreciation of Euclid’s often imposing reasoning, rather than stimulated

to develop active expertise in solving problems.

The presence of such advanced features in the Elements indicates that

Euclid can already suppose the student’s understanding of the basics of

practical arithmetic and geometry, that is, properties and rules of the type

set out by Hero. Although Hero cites Euclid and other authors in the formal

tradition, that need not imply his students’ prior exposure to these works;

these could as well (indeed, more fittingly) be viewed as references forward

to works of a more advanced nature for future study. Precedents for this

more concrete, application-oriented mathematics are firmly established in

the older Egyptian and Mesopotamian traditions.99 The Greeks themselves,

from Herodotus and Eudemus to Proclus look to practical contexts for the

origins of mathematics, and modern scholarship tends to support their

view of a transference of the older techniques to the Greeks sometime in

the pre-Euclidean period. 199 The achievement of the Greeks in the 5th and

4th centuries, culminating with Euclid, would then lie in their provision of

the rigorous deductive foundation of this geometric lore, not the creation

of an abstract geometry ex nihilo.

The difficulty in assessing Euclid’s aims in the Elements thus appears

to result from what we would term a confusion of genres. For Euclid

ha.s fashioned his introductory textbook along lines which we more readily

associate with research treatises. Instead of offering models of analysis,

whereby the student would learn the arts of geometric inquiry, he provides

the formal exposition of results in the synthetic manner. To be sure, the

instructor would be free to supplement the text with suitable motivating

99 For surveys, see van der Waerden 1954, ch. 1-3; Neugebauer 1957, ch. 2, 4.

109 The Egyptian precedent is cited by Proclus [Friedlein 1873, 64-65: cf. Morrow

1970, 51-52]. The Mesopotamian precedent, although largely unnoted by the

ancients, is standard in the current historical literature: cf. van der Waerden 1954,

124; Neugebauer 1957, ch. 6. I have proposed that the channel for transmission

of Mesopotamian techniques to Greece in the pre-Euclidean period was Egypt
during and after the Persian occupation (6th-5th cent. BC) [Knorr 1982b, 157].

Scepticism about the Mesopotamian element in early Greek geometry, however,
hcLs been expressed by Berggren [1984, 339]. To similar effect, D. H. Fowler [1987,

8, 285] maintains that the Mesopotamian characteristics evident in Heronian
metrics entered the Greek tradition in the Hellenistic period, hence, well after

the Euclidean manner had been established through the prior researches of the

Classical period.
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and explanatory insights, as he saw fit. But the Elements itself provides no

guidance along these lines, and one perceives from the extensive technical

commentaries by later writers like Pappus, Theon, Proclus and Eutocius,

that the formal aspects of geometry dominated the course of university-level

mathematics.

In effect, Euclid transformed the study of geometry and the other tech-

nical disciplines into a scholastic enterprise—the appreciation and criticism

of standard texts. 101 While creative research of a high level was pursued in

the immediate circles of the greatest figures, like Archimedes, Apollonius,

Hipparchus, and Ptolemy, the tension between the aims of research and

criticism emerge early. Already Archimedes can chide Dositheus and his

Alexandrian colleagues:

Of the theorems addressed to Conon, about which you continually

write me to send the proofs, some I send to you in this book. . . . Do
not be amazed if I have taken a long time before issuing their proofs.

For this has occurred through my desire first to give them to those

proficient in geometry and committed to their investigation .... But

after Conon’s death, though many years have passed, we sense that

none of these problems has been moved by anyone. 102 [Heiberg 1910-

1915, ii 2.2-3, 5-10, 18-21]

One senses that the Alexandrian group had come to take greater pains over

the assessment of proofs than the discovery of new results. By contrast,

Archimedes’ concern is to stimulate inquiry, as his praises of Conon here

indicate.

Our view of the genre of Euclid’s Elements expands as we move from the

prefatory first principles—definitions, postulates, and axioms—and into the

main body of problems and theorems. Initially, it may seem plausible that

Euclid’s aim is to articulate the absolute principles of geometric science,

and to elaborate from these the content of the field. But Euclid withholds

all commentary on the developing character of his system; the relation

of any given proposition to the first principles is never an explicit issue

for remark, but only the justification for each of the steps of its proof.

Moreover, the presence and position of any construction or theorem are

determined by what can be proved at that point; there is no indication

101 One may observe that Alexandrian scholarship in the early Hellenistic period

similarly transformed the study of other fields of learning, in particular, literature:

cf. the surveys in Reynolds and Wilson 1968, Russell 1981.

102 A similarly defensive tone, balancing the heuristic and apodictic aims of re-

search, is evident in the Method [Heiberg 1910-1915, ii 428-430].
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that what is absent is excluded on absolute grounds—e.g., that certain

entities whose construction cannot be given do not exist within the system

defined by the initial postulates [cf. Knorr 1983]. Euclid must be more

pragmatic: he is not possessed of those algebraic techniques which can

establish definitively which constructions fall within the Euclidean domain;

he can only know which constructions have been worked out, and which

(so far) have not. 103 Of those in the latter category, some may have been

constructed via alternative means (e.g., cube duplication or angle trisection

by means of mechanical curves or conics); but the possibility of effecting

them via the Euclidean postulate remains for him unresolved. In view of

this, Euclid’s Elements could not be, even for Euclid, an exposition of the

whole geometric field.

Thus, as we make our way through his treatise, we perceive how the struc-

ture is the vehicle for presenting a body of fundamentals. The structure,

however, is not itself the subject of Euclid’s interest. Euclid’s meticulous

attention to formal detail may well connect the Elements with sophisticated

mathematical and philosophical inquiries into foundations. But this does

not make it a treatise on foundations. The effort to interpret it as such

a treatise qualifies as a philosophical critique of the Elements, but not as

an exegesis of its own objectives.

One should consider remarkable—and perhaps unfortunate—Euclid’s de-

cision to adopt this formal geometric style in the context of a work intended

as an introduction to higher studies. Insight into heuristic techniques is

omitted, like the scaffolding scuttled upon completion of the edifice. 194

The Elements sets out the finished product for our contemplation; it is not

a builder’s manual. Yet Euclid must surely intend his work to serve as an

introduction to the study of geometry—specifically, the formal, demonstra-

tive type of geometry. Demonstrations in effect set out the causes which

justify geometric procedures. What is striking is that Euclid considers this

manner of presentation, namely, the formal exposition of finished results,

to be the basis for instruction. That points to a fundamental difference be-

tween his views of research and pedagogy from our own. Euclid expects that

103 Por a discussion of the ancients’ views on the classification and solution of

problems, see Knorr 1986a, ch. 8.

104 Cf. the related observation in Hirsch 1967, 78: ‘Genre ideas . . . have a nec-

essary heuristic function in interpretation, and it is well known that heuristic

instruments are to be thrown away as soon as they have served their purpose.’

Hirsch is here not expressing his own position, however; he goes on to argue

that the notion of genre, specifically ‘intrinsic genre’, is indispensable for the

articulation of meaning.
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the learner will acquire expertise in geometry through the contemplation

of its finished form, rather than through exercise in its production.

5. Conclusion

The scholarship on ancient mathematics invariably adopts an intentional

vocabulary in framing interpretations. In discussing pa^ssages from ancient

writings like Euclid’s Elements, scholars present their views as if they were

Euclid’s own. Theorists of literary criticism have long recognized the dif-
j

ficulties that attend a naive conception of authorial meaning, however, and
|

have generated a spectrum of positions on the admissibility of this concept.
|

I have attempted to apply some ideas from E. D. Hirsch, Jr., whose defense
|

of authorial meaning offers, I believe, a position more fruitful for the prac-
|

ticing historian than would the many varieties of literary scepticism. My
I

aim has been, not to win a consensus for certain interpretations of my own
|

on debated points about Euclid, but rather to show how Hirsch’s insights
!

can reveal the methodological assumptions implicit in the different views

and thus inform the process of judging among them. His four criteria of

legitimacy, correspondence, genre appropriateness, and coherence are es-

pecially helpful in determining whether a given view is likely to represent

the ancient writer’s meaning, or might instead be a criticism of it, that

is, a projection of the text into the environment of the critic’s concepts and
|

concerns.
j

The standard views on Euclid’s proportion theory (e.g., those cited from
|

de Morgan and Heath) tend to read it in the context of modern notions
|

of real number. In the definition of ‘having a ratio’ [Elem. v def. 4], it is
j

maintained, Euclid’s intent is one (or perhaps all three) of the following: to
j

restrict ratios to pairs of homogeneous magnitudes, or to exclude non-finite

magnitudes, or to incorporate incommensurable as well as commensurable

magnitudes. All these views fit the technical demands applicable to any

general theory of proportion. But each fares poorly as a rendering of Eu-

clid’s text: legitimacy—implicit meanings must be assigned to his terms,
|

where there is no clear cause why he should not have made these mean-
j

ings explicit, if such was indeed his intent; correspondence—aspects of the

text are left out of account or appear superfiuous (why, for instance, is the

‘exceeding of multiples’ set out as a reciprocal relation?); coherence—the

definition is viewed in isolation from its textueil position among the other

definitions and propositions of Euclid’s theory.

Like Heath, Mueller takes the intent of the definition to be the inclusion

of incommensurables; but he transcribes it in a form different from that

adopted by previous commentators. In his version, the definition is set
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firmly in the context of the comparison of equimultiples, characteristic of

Euclid’s form of the theory. As I have maintained, this effectively displaces

all three of the former proposed views of the definition’s intent and es-

tablishes an alternative one, namely to serve as a specific precondition for

the definition of ‘having the same ratio’ which immediately follows. From
this, one can develop a view of the origin of Euclid’s fourth definition as a

by-product of the recasting of a precursor version of the proportion the-

ory of book 5. The resultant view, I believe, works well as a historical

account of Euclid’s meaning and editorial method. The standard views,

while hereby displaced as accounts of Euclid’s meaning, retain value as

critical instruments. For we can now use them to judge Euclid’s procedure

in contra,st to the standard modern theories.

With respect to their arithmetic theories, did Euclid and the other an-

cients conceive fractions as one does in modern mathematics—that is, did

they intend by their terminology of fractions the same things we do? Fowler

advocates the provocative thesis that they did not, that the unit-fractional

mode adopted in the Egyptian and early Greek calculations acted as a bar-

rier against formulating the more general notion of the fractional number.

For instead of presenting the result of dividing an integer m by another

integer n merely as the corresponding fraction (i.e., the equivalent of our

”»/n), the ancients habitually engage in further computations, casting the

quotient as a sum of unit-fractions. Ostensibly, a textual analysis like that

given in the preceding example would confirm the separation of the an-

cient and modern concepts. But here I perceive a difference, in that we
are not dealing with a specific text set in a clearly defined textual domain,

but instead, with a wide family of texts spanning the whole of Egyptian,

Mesopotamian, and Greek antiquity. Thus, the criterion of coherence is

ambiguous and its application circular: if we minimize our constraints as

to what would be an acceptable fraction concept and insist only on an

operational equivalence with modern fractions, then texts from later anti-

quity (e.g., Diophantus and Hero and the writers in their practice-oriented

tradition of mathematics) would certainly qualify, and one would naturally

date the concept back, in the absence of any clear signs of innovation in the

late authors. But if we adopt the stricter sense advocated by David Fowler

(where, if I understand his position correctly, one ought to accept fractions

as forms of dptSpoC, thus conflating the categories of \6yog and dpL0[i6?),

then either the ancients never advanced to such a conception; or, if they

did, this occurs only in late Hellenistic texts influenced by the assimilation

of Mesopotamian sexagesimal methods and thus should be sharply marked
off from the early arithmetic tradition of the Greeks.
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The criterion of genre appropriateness raises a further difficulty. Our
principal evidence for ancient practical arithmetic comes from the math-

ematical papyri. The two millennia from the Egyptian Rhind Papyrus

to the Graeco-Roman papyri embrace a remarkably uniform tradition of

school arithmetic, within which fractions are commonly handled in the

unit-mode and applications of the general manner, while arguably present,

are not expounded systematically as a separate technique. But should we

expect otherwise in a genre of school writing consisting of solved examples,

rather than exposition, proof, and commentary? But if we turn to the

‘high tradition’ of Archimedes and comparable writers of formal geometry,

computations of this sort are assumed as part of the students’ elementary
j

training. Moreover, when notations for terms like 1838 ^/n appear in the

formal tradition, are they merely the artefacts of Byzantine scribal conven-

tions, or do they provide insight into the arithmetical expertise of centuries

earlier?

Euclid’s arithmetic theory in book 7 of the Elements falls within the

latter genre of ‘high geometry’. What its underlying concept of fraction is

may be difficult to determine, since no such term appears there, beyond the

undefined notion of measuring (|i€Tp€Lv).105 But it does deal centrally with

ratios of integers, and we of course recognize how to establish an equiv-

alence between ratios and fractions. 106 Further, the practical writers cite

Euclid for the theory underlying their arithmetic procedures. One would

naturally infer, for instance, that Euclid’s problems on the finding of least

common multiples [Elem. vii props. 36, 39] were intended to provide formal

justification of techniques familiar within the practical arithmetic field. To

be sure, our evidence does not directly sustain this view, nor would we ex-

pect it to. But I find it more plausible than the converse view that Euclid

(or, more precisely, the theoretical tradition he consolidated) elaborated his
]

arithmetic theory purely as an abstract exercise, while the later practical
j

105 Already in Elem. vii def. 3, the relation of measuring (KaTapcTpeiv) is assumed
|

for defining ‘part’ (pepos); cf. def. 5. The notion of one number’s being measured
|

(peTpoupevo?) by another is exploited in the definitions of evenly even, evenly

odd, oddly odd, prime, relatively prime, composite, and relatively composite

numbers (defs. 8-15), even though a neater strategy could have been followed,

applying the notion of part given in def. 3. The problems set out in vii props.

2-3 show how to find the greatest common measure of given integers; but neither

‘measure’ nor ‘greatest common measure’ has yet been defined. Similarly, one

is assumed to understand the notions of measuring and measure as background

for the definitions of commensurables and incommensurables in book 10.

106 By this I mean that any operation on fractions can be re-expressed as a relation

among integers.
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writers serendipitously discovered its utility for their computations with

fractions.

One of the contributions of criticism is to articulate the subtle implica-

tions inherent in our assumptions. Fowler performs this service in remind-

ing us of nuances in our concept of fraction: we learn early and thereafter

take for granted that ‘m divided by n’ is the fraction ”^/n, a term which

can be manipulated with other such terms according to the familiar rules

of arithmetic. But can one impute the same conception in ancient arith-

metic texts? Fowler’s negative position gives rise to the questions of when,

by whom, and under what circumstances the general conception was in-

troduced. Not only do our ancient sources provide no assistance toward

answers, however, they seem unaware of any such questions. Like ourselves,

they appear to take for granted the nuances implicit in their procedures for

fractions. 107 It seems to me preferable, then, to take this silence seriously.

The aspect of the fraction concept here at issue, the notion of the general

fraction, is not a discovery in a simple sense, it would appear, but rather a

concomitant of the basic notion of parts. To be sure, the persistence of the

unit-fraction methods tends to obscure this general notion in many of our

texts, but I would not take this to be conceptually significant. One might

perceive a parallel in the persistence of ‘English’ standards in the United

States today, despite the availability of the more efficient metric system.

However much American learners might complain about the difficulties of

the metric system, it is clear that no conceptual issue is involved, but merely

the perpetuation of an outmoded technique. Doubtless, the ancients had

comparable reasons of economic expedience for retaining the unit meth-

ods, long after the advantages of alternative procedures should have been

evident. But this would not as such signify conceptual limitations.

The issue of genre appropriateness also illuminates one’s understanding

of Euclid’s aims in the Elements as a whole. Euclid presents geometry

according to a carefully worked out deductive structure—but his treatise is

^07 By contrast, it is clear when the commentators must assume that notions

or techniques are not familiar to their readers. For instance, in his account
of sexagesimal operations, Theon expounds the procedures at length, including

detailed accounts of particular examples and full statements of individual cases

(e.g., minutes times minutes, minutes times seconds, seconds times seconds, and
so on): cf. In Ptol. ad i 10 [Rome 1936, 452-457]. This, of course, does not indicate

the novelty of these techniques at Theon’s time; they became available to Greek
mathematical astronomers with the reception of Mesopotamian methods around
the time of Hipparchus (2nd cent. BC) or earlier. But if techniques that are novel

merely to the special group of learners entail such elaborations by Theon, all the

more would actually new techniques receive such treatment near the time of their

first introduction.
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not about deductive structure. It is not in the genre of, say, Aristotle’s

Posterior Analytics, even though the juxtaposition of these two works may
bring forth interesting details about the ancients’ views on formal systems.

As I have proposed above, the motivations underlying Euclid’s arithmetic

tjieory can be grounded in practice, and one can argue similarly for other

parts of the Elements. 108 Indeed, much of its material on the measurement

of plane and solid figures reappears in an arithmetical form suited for prac-

tical application in Hero’s account of metrical geometry. Since this aspect

of Hero’s geometry may be seen to perpetuate the practical procedures of

the more ancient Egyptian and Mesopotamian traditions, 109 it would follow

that Euclid also developed his geometric theory on a comparable practical

base. Ancient views on the term ‘elements’ link studies of this type to

the introductory teaching of technical disciplines. It is, thus, plausible to

associate Euclid’s own intent in compiling the Elements with its actual use

within the subsequent technical tradition, namely, as a basic textbook in

geometry. But the Elements is not in the same category as the Heronian

or Diophantine textbooks: Euclid appears to assume a practical ground-

ing in the discipline, for which he aims to provide the appropriate formal

demonstrations. In effect, the Elements is a treatise on the causes relevant

to the geometric field; it offers the learner models of how to secure the

results of geometry as deductive consequences ultimately rooted in certain

notions (namely, the postulates and axioms) of figure and quantity. The
learner is expected to gain expertise in geometric theory through the study

of finished models of formal exposition.

Conceivably, Euclid himself was responsible for the decision to adopt the

formal style in an introductory textbook. But the deductive form of geo-

metric theory was a conception he owed to his predecessors. This emerged
|

through the interaction of philosophical and mathematical specialists over I

the course of the 4th century. Although it is tempting to try to make I

The physical phenomena to which geometric propositions are related are often

manifest in the cases of Euclid’s Optics (and certainly the Phaenomena which uti-

lizes the terminology of observational astronomy) and of Theodosius’ Sphaerica. i

That parts of Euclid, Elem. i arose in the context of practical mensuration and
|

instrumentation is noted by Proclus [cf. Friedlein 1873, 283, 352, for his remarks

on Oenopides and Thales], while he claims that Pythagoras made mathematics an

abstract study, whereas among the Egyptians and Phoenicians earlier it had been

developed in the interests of commerce and surveying [Friedlein 1873, 64-65]. It

is clear that the geometric constructions presented by Euclid and other writers
j

draw directly from experience in construction with instruments, and many texts

provide explicit information on practical execution: see Knorr 1983, 1986a.

199 On the Greeks’ debt to the older Mesopotamian and Egyptian traditions, see

nn49-50, above.
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explicit connections between Euclid’s system and the epistemological pro-

nouncements of earlier philosophers, particularly Aristotle and Plato, the

situation was hardly this straightforward. Euclid had access to a variety of

exemplars from the preceding generation of technical writers, and he was

surely more likely to take his expository model from them than embark

on a conscious effort to create a formalism satisfying the prescriptions of

one or another philosopher. To the extent that Euclid is consistent with

philosophical precursors, this can be assigned to their shared acquaintance

with that technical corpus.

These three examples from the study of Euclid turn about a common
methodological recommendation—that the historian of mathematics should

give priority to the critical examination of the texts before undertaking a

wider exploration of their philosophical and mathematical ramifications.

This may sound too obvious to warrant special comment. But the combi-

nation of fragmentary evidence with a subject area readily associable with

modern fields of mathematics and philosophy has made the study of ancient

mathematics an arena for ambitious interpretation, where reconstruction

overwhelms textual criticism. The result has been a striking use of in-

tentionalist terminology in accounts so heavily dependent on the critics’

special predispositions (mathematical or philosophical), that the ancient

authors could hardly have actually intended what is claimed for them. ^ 10 If

the undesirability of that situation is now clearer and the potential of the

alternative textual method evident, I shall have accomplished my purpose

here.

^10 Ancient scholarship was hardly immune to the same charge. Russell [1981, 97]

styles Hellenistic criticism as intentionalist, even among those Stoic and Neopla-

tonist writers committed to allegorical readings. In the ancient critics’ view, then,

Homer (to cite a specific example) actually intended the allegorical meanings they
deduce from his texts.
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Euclid’s Sectio canonis and the

History of Pythagoreanism

ALANC. BOWEN

The treatise which has come down to us as the Sectio canonis or Divi-

sion of the Canon consists in an introduction of thirty-three lines [Menge

1916, 158.1-160.4] and twenty interconnected demonstrations articulated in

roughly the same way as those in Euclid’s Elements [cf. Jan 1895, 115-116].!

Beyond this most everything is in dispute. To begin, scholars debate the au-

thorship of the Sectio. Those who deny or qualify the thesis that it derives

from Euclid usually proceed by comparing it to treatises more commonly
acknowledged to be Euclid’s, and by pointing out supposed inconsistencies

in the Sectio itself which are presumed inappropriate for a mathemati-

cian of Euclid’s stature [cf., e.g., Menge 1916, xxxviii-xxxix] . None of the

arguments, however, are particularly persuasive. In the first place, the crit-

ics tend to ignore the variety of logical structure and language evidenced

throughout the Euclidean corpus, and to suppose that any ancient author

writing treatises in the various sciences of his age would necessarily do so

according to the same standards of expository style and precision. ^ Such

an assumption fails when applied to the works in the Ptolemaic corpus, for

example [cf. Neugebauer 1946, 112-113]. In the second place, the numerous

inconsistencies ‘discovered’ in this treatise signify, in my view, a failure in

scholarship rather than any serious problem in the document itself. Indeed,

my main purpose in this chapter is to undercut these claims of inconsistency

by setting out a new reading of the introductory part of this treatise.

! On the question of Euclid’s date, which I put in the third quarter of the third

century BC, see Bowen and Goldstein 1991, 246n30 or Bowen and Bowen 1991,

section 4.

2 For criticism of the case for authenticity based on linguistic data, see Menge
1916, xxxix-xl.

164
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The learned debate about the provenance and nature of the Sectio cano-

nis centers on five questions:

(1) What is the argument of the preface?,

(2) How does the preface bear on the subsequent twenty demonstrations?,

(3) What is the relation of the first nine demonstrations to the next nine?,

(4) Do the last two demonstrations, the very ones describing a division

of the canon, belong with the preceding eighteen?, and

(5) Is the treatise complete as it stands?

The first is fundamental, since answers to the others all presuppose an in-

terpretation of the preface. So, in what follows, I will concentrate primarily

on the first question, though I will address a few remarks to the last. I will

proceed, moreover, by way of a detailed analysis of the sequence of argu-

ments comprising Euclid’s preface to the Sectio, my aim being to suggest

a reading of these arguments which joins them in a coherent, intelligible

whole [section 2]. 3 I emphasize that it is not my intention to argue that all

other interpretations of the preface are wrong. For, not only would this

be an improper category of criticism in the present case, it would belie my
debt to these other interpretations and, in particular, to the nicely argued

account offered by Andrew Barker [1981]. Rather, my purpose is to deter-

mine the minimum set of assumptions needed to present the preface as a

credible, reasoned unity. And, in doing this, I will rely as much as possible

on the internal evidence of the preface itself, and adduce assumptions from

elsewhere only when necessary.

My basic contention is that the Sectio canonis elaborates in harmonic

science the ontologically reductive thesis that all is number; and that once

this thesis as it appears in the Sectio is properly understood, the most

serious of the past worries about the structure and meaning of this treatise

dissipate. In other words, if, as Barker suggests [1981, 15-16], the Sectio

canonis shows above all how to analyze music precisely, it does this by

displaying in detail how items in a specific domain, musical sound, are to

be construed as number.

But, if this is correct, it would seem that we have replaced one set of prob-

lems about the Sectio with another concerning its alleged Pythagoreanism.

3 Those familiar with this treatise may discern my approach to the second and
third questions. The fourth, which is often raised in the context of reports by
Proclus and Marinus of a Musica elementa by Euclid [cf. Menge 1916, xxxvii-

xxxviii], and which was argued in the negative by Paul Tannery [1912, 213-215],

has, I think, been well answered by Andrew Barker [1981, 11-13]. As for the

fifth, it requires critical study of the entire treatise and introduces questions

about technical writing in the various sciences which I must postpone for now.
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For, according to Aristotle, one of the basic tenets of early Pythagoreanism

is that all is number; and, as I understand him [see Bowen 1992], this means

that numbers are what things really are. So, to conclude this chapter I will

address the cluster of problems concerning Euclid, the Sectio canonis, and

Pythagoreanism [section 3].

1. The preface to the Sectio canonis

Let us consider, then, how Euclid introduces the twenty demonstrations in

the Sectio canonis. The Greek text reproduced here is taken from Menge’s

edition of 1916 with some slight changes in punctuation and the addition

of sentence numbers in square brackets to assist textual analysis.

Euclid’s Sectio canonis, pref. [Menge 1916, 158.1-160.4]

[1] El f|auxlot €lt| Kttl dKLvqaLa, aiwirf) dv €lt|* [2] aLCOTrrjg 8e oucnr|? xal \n\-

Seuog KLvonpcvou on8ev dv dKodoLTO*
[
3

]
cl dpa peXXcL tl dKowOqoeaOaL, ttXt|-

yfjv Kal kIvtiolv irpoTepoy del yeveoQai.
[
4

]
djoTC, eTreLbf] irdyrcg ol 4>0O7

-

yoL ylvoyrat TrXriyqg tlvo? yLvopcvrig, TrXr|7f|v 8e dp^xotvov yeveoQai pf] ou'

X'l KLvqaco)? TTpOTCpov 7€yopeyr)9,

—

rCSv 8c KLvqacwy al pev TTUKVOTcpal cl-

oiv, al 8c dpatoTcpat, Kal al pev TrvKvoTcpaL o^irrepoii? ttoloOol toij? (jjOoy-

yong, al 8c dpatoTcpat Papirrepoug,— dvayKaXov xoug pev o^irrepong cIvaL,

CTrcLTTCp CK TTWcvoTcpcoy Kal ttXclovwv oljyKCLyTaL KLyqaccoy, Tong 8c Papirrepong,

CTTCLTTcp ef dpatOTCpcov Kal cXaaaovcov onyKCLyraL KLvqaccoy, diarc tovs pev

o^nrepoug toO 8covTog dytcpevong dcjjaipeacL KLvqocwg TnyxdvcLV to9 8coyrog,

Tong 8e Papirrepoug CTrLTCLVopevoug irpoodeueL Kivnaccog TnyxdvcLv to£i 8eoyrog.

[
5

]
8l67tcp ck poplcoy Tong (|)66770i;g onyKCLoSaL (j>aTcov, C 7TCL8f] irpoaOcacL Kal

d<t)aLpeacL Tnyxdyouat to5 8coyrog. [6] Tidvra 8e xd ^k poplcoy (myKcCpcva

dptOpoO Xoyw Xcycxat Trpog dXXqXa, diaxc Kal xoijg (f)0677oi;g dvayKatov ey dpL0
-

poi) Xoyo) XeycaSat Trpog dXXqXoi;g’
[
7

]
xciiy 8c dpL0pdjy ol pcy cy TroXXairXaala)

Xoyw Xeyoyxat, ol 8e ey cTTLpoplw, ol 8c ey CTTipcpcL, diaxc Kal xoug ((>967-

yong dyayKoIoy ey xoioOxotg Xoyotg XeycoGat Trpog dXXi^Xoug. [8] xouxwy 8c

ol pcy TToXXaTrXdoLOL Kal ^TripopLot cyl oyopaxL Xeyoyxat Trpog dXXqXoi;g. [9] yt-

yoioKopey 8c Kal xwy <t>66yya)y xo5g pcy oup4)(ijyong oyxag, xong 8c 8tacj)6jyoi;g,

Kal xoug pcy crupcJxjjyoDg play Kpdaty e^ dp4)OLy TrotoOyxag, xo5g 8e 8ta<j)c5youg

ou. [10] xoux(i)y o5xo)g exoyxcjy elKog tovs anp<j>c5youg (j)06yyoi;g, CTreL8f| play

xf|y e^ dp(j)OLy TrotoCiyxat Kpdaty xqg (f)a)yfjg, elyat xoiy cy cyl dyopaxt irpog

dXXi^Xong Xcyopeyo)y dptGpwy, fjxot TroXXarrXaaloug oyxag q eirtpoptoyg.

[1] If there were rest and lack of motion, there would be silence. [2] But, if

there were silence and nothing moved, nothing would be heard. [3] There-

fore, if anything is going to be heard, there must previously occur striking
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and motion. [4] Consequently, since all musical notes occur when there is

a certain striking, and since it is impossible that a striking occur unless

a motion occurs previously—some motions are closer together but others

are less close together; and the ones that are closer together produce notes

higher (in pitch); but those less close together, notes that are lower (in

pitch)—it is necessary that the former notes be higher (in pitch) because

they are composed of motions that are closer together and so more numer-

ous and that the latter notes be lower (in pitch) because they are composed

of motions that are less close together and so less numerous; so that notes

higher (in pitch) than what is needed reach it when lowered by subtraction

of motion, and those lower (in pitch) than what is needed reach it when
raised by addition of motion. [5] Wherefore, we should say that musical

notes are composed of parts, since they reach what is needed by addition

and subtraction. [6] But all things composed of parts are described in

relation to one another by a ratio of (whole) number, so that musical notes

must also be described in relation to one another by a ratio of (whole)

number. [7] But some numbers are said to be in multiple ratio, some in

superparticular ratio, and others in superpartient ratio,^ so that notes too

must be said to be in these sorts of ratio in relation to one another. [8] Of
these [scii. musical notes] the multiple and superparticular are described

in relation to one another by a single term. [9] In fact, we perceive some
notes as concordant but others as discordant, and the concords as making a

single blend out of a pair (of notes) but the discords as not. [10] Since these

things are so, it is appropriate that concordant notes, being either multiple

or superparticular, belong to (whole) numbers described in relation to one

another by a single term, since they produce a single blend of sound out

of a pair (of musical notes).

2. Analysis of the preface to the Sectio canonis

This introduction is, in fact, a series of five arguments establishing that

(a) prior striking and motion are required if anything is to be heard [l]-[3];

(b) the relative pitch of a musical note varies directly as the relative close-

packedness or compactness of the motions constituting it [4];

(c) musical notes are composed of parts [5];

^If m and n are whole numbers, where 1 <n<m, then ratios of the form m:l,

(m -f- l):m, and (m -|- n):m are multiple, superparticular, and superpartient, re-

spectively.
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(d) two notes may stand in either multiple, superparticular, or superparti-

ent ratio
[
6]-[7], and

(e) concordant notes are reasonably said to belong to those whole-number

ratios which are predicated by a single term [8]-[10].

I suspect that this is sufficient to highlight the fact that the introduction

to the Sectio canonis is peculiar. Indeed, the oddity of the locutions in

these arguments, their sense, and how they fit together are real puzzles.

And there is no way to solve them except by a careful study of what is

actually written.

2.1 First argument

[
1

]
If there were rest and lack of motion, there would be silence.

[
2

]
But, if there were silence and nothing moved, nothing would be

heard.
[
3

]
Therefore, if anything is going to be heard, there must

previously occur striking and motion.

Though its structure is clear, it is not easy to see what this argument is

about. Still, as we read on there are, I think, three alternatives to consider

in deciding what moves and what is struck. The motion may be that of

(a) something which strikes a sonant body, a hand plucking the string of a

lyre for instance; or

(b) a sonant body striking the ambient air, for example, the string of the

lyre striking the air as it moves back and forth after being plucked; or

(c) the moving air which has been set in motion by the sonant body and

strikes the ear.

2.2 Second argument

[
4

]
Consequently, since all musical notes (4)067701) occur when there

is a certain striking, and since it is impossible that a striking occur

unless a motion occurs previously—some motions are closer together

(TTDKVOTepaL) but others are less close together (dpaLOTepat); and the

ones that are closer together produce notes higher (in pitch); but

those less close together, notes that are lower (in pitch)—it is nec-

essary that the former notes be higher (in pitch) because they are

composed of motions that are closer together and so (kul) more nu-

merous and that the latter notes be lower (in pitch) because they

are composed of motions that are less close together and so less
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numerous (eXaacjovwv); so that notes higher (in pitch) than what is

needed reach it when lowered by subtraction of motion, and those

lower (in pitch) than what is needed reach it when raised by addition

of motion.

Here it is evident that not only must the striking or impact and motion

precede the musical note, this motion must also be prior to the striking.

In short, if there is to be musical note, there must first be motion which

produces an impact which in turn produces the note. Yet, the story is

now more complex, given that cj)06y'yoL (which I have rendered by ‘musical

notes ’)5 are not only produced by motions, they are composed of them.

In any case, if the 4)967701 are to be composed of motions, it would seem

unlikely that Euclid means to claim that the motions in question are (a)

those of something which strikes a sonant body, like the hand’s motion in

plucking the string of a lyre, or (b) the motions of the sonant body, such as

those of the sonant string to and fro. So, by elimination, it seems that the

first argument concerns the motion of air as it strikes the ear. But this still

leaves a problem: if the motions constitute the 4>9o770L or musical notes,

it is difficult to see how the motions are to precede them.

This problem, however, is not insuperable. As our first hypothesis, let

us grant Euclid a distinction between musical sound as heard (phenomenal

5 The noun, 4>96770?, has a variety of attested meanings which include any clear,

distinct sound—especially vocal sound, where this was primarily that of (male)

voices and later extended to cover sound produced by any animal with lungs

—

as well as speech, musical sound, and sound in general. The tendency among
scholars who have studied the Sectio canonis is to suppose that it here means
‘a sound in general’ and that the preface draws on ancient acoustical physics. I

reject this for two reasons. First, I no longer see the point [cf. Bowen 1982] in

elevating the sort of remark made in texts in harmonic science like the Sectio

(or in others which attempt, for example, to explain hearing in terms of some
philosophical theory of change and motion) to the status of an independent,

acoustical physics: for, to do this without proper regard for the context of these

remarks is to risk abstracting a domain of technical discourse which did not

exist in ancient times, and to confound efforts to determine the sense and the

history of the texts in question. In truth, regarding every discussion of sound
as belonging to an acoustical theory makes as much sense as treating liver omens
as part of some ancient veterinary science. Second, those who take 4^06770? to

mean ‘sound’ arbitrarily introduce difficulties in explaining how the preface to

the Sectio bears on the subsequent demonstrations—it is not surprising that they
isolate the preface on the ground that it concerns sound in general, and view the

first nine demonstrations as establishing truths about ratios without regard for

musical phenomena [cf., e.g., Ruelle 1906; Mathiesen 1975, 237; Barker 1981, 1-3;

Fowler 1987, 146]. Thus, to counter what I see as a gratuitous balkanization of

the treatise, I propose, with equal justification prima facie, to start differently

and to render 4)067709 as ‘a musical note’.



170 ALAN C. BOWEN

musical sound) and musical sound as constituted of motions (objective mu-
I

sical sound), and let us suppose accordingly that the argument in sentences

[l]-[3] of the preface is about the former. In other words, let us take the i

first argument to focus on conditions needed for the occurrence of musical

sound as heard.

This hypothesis is plausible. In my view [cf. Bowen 1982], such a re-

duction of what is heard to objective, quantifiable conditions underlies

the sequence of illustrations and observations made in the fragment from

Archytas of Tarentum (who was active during the late 5th and early 4th

centuries); and, indeed, this fragment bears interesting parallels to Euclid’s

preface.6 More compelling is the fact that the notion of phenomenal musical
I

sound is essential to the distinction of concords and discords in sentence
|

[9] (note yLVoiaKopev with the present participle construction), and that

sentence [10] as a whole plays on the relation of phenomenal and objective

musical sound [see section 2.5, below].

So far, then, it would appear that the motion mentioned in [l]-[3] and in

the first two premisses of [4] occurs between the sonant body and the ear,

and that this motion produces the musical note we hear by striking the

ear. The second argument continues by way of an interjection, in which

it is evident that the motion responsible for producing what we hear as a

single musical sound is really a series of consecutive, discrete motions; and

that the relative pitch of two musical notes as heard varies directly as how
closely the motions in each series follow upon one another, that is, as the

relative compactness (TTUKvorq?) of the series. Next, and most important,

comes the conclusion that what we hear as a single note is in fact just

the series of motions which produces it.7 This is the force of ‘because they

(scii. the musical sounds as heard) are composed of (afiyKeiVTaL ck with the

genitive) motions . . .
’.

Several features of the argument in sentence [4] merit comment. First,

that feature of phenomenal musical sound which most concerns Euclid is its

pitch. The isolation of this feature is important. Though Euclid mentions

the perception of a blending of concordant musical notes later in sentence

[9], it is clear that he intends a blending of pitch. In short, this treatise

prescinds from any other features of phenomenal musical sounds which one

6 Curiously enough, Jan [1895, 132, 135, 146] adduces this same fragment in con-

tending that Euclid’s preface concerns the motions of a sonant body striking the

air. Jan, however, neglects the claim that the 4)067701 are composed of motions.

7 For discussion of Boethius’ treatment in his translation [Friedlein 1867, 301.12-

308.15] of the Sectio canonis, of this reduction of phenomenal musical sound to a

series of motions striking the ear, see Bowen and Bowen 1991, section 4.
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might be disposed to view as contributing to their musicality (e.g., volume,

rhythm, and timbre).

Moreover, given our hypothesis about Euclid’s distinction of phenomenal

and objective musical sound, it seems that not only does he focus on but

one of the many salient characteristics of phenomenal musical sound, pitch,

he takes this in turn to be nothing more than a series of motions that strike

the ear. This is admittedly peculiar, but still intelligible. As I will explain

more fully when we come to the problem of the relation between musical

intervals and numerical ratios [see section 2.4, below], what we have here is

the initial step in a reductive analysis of music as heard to relative number.

Next, it appears that, for Euclid, pitch is a relative phenomenon—he nei-

ther gives any hint that the pitch of a note is to be understood absolutely,

nor, I maintain, is it necessary to the sense of this passage that pitch be

construed as absolute. This is, of course, consistent with the absence of ev-

idence from other sources that the ancient Greeks conceived of an absolute

standard of pitch or that they possessed the means of measuring time so

as to define one. Perhaps, the predilection evident in Greek scientific and

philosophical documents for defining ratios only between quantities of the

same kind explains this [cf. Euclid, Elem. v defs. 3 and 4]. In any case,

it follows immediately that the numerosity or compactness of motions is

not equivalent to frequency. In other words, Euclid does not assume here

a vibrational theory of how sound propagates. For, although the various

series of motions occur in time and are differentiated by the lapse of time

between elements in each series, the series themselves are not to be quanti-

fied in relation to some unit of time. Thus, the compactness of motions

is not the same as some number of motions per second, as Tannery [1912,

217] and Barker [1981, 8], for example, would appear to suppose.

If the compactness or close-packedness of each musical note is relative

and not measured in relation to time, how then is it to be quantified? In

the preface to the Sectio, it is clear that the higher pitch is assigned the

greater number in the ratio of the musical notes, since the higher-pitched

note is constituted of more motions. In order to quantify this, all one would
need to know is that pitch varies inversely as the length of a sonant string

or pipe. But this very assumption figures prominently in the last two

demonstrations of the Sectio canonis [see, e.g., Menge 1916, 178.14-18].

So, for Euclid, it seems, if the compactness of the motions constituting a

musical note at a certain pitch varies inversely as the length of the sonant

string or pipe producing it, then, to quantify the relation between two

musical notes qua pitches, one must measure the relative lengths of the

strings or pipes producing them.
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2.3 Third argument

[5] Wherefore, we should say that musical notes are composed of

parts, since they reach what is needed (toO deovro?) by addition

and subtraction.

Again we have the eliminative reduction of phenomenal to objective mu-

sical sound, that is, the musical note as heard qua pitch to the series of

motions that strike the ear. And as before, just as relative pitch is taken

to be the primary or defining quality of phenomenal musical sound, rel-

ative compactness or close-packedness is to be the main characteristic of

objective sound. What is added is the claim that each musical note so

understood has parts, since it is constituted of motions to which motions

may be added or subtracted. What sort of rationale might there be for

this?

Consider the behaviour of a sonant string on a lyre. According to Archy-

tas [cf. Bowen 1982], such a string strikes the air with each motion back

and forth and sets the ambient air in motion like a projectile which strikes

the ear causing one to hear a single sound at a pitch that varies inversely as

the effective length of the string. It would, of course, be easy to elaborate

this (in a way Archytas did not) by supposing that the pitch of the sound

heard is determined proximately by the rate of the string’s motion to and

fro, and that this is inversely dependent on the string’s effective length. 8

Since the string’s motions to and fro are seemingly consecutive and discrete,

it would seem plausible that the series of airy projectiles moving from the

string to the ear is likewise consecutive and discrete, and that the relative

numerosity or close-packedness of this series depends directly on the rate of

the string’s motions. Moreover, given that the the pitch of the note heard

varies directly as the rate of the string’s motion back and forth, it would

follow that one may adjust the pitch by increasing or decreasing the rate of

the string’s motion. And, of course, one would do this by decreasing or in-

creasing the effective length of the string itself. Thus, by identifying pitch

as heard with the series of airy projectiles striking the ear, one gets the

result that each musical note consists of discrete, consecutive parts subject

to additive increase or decrease by decreasing or increasing the effective

length of the string.

8 Cf. the analyses offered by Adrastus in Theon [Hiller 1878, 50.11-21], Nico-

machus [Jan 1895, 243.17-244.1; 254.5-22], and Porphyry’s version of Heraclei-

des’ report of Xenocrates’ remarks about Pythagoras [During 1932, 30.9-31.21].
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Such an account of what underlies sentence [5] is admittedly conjectural.

Its main advantage is that it adheres to, and is consistent with, what

is actually written in the preface to the Sectio, and that it enables an

intelligible transition from sentence [4] to sentence [6], In any case, it is

important to see that, were the relative numerosity or close-packedness

of the series of motions constituting two musical notes to be understood

and quantified in this way, there would be no need in addition to worry

about the relative incidence of the component motions in pairs of series

at the ear. Granted, one might well choose to develop some account of this

for independent reasons; but it remains the fact that Euclid’s writing of

consecutive series of motions constituting musical notes as heard is by itself

no warrant to suppose that the Sectio entails any views at all about how

pairs of series impinge on the ear in relation to one another.

2.4 Fourth argument

[6] But all things composed of parts are described in relation to

one another by a ratio of (whole) number (dpiSpog), so that musical

notes must also be described in relation to one another by (ev) a

ratio of (whole) number. [7] But some numbers are said to be in

multiple ratio, some in superparticular ratio, and others in super-

partient ratio, so that notes too must be said to be in these sorts

of ratio in relation to one another.

From the conclusion that musical notes are composed of parts, Euclid now
argues that such notes must stand to one another in whole-number ratios.

Tannery [1912, 215-216: cf. Fowler 1987, 146] objects to the argument

on the ground that it is simply not true that any two objects composed of

parts need manifest a numerical ratio, and he concludes that a geometer like

Euclid could scarcely have written this. Now, whether we should expect

that Euclid would have written ‘things composed of discrete parts’ (i.e.,

‘pluralities’) is a nice question. In any case, if I am right about the sense of

the preceding sentences, this is what irdvra 8e xd €k [iopCwv in fact means;

and so there is no real difficulty. Indeed, I suspect that Tannery is wrong to

abstract this sentence from its context and to criticize it as though it were

a universal proposition. As for what may be Tannery’s assumption that an

ancient author who writes in one scientific field will necessarily write with

the same degree of precision on the same topics in another, I have indicated

that this is not true of Ptolemy. Further, we should recall that the degree

of articulation in the deductive structure of Euclid’s Elements results in

great part from its focus on problems of incommensurability, problems
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which require precise definitions for solution [see Neugebauer 1941, 25-

26]; and we should realize that the varying sophistication in explanatory

structure of the other sciences may likewise depend on the nature of their

problems. In my view, given that the Sectio ostensibly presents a science of

relations among the pitches of musical notes and is limited to the domain

of commensurable magnitudes. Tannery’s objection to this sentence in the

preface is more captious than substantive: it is certainly no reason to deny

Euclid’s authorship of the Sectio canonis.

That the sort of harmonic science presented in the Sectio canonis is

indeed limited to ratios of whole numbers follows immediately from two

considerations already mentioned. The first is that pitch is to be under-

stood relatively, that musical pitches are conceived only in relation to one

another. The second is that in the Sectio one is apparently to quantify

pitch by measuring string-lengths according to a common unit [cf. dems.

19-20: Menge 1916, 178.11-180.31]: such measurement by a common unit

is an empirical process and will inevitably yield a ratio of whole numbers

[cf. Bowen 1982, 96].

9

As for the reference to multiple, superparticular, and superpartient ra-

tios, there is no need in either grammar or sense to take this as an ex-

haustive tripaxtition. Were one moved to do this, however, it would follow

that these three kinds of whole-number ratio are fundamental or basic,

that the multiple superparticular and multiple superpartient ratios evident

especially in the last two demonstrations are therefore derivative. 19 For my
part, I prefer to suppose that Euclid mentions the three kinds of whole-

numb^ ratios he does and passes over the others because they are not

germ2^ne to the purpose of the preface [see section 2.5, below].

I

9 If this is correct, we have an explanation for the fact that, when Greek theorists
]

relied on ratios to analyze musical relations, they confined their attention to
|

ratios of whole numbers. In a sense, then, this limitation is not arbitrary, though '

it is clear that not all the ancients understood it and that they may even have
j

viewed it as a matter of convention. Adrastus [Hiller 1878, 50.14-16], for example,
j

mentions ratios of incommensurable magnitudes and relegates these to noises or
i

non-musical sounds. But I take this to be symptomatic of a somewhat specious
j

logical completeness characteristic of much Peripatetic writing. For, according to

Adrastus, if one assigns musical notes to ratios of whole numbers by quantifying

speeds using some unit as a common measure, then one may assign noises to ratios

of incommensurable speeds (presumably) by quantifying speeds using geometrical

techniques and not a common measure. But see Barker 1984-1989, ii 214nl6.

^®If m, n, and p are whole numbers, where 1 <n<m and 1 <p, then ratios of

the form (mp-f- l):m, and (mp -|- n):m are multiple superparticular and multiple

superpartient, respectively.
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Now, if the pitch of a musical note and the compactness of the series

of motions that strike the ear are both relative, it follows that the funda-

mental musical phenomenon according to the Sectio canonis is the interval

or separation (StdaTrifia) defined by two distinct pitches. In short, the

phenomenon of music is not so much a sequence of pitches, as a sequence

of separations defined by pitches.il Moreover, given the hypothesis of the

11 Fowler [1987, 148] reiterates Szabo’s claim [1978, 99-144: cf. Barker 1981,

13] that in the texts like the Sectio SidoTTipLa signifies a “‘ distance between” or

“interval” in a very general sense’ [cf. Bowen 1984, 337-341], a claim which is

perhaps one reason why he does not see that in the Sectio whole-number Xoyot

(ratios) are what SLaon^paTa really are [cf. Bowen and Bowen 1991, section 4].

In any case, Szabo’s claim rests on poor philology. As I have argued elsewhere

[Bowen 1984, 340-341: cf. 1982, 95 and nn81-83], the root sense of Sidorripa is

‘separation’. Of course, the challenge is to characterize this separation and one

way is to view it as a linear difference between pitches. But there are others

and none is intuitively more correct. Indeed, Porphyry [During 1932, 90.24-

95.23] suggests that the schools of harmonic science all start from the assumption

that an interval is the separation of pitches, but differ as to how this separation

is conceived. In particular, he reports that some think of musical intervals as

differences (8La4>opaL, imepoxaC), whereas others say that they are whole-number
ratios, and still others that they are continuous ranges of pitch defining tottol

(regions). Let us consider this further.

Pitch is a magnitude admitting a more and a less. The difference between two
pitches may be likened to the separation of the endpoints of two line-segments

which coincide and share a common origin. Now, there are three ways to describe

this separation and each was adopted by some school of harmonic science. Some
took the separation as the whole-number ratio specified by the magnitudes of

the two line-segments: among these were the Pythagoreans and Euclid. Others

defined the separation as the numerical excess of the greater line-segment over

the less. Aristoxenus, who views theorists of this sort as his predecessors, calls

them dppovLKoC; and for want of a better term we may follow him, though I

must add that his use of the term may well be partisan—Aristoxenus so opposes
Pythagorean theory that he denies it status as harmonic science and refuses to

name any Pythagorean a appoviKo? or to allow that any was his predecessor [see

Barker 1978a]. In any case, Euclid, the Pythagoreans, and the dppovLKOL all define

the separation of two pitches by reference to their magnitude, the first two taking
it as a ratio and the third as a numerical difference or excess.

But there is yet another way of looking at the separation of the endpoints
of our two line-segments. Aristoxenus and his followers define an interval as the

range of pitch between two pitches and stipulate that the identity of an interval is

preserved as the magnitude of this range varies within boundaries which the ear,

by attending to the melodic function (Suvajug) of the pitches, determines to be the

limits of that interval. To apply this to our line-segments, then, the Aristoxenians

think that the separation of endpoints is the range between them and hold that

such a separation may preserve identity when this range increases or decreases in

magnitude between certain limits determined on qualitative grounds.
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eliminative reduction of phenomenal to objective musical sound, it also fol-

lows that each interval or separation is to be identified as a ratio of whole

numbers. In effect, we have here what I have called an eliminative, reduc-

tive analysis of music qua system of relative pitches (intervals) to relative

number (ratios).

Accordingly, it is, a mistake to suppose that Euclid’s talk of adding and

subtracting motions in sentence [4] means that musical notes are numbers

and that the musical intervals defined by pairs of pitches are numerical

differences. Hence, During [1934, 177] is, I think, wrong to maintain that

Theophrastus’ criticism of Pythagoreans for treating musical intervals as

numbers [During 1932, 62.5-10: see Barker 1977, 3-5 for text and explica-

tion], that is, for confusing a ratio of two numbers with their difference [cf.

Thrasyllus in During 1932, 91.14-92.8], should be read as directed against

the Pythagorean tradition which (During thinks) the Sectio canonis re-

tails. 12 For, not only does this misconstrue the Sectio, a document which

may well not be Pythagorean, there is, so far as I am aware, no good ev-

idence that any early Pythagorean was so benighted as to confuse notes

evaluated relatively with those specified independently or absolutely. As I

see it, Theophrastus’ criticism is not directed against any real Pythagoreans

at all: given Aristotle’s scattered remarks about Pythagoreanism and the

few fragments remaining of Philolaus’ remarks concerning musical theory,

I would say instead that Theophrastus’ criticism is an assault on a straw

man contrived on the basis of a literal reading of passages in Aristotle’s

Metaphysics.

2.5 Fifth argument

[8] Of these (toutcov) the multiple and superparticular are described

in relation to one another by a single term (evl ovopaTi). [9] In fact,

we perceive some notes as concordant but others as discordant, and

the concords as making a single blend out of a pair (of notes) but the

discords as not. [10] Since these things are so, it is appropriate that

concordant notes, being either multiple or superparticular, belong

to (whole) numbers described in relation to one another by a single

term (ev €vi ovofiaTi), since they produce a single blend of sound

((t>0)vfjs) out of a pair (of musical notes).

12 Ruelle [1906, 319] wrongly supposes that Sidarripa in dems. 1-9 signifies a

numerical difference: cf. Bowen and Bowen 1991, section 4.
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These three sentences constitute a single argument which is in fact the

culmination of the preface. But, though most will admit this, there is little

agreement about what the argument really is.

The controversy begins with sentence [8]. What is the referent of the

demonstrative in ‘of these’ (toutojv)? Some [e.g., Burkert 1972, 383-384;

Barker 1981, 2-3; Fowler 1987, 144] think that it is ‘numbers’, i.e., that

multiple and superparticular numbers are to be designated by a single term.

Others [e.g., Jan 1895, 117-118; Tannery 1912, 218-219] suggest that the

referent is ‘ratios’. These views are in fact equivalent, since it is the same

thing to talk of a multiple ratio and to speak of one number as a multiple of

another; that is, XoyoL toO dpL0|ioi) are the same as dpiGpol Trpo? dXXqXoD^.l^

And so on either view, the problem is to discover what this single term

is, because none is given in the text.

Jan [1895, 118] consults Porphyry [During 1932, 98.3-6] and proposes

that the multiple and superparticular ratios are potiores or possessed of

greater power (KpeCxTOveg), because such ratios are simpler relations than

the superpartient. Barker [1981, 2-3], however, argues that there is in

fact no general term for these ratios or numerical relations. Instead, he

suggests that what Euclid alludes to is the linguistic fact that the Greeks

expressed each multiple and superparticular ratio by a single term but used

phrases for each superpartient. Such a thesis has the obvious advantage

of explaining why no single term is given explicitly in the Sectio canonis—

a

problem which moved Jan [1895, 118-119] to posit a lacuna in the text

—

but like Jan’s version, the resultant argument is not very convincing. After

all, there is no compelling reason to connect the simplicity of multiple and

superparticular ratios and the unity of concordance, or to connect linguistic

practice (vofiog) in naming these ratios and the nature (<j)daL9 )
of concordant

sound.

Mathematically the same, that is: there is a difference between the two locu-

tions which raises epistemological and ontological questions about the status of

relations vis a vis their reiata. When one says that some number is a multiple

of another, one relatum may be treated as subject and the other as part of a
complex predicate: e.g., p is a-multiple-of-^. In this account, the relation of p
and q is to be seen as a property belonging to one relatum and specified in terms
of the other. But, when one says that the ratio, p:q, is multiple, the relation

of p and q is characterized first as a ratio, and then this ratio is qualified by
the predicate ‘multiple’. Hence, the relation is at least conceived apart from the

reiata exhibiting it.

More narrowly, the difference between the two locutions is that between treat-

ing music as sequence of musical notes and as a sequence of melodic intervals.

Cf. Tannery 1912, 218-219; Ruelle 1906, 319; Burkert 1972, 383-384; Fowler

1987, 146-147.
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There is not much to choose between these alternative accounts of the

single term: where Jan focuses on the relative simplicity of the relation

between the terms in multiple and superparticular ratios, the others adduce

its manifestation in language. And were there no other possibilities, we
would have to leave the matter here and content ourselves with a Sectio

that simply falls apart jujt as it reaches its conclusion.

But let us look more closely at this final argument. As a matter of gram-

mar, the referent of tovtcov in [8] may, in fact, not be numbers or ratios

but musical notes (4)667701) [cf. Ruelle 1906, 319; Mathiesen 1975, 254nl2].

So, though it is admittedly possible at first glance that the demonstra-

tive TOUTO)V refers to numbers [cf. [7]: twv 8e dptOfioiv] or ratios [cf. [7]: ev

toloOtol? Xo70Lg],15 let us suppose that it picks up the subject of the im-

mediately preceding resultative clause (ware tovs 4>96770us . . . dXXijXoDs).

Accordingly, sentence [8] would mean that multiple and superparticular

musical notes (that is, musical pitches qua series of consecutive motions)

when taken in relation to one another form a single class of musical sounds.

Granted, this does entail that such musical notes belong to a special class

of multiple and superparticular ratios. But it would now seem possible that

the term for this class is musical and not necessarily some predicate ap-

propriate to whole-number ratios as such. In other words, the analysantia,

certain whole-number ratios, may have a predicate appropriate in the first

instance to the analysanda, certain musical notes as heard.

Sentence [8] thus poses the question. What is this single term for multiple

and superparticular notes? Since none is given explicitly in the text, there

would seem to be two ways of seeking an answer. The first is to look else-

where in other texts for a term satisfying the requirements of the argument

in sentences [9] and [10]. This is the sort of approach taken by Jan and

Barker, for example. The second is to consider the train of thought leading

from sentence [8] to sentences [9] and [10] in order to see whether the term

figures implicitly in the argument. (Of course, it is entirely possible that

the term is simply unrecoverable, that there is an unbridgeable gap at this

point in the logic of the preface. 16)

In considering the transition from sentence [8] to sentence [9], let us not

forget that [8], as I construe it, is about objective musical sound. Suppose,

then, that one musical note (qua series of consecutive motions) is ‘taken

15 Mathiesen [1975, 254nl2] dismisses out of hand the possibility that Euclid

is thinking of the linguistic fact that the Greeks use single terms to designate

multiple and superparticular ratios.

16 Such a break in logic, however, need not signify a lacuna in the text as it stands.
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in relation to’ a second. This means that these two notes manifest a whole-

number ratio. When one regards the same two notes phenomenally, this

whole-number ratio turns out to be the reality of the separation or interval

(8LdaTT]p.a) heard between the notes [cf. section 2.4, above]. In other words,

the phenomenal counterpart of the claim that multiple and superparticular

notes (qua series of consecutive motions) are described in relation to one

another by a single term is that the intervals defined by these notes are

determined by a single class of multiple and superparticular ratios. So the

question about the single term is at the same time a question about a class

of intervals or notes as heard.

Now, sentence [9] presents a distinction among phenomenal musical notes:

those perceived as concords make a single blend of sound, whereas those

perceived as discords do not. I emphasize that this distinction is not neces-

sarily a dichotomy: contrary to the usual understanding of this passage,

the text actually leaves open the possibility (a) that some melodic notes

axe neither concordant nor discordant, (b) that not every pair of notes per-

ceived as a single blend of sound is a concord, and (c) that not every pair

or notes not heard as a unified sound is a discord. (Note that those who as-

sume a dichotomy quickly encounter difficulties in other parts of the Sectio

which often they then use to impugn it [cf. nl8, below].) Further, given

that Euclid identifies phenomenal and objective musical sound, it would

appear that the pairs of multiple and of superparticular musical notes (qua

series of consecutive motions) mentioned in sentence [8] may either be con-

cordant or discordant, that the single term said to designate these notes

(objectively construed) may either be ‘concordant’ or ‘discordant’, 17

Sentence [10] continues as an inference from sentences [8] and [9]—as the

phrase ‘since these things axe so’ indicates—supplemented by way of two

subordinating constructions. In effect, the inference in [10] is:

(pi) since (pairs of) concordant musical notes are either multiple

or superparticular

(P2 )
since (pairs of) concordant notes are heard as a single blend

of sound

(P) it is appropriate that (pairs of) concordant notes belong to

ratios designated by a single term.

17 Mathiesen [1975, 254nl2] maintains that the term in question is ‘concordant’

and cites the same passage from Porphyry [During 1932, 98.3-6] which Jan ad-

duces to show that it is KpeiTTWv.
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To unpack this and the final argument as a whole we need to determine

the relation between sentences [8] and [9] ,
and the subordinating construc-

tions in [10] represented as premisses pi and p2 . It is obvious that p2 recasts

sentence [9]. So, does pi reformulate [8]? If we suppose it does, we do get

the result that the term for multiple and superparticular notes (qua series

of consecutive motions) is ‘concordant’. Unfortunately, we also get an un-

proven conversion: saying that multiple and superparticular musical notes

(qua series of consecutive motions) are concords (so sentence [8]) is not the

same as saying that concords are multiple or superparticular. Thus, we
should allow the phrase, ‘since these things are so’, some real significance

and treat [8] as an independent premiss in the final argument of the Sectio.

Accordingly, let us combine sentence [8] and p\ as

(pz) any pair of musical notes (qua series of consecutive motions)

is designated by a single term, ‘concordant’, if and only if one

is a multiple or superparticular of the other.

18 There are several features of this premiss to observe here. First is that the

scope of P3 is limited to the domain of phenomenal musical sound: there is no
reason to suppose that Euclid countenances an unlimited plurality of concords

on the ground that there is an unlimited number of multiple and superparticular

ratios. For a clear statement of the issue and of the various positions discerned

by Adrastus (who is much cited by Theon of Smyrna), see Hiller 1878, 64.1-65.9.

Next, there is the claim by Aristoxenus and later writers that the interval of an
octave and a fourth (8:3) is a concord. But do such claims indicate that is

false? Barker [1981, 9-10] maintains that they do, on the ground of p2 - Ii^ other

words, he takes it for granted that Aristoxenus’ assertion [Da Rios 1954, 25.17-

26.1; 56.10-18] that the addition of an octave to any concord yields an interval

which will be heard as a concord, is an accurate report of what Aristoxenus’

contemporaries actually heard; and concludes that the Sectio, by virtue of P2 ,

is obliged to allow for this. But I think this concedes and requires far too much.
To begin, unlike Barker I do not think that p2 entails that every sound heard as

a single blend is a concord: so, even if the interval of the octave and a fourth

was heard as a single blend by Aristoxenus and his contemporaries, it does not

follow for Euclid that it is a concord. (Nor, given that [9] does not state a

dichotomy of intervals into concords and discords, does it then follow that it

is a discord.) Further, Aristoxenus himself provides evidence [Da Rios 1954,

29.5-30.9] of disagreement in matters of musical hearing and of a tendency to

extol music others find disagreeable. Indeed, my suspicion about Aristoxenus’

claim regarding the interval in question is that it may well be a conclusion drawn
from the (rather abstractly stated) principle that any octave added to a concord

produces a concord. And, if this suspicion is right, then the claim about the

interval of the octave and a fourth may in fact be wholly polemical. In any case,

the real problem here is the use of Aristoxenus’ testimony and, more generally,

determining the relation between ancient harmonic science and musical practice.

Solving this problem will, in the present instance, be extremely difficult: for, not
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Next, there is the problem of the role of p2 in sentence [10]. If the conclu-

sion, P, is about objective sound, the inference in [10] becomes very puz-

zling, since p2 concerns phenomenal sound. But, if P is about phenomenal

sound, p2 is essential.

I propose, then, to recast the final argument in sentences [8]-[10] (with

redundancies) as follows:

(P2 )
since pairs of concordant notes are heard as a single blend

of sound [cf. [9]]

(ps) given that any pair of musical notes (qua series of consecutive

motions) is designated by a single term, ‘concordant’, if and

only if one is a multiple or superparticular of the other

(P) it is appropriate that pairs of concordant notes heard as a

blend of sound and being multiple and superparticular (qua

series of consecutive motions) belong to (scii. are in reality)

pairs of (multiple and superparticular) numbers designated

in relation to one another by a single term.

The reader will notice that I have elaborated the conclusion, P, by spelling

out (a) that the numbers to which multiple and superparticular notes be-

long are, in the first instance, themselves multiple and superparticular; and

(b) that pairs of notes belong to pairs of whole-numbers in the sense that

the latter are the reality with which the former are identified through re-

ductive analysis. 19 Yet, this is not enough. The argument still needs an

additional premiss,

only is there no independent evidence confirming that the Greeks of Euclid’s time

heard the octave and a fourth as a concord, it is clear that the harmonic science

he presents is not intended to accommodate all of musical perception [cf. section

2.2, on pitch].

Finally, it seems to follow from that the tonic interval (9:8) is a concord,

though, as is well known, Aristoxenus classifies this interval as a discord [cf.,

e.g.. Da Rios 1954, 25.11-15, 55.12-56.5]. Whether Aristoxenus’ views on the

matter are a suitable basis for interpreting or criticizing the Sectio is a question

that arises here too. Euclid, in any case, does not explicitly call this interval a

discord, though the closing lines of dem. 12 [Menge 1916, 174.6-7]—if they are

not interpolated—may be a problem, since they suggest that it is not a concord.

Cf., e.g., Adrastus in Hiller 1878, 50.16-21.

^9 That the ‘belonging to’ locution signifies the final step in the reductive analysis

is clearer given the language of dem. 1: cf. Bowen and Bowen 1991, section 4.

See also section 3, below.
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(^4) characteristics of musical pitches uniquely determined by re-

lations among musical notes qua series of consecutive motions

derive from characteristics of the numerical relations which

axe the reality of what is heard.

Though this premiss does not appear in the text itself, it (or something

like it) is certainly necessary on my interpretation of the sentences [8]-[10];

so, I introduce it here as my second hypothesis. p4 is an adjunct of the

eliminative ontological reduction that is essential (again, on my reading)

to the Sectio canonis. In effect, p4 isolates a subset of the predicates ap-

plied to music as heard (the analysanda) and asserts that these predicates
!

hold because they apply above all to the numerical relations (analysantia)
|

constituting what the sensible musical relations really are. Thus, sentences
|

[8]-[10] set forth the argument that the musical notes we hear as concor- I

dant are, qua series of consecutive motions, multiple or superparticular and

so are in reality multiple and superparticular ratios designated by a single

term. And, given this much, it seems simplest to conclude that this single

term is ‘concordant’ as well—and so I follow all who assume that the single

term mentioned in sentences [8] and [10] is the same.

On this reading, then, the upshot of the final argument in sentences

[8]-[10] is a justification of the thesis that concords belong to concordant

numbers. This a result quite different from the usual claim that the point

of the preface is to explain why the notes we hear as concordant are either

multiple or superparticular [cf., e.g.. Tannery 1912, 218-219; Ruelle 1906,

318; Barker 1981, 3], or to show that the study of musical notes ‘should be

assimilated into mathematics’ [Fowler 1987, 146]. As I see it, the preface

answers the question. Why are concordant notes concordant?, by proposing

that concordant notes are heard as concordant because they are in reality

concordant numerical ratios.

But what is the context for such a question and answer? Clearly, it

is not Academic [but see Tannery 1912, 218]—at least, not as one might
|

surmise given the question raised in Plato, Resp. 531cl-4, when Socrates

asks which numbers are concordant and which are not and why in each

case. Yet without some sense of the context, it is virtually impossible

to assess the importance of the question or the adequacy of the answer,

beyond determining the role of the preface in the subsequent theorems.

So, since I have postponed the latter project to another occasion, I will

turn now to the question of the context of the Sectio canonis.
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3. Euclid’s Sectio canonis and Pythagoreanism

While debate about the authorship of the Sectio canonis still contin-

ues, there is, in contrast, a consensus that this work is in the intellectual

tradition we call Pythagorean [cf., e.g.. Heath 1921, ii 444-445; Barbera

1984; Fowler 1987, 144]. The broad similarity between the preface to this

treatise and a fragment [cf. Bowen 1982] of a work by Archytas on mu-

sic is obvious and, though one may well doubt Jan’s claim [1895, 146]

that the source for the bulk of the treatise is Archytas, there is no deny-

ing that the Sectio retails one proof [cf. dem. 3: Menge 1916, 162.6-26]

which is attributed to Archytas by Boethius (ad 480-524) in his De insti-

tutione musica [Friedlein 1867, 285.9-286.4]. Moreover, as During suggests

[1934, 176-177], the opening sentence of the preface to the Sectio compares

favourably with what Heraclides Ponticus (late 4th cent. BC) may be as-

cribing to Pythagoras in the first few lines of the fragment of his Harmonica

introductio [During 1932, 30.7-8] preserved by Porphyry (ad 232-ca. 305).

But, regrettably, just as the debate about the authorship of the Sectio

canonis may be ill-founded, so may this consensus about its philosophical

character. There are, for instance, significant differences between the musi-

cal analysis in this treatise and the theory we may attribute to Archytas and

which we find repeated in the works of Theon of Smyrna, Nicomachus of

Gerasa (both second century AD), and of Boethius, for example. First, as I

have already noted, whereas Euclid proposes to justify quantifying musical

notes by means of the premiss that each pitch depends on (is) the relative

numerosity of the series of consecutive, airy projectiles which strike the ear

and produce what is heard as one sound, Archytas [Bowen 1982] maintains

that pitch is determined by the relative speed/force of the airy projec-

tile [cf. Archytas, Fragment 1.45-46]. Now, the same view as Archytas’

(without the reference to force) is found in Nicomachus’ Harm. man. [Jan

1895, 242.20-243.10] and in Theon’s Expositio [Hiller 1878, 60.17-61.11].

Moreover, in Boethius’ De inst. mus., there is in book 1 an account fash-

ioned after the preface of the Sectio [cf. Friedlein 1867, 189.15-191.4] which

adapts it to Archytas’ view, and in book 4 a translation of the Sectio that

departs from the original on this very point [cf. Friedlein 1867, 301.17-18;

Bowen and Bowen 1991, section 4]. What this all means is difficult to say.
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Though Nicomachus is a Pythagorean and Boethius follows him in har-

monic science,20 and though Adrastus (according to Theon [Hiller 1878,

50.4-21]) attributes the sort of account found in the fragment from Archy-

tas to the Pythagoreans, one should hesitate to say that is Pythagorean, if

only because Adrastus [cf. Hiller 187, 61.11-17] also ascribes the same view

to Eudoxus, who was not, so far as I am aware, regarded as a Pythagorean

at any point in antiquity, and because Theon seems to be a Platonist.

Indeed, the story is even more complicated.

Consider Fowler’s proposal [1987, 145-146] to assimilate the Sectio to

the Lyceum on the strength of Prob. xix 39 and a passage from Porphyry,

In harm, attributed to Aristotle [During 1932, 75.14-27: cf. Barker 1984-

1989, ii 98]. Now, in the passage from Porphyry, pitch is correlated with the

speed of the motions striking the ear, whereas, in the Sectio, pitch is identi-

fied with the relative numerosity of these motions [cf. Barker 1984-1989,

ii 98, 107n40]—as it is in Prob. xix 39 [cf. Barker 1984-1989, i 200-201].

So, it would seem that the thesis of the dependence of pitch on the speed of

the motion striking the ear may not be peculiar to the Pythagoreans. In

any case, Euclid and the author of Prob. xix 39—who is no longer thought

to be Aristotle—are the odd men out in this group. Yet this hardly puts

Euclid in the Hellenistic Lyceum. Not only is there no good evidence about

the provenance of the compilation known as the Problemata, the preface

of the Sectio only requires that relative pitch depend on (be) the relative

numerosity of pairs of series of consecutive motions, a thesis which is intel-

ligible and quantifiable as I have indicated, and which does not suppose

or need the sort of talk found in Prob. xix 39 about the incidence of the

pairs of series on the ear.

Furthermore, according to Aristotle, the Pythagoreans thought that all

things are number and did not make the sort of ontological separation

between appearance and reality found in the Platonic corpus. But, if the

Pythagoreans maintained that number and numerical relations constitute

the reality of all there is, then, it is interesting to observe that, for Euclid,

though phenomenal musical notes are composed of series of consecutive

motions which (therefore) stand to one another in numerical ratios, and

though these series are said to belong to numbers, they are not said to be

composed of numbers. In other words, Euclid appears to regard numbers as

the reality of musical sound but—so far as I can tell from his language—he

20 This is an inference based on the general character of the De inst: mus., on the

nature of Boethius’ references to and treatment of Pythagoras and the Pythagore-

ans, and on how claims Boethius makes in his own voice (usually in the first

person plural) compare with what he says of the Pythagoreans: cf. De inst. mus.

i 9, ii 21-27, v 8.
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does not treat them as a reality constituting what is heard. Indeed, Euclid

leaves open the possibility of a different account of the relation between

appearance (what we hear) and reality. Moreover, in the fragment from

Archytas, the pitch of the sound is said only to vary as the speed/force

of the motion producing sound at that pitch; it is not claimed that the

pitch is composed of motion at this speed/force. Likewise, in the treatises

by Nicomachus, Theon, and Boethius—all of which agree with Archytas in

correlating pitch and speed—there is no such reduction of sound as heard

to the speed of motion. Thus, again, Euclid stands alone: his account fits

neither Aristote’s outline of Pythagorean analysis nor the accounts given

by such Pythagoreans as Archytas and the others.

Now I admit that such differences may only signify a divergence between

rivals schools of the Pythagorean family. But, in the absence of indepen-

dent evidence confirming this, we should not ignore the possibility that the

Sectio canonis analyzes music from a standpoint, and for purposes, alien

to Pythagoreanism. This means that we should resist the temptation to

minimize these differences by carelessly lumping this treatise with other

Pythagorean writings and, even worse, by interpreting all these texts in

terms of one another.

The deeper problem in addressing the question of Euclid’s philosophi-

cal allegiances such as they appear in the Sectio canonis, however, is that

the modern, scholarly category of Pythagoreanism is not well defined in

harmonic science, no doubt in part because the Pythagorean version of the

science itself still eludes satisfactory interpretation. Most of the criteria

currently used to classify a theory as Pythagorean are based upon ancient

descriptions of the intellectual schools of thought. Unfortunately, when
the ancient musical theorists do make remarks about their predecessors

and contemporaries, they do not write as historians following the rules of

evidence and interpretation which we now take for granted. Indeed, the

most one should concede at the outset is that their classifications and criti-

cisms of intellectual trends and so on may hold at best of the period and
cultural context in which they were writing. Thus, for example, Andrew
Barker [1978a] has argued that Ptolemy’s characterization in the Harmon-
ica of the controversy dividing the Pythagorean and Aristoxenian schools of

musical theory does not hold of the fourth century BC. Yet, Barker [1978a,

1] still takes it for granted that ‘a solid amount of what is attributed to

these schools by such writers as Ptolemy and Porphyry quite genuinely goes

back to the fourth century, to Aristoxenus on the one hand, and perhaps to

Archytas and his followers on the other,’ though this should be a matter

for argument and proof if we are ever to get an accurate account of Greek

harmonic science.
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But surely, one may ask, can we not follow the ancients and suppose

[cf., e.g.. Barker 1981, 3; Fowler 1987, 144] that a theory is Pythagorean

if it analyzes music by means of whole-number ratios and prefers reason to

hearing in determining what is musical? Granted, these criteria appear to

be adequate to the fifth and fourth centuries BC (albeit perhaps because we
have so little clear, direct evidence of Pythagorean musical theory from this

period). But, on the basis of these criteria, one might also conclude that

the Harmonica by Ptolemy (ca. AD 150) is a Pythagorean text [cf. Barker

1984-1989, ii 270-271]. And this certainly does no good. For, not only

does it conceal the profound differences in epistemology and argumentation

which exist between the Harmonica and, say, the roughly contemporary
j

Harmonices manuale by Nicomachus of Gerasa [cf. Bowen and Bowen 1991,

section 3], it also ignores the fact that much of the material in Nicomachus’

treatise may also be found in Theon’s Exposition a treatise which draws

from Peripatetic sources (especially, Adrastus [cf. Hiller 1878, 49.6]) inter

alia in order to elaborate what is needed to understand Plato. In short,

these two criteria quickly prove inadequate to the complexity of relations

between the ancient documents concerning music which we do possess.

Likewise, I see no reason to pursue Barbera’s contention [1984] that

the proper context for interpreting the Sectio canonis is the Pythagorean

tradition which he thinks is defined by Theon and Nicomachus. Indeed,

it begs the question. For, though Nicomachus presents his own work as

Pythagorean, Theon makes little mention of the Pythagoreans except to

point out where they agree with views he has already stated, and he in-

troduces many of the same points as Nicomachus but as part of a general

learning (some of it drawn from Peripatetic sources) that is propaedeutic

to the study of Plato’s writings. Thus, on what basis and how are we to

decide whether the doctrine in question is Pythagorean? But this is the

very question we started with. Further, if we follow Nicomachus and regard

the doctrine as Pythagorean, should we also follow Theon and suppose that

it was generally viewed as propaedeutic to Platonic philosophy? And what

antiquity are we entitled to assign this doctrine in any case? But, until

these questions, as well as others pertaining to the schools of harmonic

science in the second century AD, are answered satisfactorily, there is little

to be gained by using Nicomachus and Theon as authorities in interpreting

a treatise written perhaps some four hundred years earlier.

In sum, the claim that the Sectio canonis is Pythagorean is, by rights,

not a starting point but a conclusion; and the same holds of the too often

repeated assertion that Euclid was a Pythagorean [cf., e.g., Menge 1916,

xxxviii]. Moreover, the argument leading to this conclusion about the Sec-

tio will be very arduous indeed. For, not only will it have to deal with
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this treatise itself, it will have to uncover plausible criteria of Pythagore-

anism in harmonic science, criteria which may well differ from period to

period. As matters stand now, we are not sufficiently informed to locate

the Sectio in a Pythagorean context. But, until we are, we must resist the

temptation to speculate by using it, for example, to elaborate the criticism

of the Pythagoreans found in book 7 of Plato’s Republic [cf. Barker 1978b].

Conclusion ^

The preface to Euclid’s Sectio canonis has puzzled readers for more than

two millennia. Even the ancients found it difficult, if the versions offered by

Porphyry [During 1932, 90.7-23] and Boethius [Friedlein 1867, 301.7-302.6]

are any indication: both Porphyry and Boethius omit the last argument.

The main reason, as I interpret the treatise, is that by compressing the

reductive, eliminative analysis at its core to the requirements of a deduc-

tive or inferential expository style, Euclid obscured his point. This is not,

however, a criticism. It is very difficult to present an argument involving

an eliminative, ontological reduction, when this reduction necessitates sys-

tematic ambiguity in the use of key terms (e.g., 4>067yo9 as ‘the musical

note or pitch heard’ and as ‘the series of consecutive motions that strike

the ear producing a note at that pitch’).

But if so, then harmonic science raised problems for Euclid not found

in arithmetic and geometry. One has to be careful, then, in assessing criti-

cisms of the Sectio canonis which take the Elements as a paradigm of style.

As for completeness, let us observe that there are no hints in the manuscript

tradition that the preface to the Sectio is part of a larger introduction. So,

in this limited sense at least, what we have is complete. Yet, is the pref-

ace incomplete because it lacks the preliminary suite of definitions and so

on that one would expect given the Elements? On balance, I would say

that even in this sense the preface is complete. For, though the question

itself. Why are concords concordant?, is unstated and the single term is

implicit, what is written does constitute a very economical, compressed,

and coherent answer; and to require a more elaborate account in which all

is spelled out (for our benefit) seems unwarranted. Still, the contention

that the preface is complete will not be demonstatrated satisfactorily in

the absence of a reading of the entire treatise showing its unity and co-

herence, or without a thorough study of the other Euclidean treatises and
of the corpus of texts in harmonic science that aims to discover the relevant

criteria of exposition and argumentation.
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Aristoxenus’ Harmonics and

Aristotle’s Theory of Science

ANDREW D. BARKER

It is agreed on all sides that Aristoxenus was the giant of Greek musicology.

His work in musical history and criticism was the point of departure for a

host of informal essays on music by philosophers, antiquarians, and men of

letters. Almost all the technical harmonic treatises of later antiquity drew

heavily on the analyses set out in his writings: this is true even of authors in

the distinct scientific tradition of ‘mathematical’ harmonics, writing under

the banner of Platonism or Pythagoreanism. Aristoxenus himself insists

loudly and often that nothing comparable in scope and sophistication had

been attempted before his Harmonica elementa;^ and though his reiterated

claims to originality become irritating, they are undeniably true. It is not

just that he was thoroughly acquainted with musical practice, acute in

his observations, and tireless in the pursuit of detail. The crucial task of

harmonics, as he conceived it, is to go beyond the essentially preliminary

compilation of facts to their systematic coordination in a scheme of scientific

understanding. He discussed, self-consciously, polemically and at length,

the methods by which this understanding is to be achieved and the form

it must take if harmonics is to be truly a science. His importance lies as

much in his meta-musicological reflections and in the way he brought them

to bear on the organisation of his material, as in any of his substantive

doctrines about the musical facts.

Aristoxenus’ conception of science and its methods exercised no notice-

able influence in antiquity outside specifically musical studies. So far as I

know, mathematicians, astronomers, medical writers, students of mechan-

^ For the text I have used, see Da Rios 1954: all my references are by Meibom’s

[1652] pages and lines. See also Macran 1902.

188
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ics, and the rest paid him no special attention.2 This is not surprising,

since—taken abstractly—his ideas were not new. They were borrowed al-

most without exception from Aristotle; and though modifications of Aris-

totelian positions can be found in Aristoxenus, it is principally his inter-

pretation and application of his teacher’s ideas that should earn him the

attention of historians of science.

The influence of Aristotle on Aristoxenus has been studied from a number

of angles in a recent book by Annie Belis [1986]. 3 Here I shall consider issues

that arise out of just one aspect of the relationship, one in which, I suggest,

Aristoxenus might be of considerable help to our understanding of Aristotle

himself. It is notorious that none of Aristotle’s own treatises offers itself,

prima facie, as an example of the sort of science painstakingly described in

the Posterior Analytics. It is sometimes argued that the An. post, should

not be construed either as proposing a framework for scientific research

or even as describing the form which a complete science should ideally

take, but more modestly as articulating a blueprint for pedagogy, a way of

organising scientific results so that they can effectively be taught [see esp.

Barnes 1969, 1975]. But the Harm. elem. shows, I believe, that Aristoxenus

drew directly on Aristotle’s essay when discussing the methods by which his

subject is to be investigated: hence, it was indeed possible for an associate

of Aristotle to conceive the An. post, as offering a sound framework for

something that can fairly be called a research programme.

Aristoxenus also treated the An. post, as conveying a description of the

form of understanding that constitutes science, one at which the harmonic

scientist, like any other, must aim; and the Harm. elem. seeks to articulate

its harmonic truths in the pattern that the An. post, proposes, not just for

pedagogic purposes, but because scientific understanding must itself have

the structure that the shape of the treatise reflects. A careful study of the

Harm. elem. will show that this treatment of the An. post, makes sense, and

will clarify the notions of scientific discovery and scientific understanding

that underlie the latter. At the same time it will be instructive to consider

certain ways in which Aristoxenus found it necessary to modify the ideas of

the An. post., and certain difficulties that his project appears to encounter.

The most important stumbling-blocks, I shall suggest, are not of his own
making but are in fact inherited from Aristotle.

2 An exception is Vitruvius, who announces his debt to Aristoxenus at De arch.

V 4.

3 Belis’ book reached me at a late stage in the preparation of this paper, and I have
not been able to incorporate many reflections on it here. There are substantial

points on which we differ, but it is a work from which much can be learned.
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At the centre of our investigation will be a pair of closely linked Aris-

toxenian positions, one positive, one negative. I shall outline them briefly

here and discuss them more fully in what follows. On the negative side

is one of his rare departures from Aristotle’s views. In the An. post, and

elsewhere Aristotle identifles two sorts of harmonics, one empirical and one

mathematical, and treats the former as subordinate to the latter. Empiri-

cal harmonics discovers only certain facts available to perception, and a list

of unexplained and uncoordinated facts is not yet a science. The explana-

tions, but not the data, are provided by mathematical harmonics. In more

Aristotelian language, the empirical approach distinguishes and perhaps

classifles the phenomena, but flnds no dpxaC and generates no aTTodet^Lg.
|

The dpxcLL that stand as principles essential to the explanatory demonstra-

tion of statements describing the phenomena are principles proper to the

mathematical branch of the subject."^ This may well be an accurate tran-

scription into Aristotelian terms of contemporary mathematical theorists’

own view of their project. But Aristoxenus will have nothing to do with

it. The dpxctC of his science, its coordinating and explaining principles,

must—so he insists—be intrinsic to the domain of musical perception itself

and not imported from the foreign territory of mathematics or quantitative

physical acoustics. Aristotle, of course, engages in no very careful study of

the two kinds of harmonics: he merely notes their existence for the sake of

an example of the way in which one science may be subordinate to another,

and apparently accepts the mathematical theorists’ own estimate of their
|

4 Mathematical harmonics, in Aristotle’s sense, is exemplified in the pioneering

work of Archytas [see Diels and Kranz 1951, i 428.15-430.12, 435.15-436.13;

Bowen 1982], in a highly specialised application at Plato, Tim. 35b-36b, and
later in such treatises as the Euclidean Sectio canonis. It treats pitch-relations

as ratios between numbers (which may be conceived as attaching to physical

variables such as speeds of movement: cf. Bowen 1982, and chapter 8 in this

book). It represents harmonic structures, for instance, the octave-scale, a,s or-

ganised complexes of ratios, whose coordination may be explained by reference

to a theory of proportions or to some other purely mathematical set of princi-

ples. In its application to acoustics, a focus of some interest in the Lyceum, such

conceptions were used to account for phenomena including the correspondence

of notes an octave apart and the concordance of octaves, fifths, and fourths: they

are concordant because their ratios are of certain sorts. Aristotle accepts these

accounts as giving at least a sketch of an appropriate explanation [see An. post.

90al8-23: cf. De sensu 439b31-440a3], even though it is not clear what reasoning

is concealed in this ‘because’ [see n5 below].
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relative ranking.^ Aristoxenus rejects this view, as we shall see, for reasons

drawn from the An. post, itself. He argues, in effect, that a consequence of

taking the pronouncements of that treatise seriously is that the two exist-

ing forms of harmonic science cannot genuinely stand in the relation that

Aristotle imagines. His intention is not, however, to elevate the work of pre-

vious harmonic empiricists from the humble station to which Aristotle had

consigned it: their conception of the science, he believed, was as inadequate

as that of their rivals was irrelevant. Nor had Aristotle failed to discern the

merits of some other existing harmonic project. The real implication of the

An. post., for Aristoxenus, was that an entirely new harmonic science had

to be framed which would absorb both the descriptive and the explanatory

functions.

The positive side of the coin is Aristoxenus’ insistence that harmonics

must find its dpxat through reflection on the phenomena revealed to musical

perception, seeking forms of order intrinsic to the phenomena themselves as

they are perceived (not in the ordering of an unperceived realm of ‘causes’,

movements of the air, or the like, which physical acoustics might inves-

tigate). The dpxaC proper to harmonics articulate a 4>naL9, a nature or

essence, that exists and is expressed in groups of heard sounds themselves

in so far as they are melodically attuned, and qualify as instances of to

f)pp.oap.6vov. These dpxaC describe the structures within which sounds are

necessarily organised if they are correctly heard as melodic, since to hear a

sequence as melodic is just to hear it as exemplifying the <|)i3ctl9 that the

harmonic scientist seeks to describe. If a hearer is sufficiently attentive and

carefully trained, he will come to realise that what the scientist articulates

does indeed express the form a sequence of sounds must have when he

5 Aristotle may have been persuaded by the apparent analogies between harmon-
ics and his two other examples, optics and astronomy, particularly the latter. The
Pythagorean treatment of harmonics and astronomy as ‘sisters’, articulated by
Archytas [see Bowen 1982, 79-83] and reported in Plato, Resp. 530d6-9, derives

from a conception of them as parallel studies of different forms of movement,
audible and visible, or so I would argue. (Huffman [1985] gives reasons for reject-

ing a sentence in the text of Archytas which is important for my interpretation:

I think his arguments can be answered but this is not the place to pursue the

issue.) The achievements of Eudoxan astronomy may have encouraged the view
that Archytan harmonics, already much the most impressive form of musical

science, could be developed to rival it. In both these cases, and in optics, an
abstract mathematical description of the phenomena, allied to purely mathemat-
ical principles, might plausibly be construed as constituting their explanation,

as it is for a harmonic example at An. post. 90al8-23. Aristotle’s antipathy to

Pythagoreans is directed at their metaphysics and their use of harmonic theory

in non-musical contexts: he does not criticize their development of it in its own
sphere.
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himself hears it as melodic or as being of a given melodic type. Similarly,

the rules apodeictically derived from the dpxctC are also ones to which every

alert listener would subscribe, on the ground that these rules make explicit

criteria that were already implicit in his own experience. They are not sur-

prising, unexpected constraints on what can count as melody: still less do

they impose restrictions derived from principles in another realm, such as

that of pure mathematics. The task of harmonics is to clarify and organise

what educated perception implies, not to prescribe things that it will not

autonomously accept. The apodeictic phase of the science serves to explain

the rules that are implicitly accepted in ordinary practice by showing that

they are not arbitrary or haphazard, but are coordinated expressions of a

single nature or essence.

The immediate consequence of this approach is that Aristoxenus’ har-

monic science turns out to be a sort of musical phenomenology. It describes

and classifies the phenomena according to the distinguishable ways in which

they present themselves to perception, not according to classes whose mem-
bers cannot be directly identified as such by the musician’s ear. The audible

appearances are not explained by reference to inaudible physical causes or

mathematical principles, but by being displayed as aspects of a coherent

nature that exists just in its audible instances. Audible melodicity is not

an echo or a consequence of some other form or order that holds among the

inaudible precursors of sound. The melodic is an autonomous form inhering

in certain sequences of sounds under their aspect as objects of hearing and

in nothing else. It is to be defined through a coordinated array of prin-

ciples abstracted inductively from the audible appearances; and the rules

governing what is and what is not an acceptable melody are accounted for

when they are shown to be implicit in the pattern of organisation in which

that form consists. In neither its descriptive nor its explanatory phase

should harmonics call on data that are not presented to the musical ear

or on categories that divide up the data on other than musical principles.

Aristoxenus’ reasons for taking this position, its implications, and certain

problems it brings with it, will be explored in more detail below.

The Posterior Analytics and the structure of Aristoxenus’ harmonic treatise

I have said that Aristoxenus’ conception of a science corresponds closely to

that set out in the An. post. A thorough evaluation of this claim would have

to focus on the fine detail of what Aristoxenus does, in order to see how

well the propositions of his treatise correspond to Aristotle’s descriptions

of the propositions of a science and their mutual relations. I shall do little

at that level here. A more compassable project is to compare the explicit
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remarks made by each author on the subject of scientific method and on

the conditions that an adequate science must fulfil, and here I shall draw

attention to some obvious parallels. But the central investigation into which

these closer ones must feed concerns the overall match between the designs

proposed in Aristotle’s essay and exemplified in that of Aristoxenus. This

creates a difficulty, since the Harm. elem. as we have it is not a complete

work, nor even, in my view, the remains of a single treatise. Issues about

the relations between the parts of the surviving text have raised a good

deal of scholarly dust:^ I shall not attempt to sift it, but I must at least

state the opinion on which what follows is premissed.

This is that books 2 and 3 belong together; that while the work of which

they are parts was originally a good deal longer, and while the two books

are not perfectly preserved even as parts, nevertheless they are enough to

give a reasonably clear picture of the form which that treatise took. Book 1,

on the other hand, is evidently in many respects (not in all) an alternative

treatment of the project undertaken in book 2.

I must pursue these preliminaries a little further. Books 1 and 2 perhaps

contain fewer genuinely equivalent passages than is sometimes assumed,

but there are enough parallels and approximate repetitions to ensure that

they cannot originally have been parts of the same finished work.7 I take

them to have performed roughly equivalent tasks in two different treatises.

Further, though the first and second books differ little in what they claim

to be facts about music, they do differ significantly in the conceptual re-

sources which they bring to bear on the interpretation and organisation of

these facts. Those deployed in book 2 are subtler and richer than those of

book 1, and its author shows a markedly higher degree of methodological

self-consciousness. (Some considerations that support these claims will be

mentioned later.) For these and other reasons I have little hesitation in

treating book 2 as the later essay, reworking in the light of greater ma-
turity, and perhaps for rather different purposes, much of the material of

book 1. The same criteria indicate that the affinities of book 3 are with

book 2, not book 1, and hence encourage the belief that books 2 and 3

belonged to the same treatise. In what follows I shall be concerned mainly

6 For a summary of opinions, see Da Rios 1954, cvii-cxvii.

There are also several striking inconsistencies which cannot easily be resolved.

But other scholars have taken different views, some fragmenting the work much
more radically than I do, others declaring for its overall unity. See the survey

mentioned in the previous note, and for a vigorous defence of a Unitarian view,

see now Belis 1986, particularly 24-48: her position was already sketched in Belis

1982, 450-451.
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with the presumably later work represented by books 2 and 3, and shall

draw only occasionally on book 1.

According to the An. post. [esp. 71bl0-73a20] a science consists on the

one hand of principles (dpxoLC), and on the other of conclusions explained

and deductively secured in the light of these principles. The pursuit of

science, then, involves first the establishment of dpxat, and secondly the

demonstrative derivation of subordinate propositions. The establishment

of dpxctC is not itself a matter of demonstrative proof (dTroSet^L?): the sci-

entist works his way up to principles from a starting-point in perception

by a process that is in one sense or another inductive, and whose stages

are outlined, rather enigmatically, in the last chapter of An. post. ii. The

dpxaC include, beside the so-called common axioms, both what Aristotle

usually calls utto0€(T€L9 (and which I take to be propositions asserting that

this or that exists or is the case), and definitions of primary entities or

kinds within the relevant domain [see, e.g., 72al4-24]. Having arrived at

these dpxciL through ‘epagogic’ reflection on perceptual experience, we then

set them to work as dpxaC by identifying the special relations in which

they stand to other propositions of the science, propositions which are not

primary and which are scientifically understood only when they have been

derived apodeictically from the appropriate dpxoLi. The dpxaC, then, must

be grasped as epistemologically and metaphysically prior to the facts ex-

pressed in these subordinate propositions, and as providing the explanatory

ground for them (these points are summarily sketched at 71bl9-22).

The dpxaC must also fulfil certain other conditions. Notably, they must

be true and they must be immediate, not requiring explanation or demon-

stration in terms of anything else [see particularly An. post, i 2-3]. It is

less than clear, epistemologically, how we can be sure in a particular case

that either of these conditions holds: but the latter should be taken to

mean that the dpxaC represent what belongs to the essence of things in the

relevant domain, expressing what it is to be such and such. In the case of a

class of perceptible things it is reasonably clear why, in Aristotle’s view,

the things that hold essentially of members of the class as such ctre not

capable of being demonstrated from any higher considerations but must

be grasped through a process of abstraction and coordination, a process

directed at the data which our perceptual experience of them provides.

We have an understanding of the subordinate truths of a science only

if we have demonstrated them: that is, we must not merely prove them by

logical derivation from propositions known to be true, but we must derive

them from principles that explain why they are true [see particularly An.

post, i 2-3, 13]. The Aristotelian content of the notion of explanation is

of course complex and takes us beyond the scope of the An. post. But
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in a general and abstract way, ‘explaining why property P holds of sub-

ject 5’ here means ‘showing that P holds of S because the essence of S
(as expressed in some dpxil or dpxaC) logically requires it’. As a conse-

quence, Aristotle argues, the conclusion of an dTroSet^Lg must hold of its

subject as such in virtue of the essential nature of that subject (and not

of some other thing or of the same thing differently conceived: see, e.g..

An. post, i 4 and 6). And it is as a consequence of this proposition that

Aristotle maintains the impossibility, except in certain very special kinds of

case, of demonstrating dXXoi) yevoi;? perdpavra [75a38: cf. 71b22-23, and

below]: a single science is delimited by a kind (yevos) that constitutes a

single domain whose contents stand as the subjects of both the primary and

the subordinate propositions. This requirement, as we shall see, has crucial

work to do in determining the shape of Aristoxenus’ harmonic theory.

But let us postpone consideration of that issue for the present and con-

centrate first on the general adequacy of fit between the Harm. elem. and

the framework that Aristotle proposes. That there is some sort of rough

correlation is reasonably clear: the two books we are principally consider-

ing seem to fall quite neatly under the two categories that the Aristotelian

scheme demands. Book 2 articulates and discusses the dpxoLL of the science:

book 3 sets out a series of formal derivations from these dpxaC, demon-

strations that this is a melodic sequence (while that is not) or that a

melodic sequence in some one genus is subject to such and such condi-

tions; and these demonstrations are at the same time explanations of why
these things are so. Aristoxenus calls his derivations diroSeL^eLS and his use

of the expressions is undeniably Aristotelian in intent.^ He also makes sev-

eral methodological declarations that distinctly echo the An. post, in both

language and content. He alludes scathingly to other theorists who have

* Aristoxenus also refers twice to a section of his work as ‘elements’ or as ‘con-

cerned with the elements’. In i 28.34-29.1, a proposition ev Tolg aToixeLOL? Sei-

x6TT<7eTaL: in ii 43.27-30, after introducing the main topics of harmonics but before

elaborating his treatment of them, he says, peXXovra? 8’ eiuxeLpeXv Trepl rd otol-

Xeta TTpaypaTeCcjL Set TrpoSLavoTiOflvaL rd TolaSe; and goes on to present methodological

reflections that insist on a distinction between dpxaC and what follows from dpxau
In the former passage, the OToixeta evidently constitute part of the treatise: in the

latter they seem to be the ‘elements’ of peXog itself, some part of the harmonic
scientist’s project being designated by the expression rfi Trepl rd aroixeta irpay-

M.aT6L<jL. It is not clear whether these parts of the treatise, or of the investigation,

include the whole of its ‘scientific’ content (that is, everything after the discursive

introduction), or whether they are restricted to the ‘demonstrations’ alone (that

is, to the contents of book 3). Belis [1986, particularly 34-48] takes a clear and
strong line in identifying book 1 of the Harm. elem. as dpxaC and the other two
as aTOLxeXa, but the problems are, I think, more complex than this treatment

suggests.
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asserted their propositions dvev alTLa? Kal diroSeL^ecog: he himself, by con-

trast, will seek both to adopt (XaPeXv) suitable dpxotL and to demonstrate

(dTroSeLKvwat) xd eK toijtcov ov\i^alvo\na [32.29-33.1]. The dpxaC them-

selves, of course, cannot be demonstrated: to ydp TTwg diraLToOv dTrodet^LV

oi)K eoTLV dpxoeiSeg [44.14-15]. Again, every science that consists of sev-

eral propositions must adopt (XaPelv) dpxdg . . . (Sv 8€LX0Tl<7€TaL rd perd

dpxd? [44.3-7]. In passages like these Aristoxenus’ debt to the An. post.

could hardly be more obvious. He believed that he had succeeded in a task

whose character his predecessors had not understood and whose necessity

to harmonic science they had not even noticed, that of drawing the har-

monic facts into an Aristotelian system of dpxo-L and diroSeC^eLg. On this
j

achievement he rests one of his major claims to originality and importance.

As in Aristotle’s scheme, some of the dpxaC take the form of definitions:

each of the seven pepr| of the science outlined in the early sections of book 2

involves a subject to be defined, and various other items are also defined

along the way. The definitions initially offered, however, are explicitly

schematic,^ requiring more detailed articulation and differentiation as well

as an enumeration of the more specific types of item falling under the

subjects outlined. Not all Aristoxenus’ elaborations of detail have survived:

some that he promised may never in fact have been given. 19 What we do

find are close accounts of some specific types of structure falling under

the broader kinds that certain definitions sketch, notably his descriptions
|

[i 21.37-24, ii 46.19-52.33] of tetrachordal divisions in the three melodic

genera and some of their subordinate xpoaL (nuances or shades). But this

phase of Aristoxenus’ project raises serious questions about his method.

Though the analyses of these divisions might, not unreasonably, be given

the status of definitions (definitions of species falling under a broader kind

rather than more detailed definitions of the kind itself), the terms in which

they are set make it very difficult to construe them as dpxoeLSfj, as principles

proper to the science. On the other hand they are plainly not demonstrated

in the technical sense, nor did Aristoxenus think they could be. There are

problems here to which we shall return.

In addition to definitions, the dpxaC include what Aristotle calls vnodi'

(J6Lg. Aristoxenus uses no corresponding noun; but he sets out a series of

principles whose importance and primacy he vigorously underlines, each

asserting that something is the case and each introduced by such words as

9 See, for instance, Aristoxenus’ engaging appeal to his hearers at Harm. elem.

16.2-16.

Thus, at 36.17 he raises the question, What is a Suvapt??, as one that urgently

demands an answer. But if he gave an answer, it left no trace in the writings

of his successors and epitomisers.
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vTTOKcCaOo) [in book 1, esp. 29.1-34], XapPaveTO) or Gereov [in book 2, esp.

54.7, 19]. As is appropriate to such primary propositions, they are quite os-

tentatiously presented with no attempt at proof or derivation. One of them

he describes as ‘the first and most indispensable of the conditions that bear

upon the melodic combination of intervals’ [to TTpcoTov Kal dvayKatoTaTov

Twv (JvvTeiv6vT(i)v irpos Tag eppeXeig anvBeacLg tojv SLaaTTipaTCov: 53.33-

54.1]. A little later he says of it, ‘Let this, therefore, be posited as first

in the order or principles: if it is not fulfilled, the harmonic attunement is

destroyed’ [Gereov ow toCito TrpwTov el? dpxfi? Td^iv ou pf] wTrdp^dvTO? dv
aLpeLTat to fippoapevov: 54.19-21]. It cannot be over-emphasised that the

ovv (therefore) in this sentence does not mark the conclusion of any sort of

argument. The Aristotelian thesis that principles cannot be demonstrated

is one that Aristoxenus wholeheartedly endorses: ‘Anything that requires

demonstration (diroSeL^L?) is not dpxo€L8€?’ [44.14- 15].

To the extent that it deals with principles, then, it is no criticism to

point out that book 2 contains hardly anything in the way of arguments

to support the musicological assertions it makes. (The same could be said

of book 1.) There are arguments in book 2, but virtually all of them are

methodological, and have to do with the way in which the subject is to

be approached; they are not designed to establish substantive propositions

of the science. The impressive and elaborate typology of melodic genera,

the principles governing melodic succession, the enumeration of concordant

intervals, the definitions of an array of harmonic concepts, these and all the

rest are flatly asserted, not argued, rarely even supplied with supporting

considerations. This is not a sign of either arrogance or incompetence: it

is a necessary consequence of Aristoxenus’ determination to take seriously

the distinction between what can be demonstrated and what cannot [see

43.34-44.1].

The only proper approach to the latter is inductive, and it is important

to be clear about what this implies. It implies that they cannot be estab-

lished by any argumentative device capable of being presented in a written

treatise. The function of the treatise, so far as they are concerned, is to

systematise and draw to our attention what is implicit in our own expe-

rience, that is, in the perception by carefully trained and attentive listeners

of certain phenomena as melodic. If we attend to our experience we shall

recognise the authority of the principles that Aristoxenus articulates and

the cogency of the distinctions marked by his definitions, as accurately map-
ping the framework within which our perception of melodies takes place. ^

Each of the primary propositions must be both dXr|0€s- and c|)aLv6p.evov: it must

also be such as to be grasped (awopdaSat) by ala0r|aLS- as being among the TipdiTa

of the various parts of harmonics [44.9-13: cf. 32.31-33.1].
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The principles of harmonics are not recognisable as such except through

an individual’s reflection on his own perceptual experience. 12 No amount

of reading treatises can give such experience and, hence, any attempt to

establish their truth through the written (or spoken) word would be out

of place and futile.

Similar considerations explain why Aristoxenus tells us nothing of par-

ticular examples of melody drawn from his own experience, on which his

inductive generalisations might be founded. We might expect a treatise

in empiriccil science to offer case studies or experimental reports at least

by way of examples: Aristoxenus does not provide such data, though he

occasionally mentions what he would expect his readers’ experience to be

under certain conditions. Whatever may be true of the other ancient sci-

ences, I suggest that there are good reasons for the omission here. In most

empirical sciences we typically assume—unless we affect a hyperbolic form

of scepticism—that what the researcher observed at some time would have

been observed also, other things being equal, by anyone else who had been

there. Hence, the researcher’s experience can stand proxy for our own, as a

basis for the inductive extraction of principles. In Aristoxenian harmonics

this is not so, not because Aristoxenus supposes that the assumption would

be false but precisely because it is part of the task of harmonics to show

that it is true. Little purpose would be served by descriptions of individual

cases that Aristoxenus has observed, since we must not assume that we
would experience them in the same way. Hence, he states his principles

without supporting evidence: we ourselves must provide the grounds for

believing that they hold universally, by finding that they are indeed implicit

in our own perception of individual cases. To present examples in evidence,

or any form of argumentation, would be to offer the illusion of support for

the principles without the reality: that is something that the written word

cannot provide.

Aristoxenus’ text contains one superficially anomalous case, his ‘argu-

ment’ to the conclusion that the concord of the fourth is an interval span-

ning exactly two and a half tones [56.13-58.5]. But in fact this helps to i

prove the rule, since it is not offered as an argument in the relevant sense
|

at all. That is, it does not seek to establish anything without recourse

to the listener’s own perception: it explains a practical method by which

the student can satisfy himself of the truth of the proposition. He must

work through a specified musical construction in practice, not on paper or

in his head, and listen carefully to its results [see esp. 56.31-33]. If and

only if the results are heard in a certain way, the proposition will have been

12 See especially the contrast with geometry at 33.10-26.
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established [56.33-57.3]. The method which Aristoxenus describes has its

flaws, 13 but these do not affect the point I am trying to make. The intention

of the passage is not to establish a musical proposition by argumentative

means, but to show how perception may be used in order to judge whether

the proposition is acceptable or not. To repeat: in a science based on the

ideas of the An. post, it cannot be the function of a treatise to establish the

truth of dpxoLL. It can only identify them, on the basis of the author’s own
experience, in a form that allows us to recognise them in our own; and it

can organise and coordinate them so as to bring out their interconnections

and to make them available for use in dTroSeifL?.

These reflections suggest something important about the way in which

an Aristotelian scientist’s work is to be construed. There is a sense in

which Aristoxenus’ writings do not by themselves constitute the science,

the body of knowledge, of which he spoke. This is not to deny that these

writings were, in their original form, as complete and accurate an account

of their subject as any treatise could be: on this issue we do not need

to pronounce. The point is that the treatise, no matter how finished a

product it is, cannot itself be the knowledge which its author possesses and

to which its readers may aspire. The thesis that knowledge is a property

of minds, not of books, is not just a tendentious a priori dogma. There

are good grounds here for saying that the book cannot even be a written

representation of its author’s knowledge, since there can be no such rep-

resentation of the conditions that constitute it as knowledge. A treatise

may enunciate the laws and principles on which its demonstrations rest,

but it cannot incorporate the grounds that give them the status of scientific

truths objectively established. The task of the written or spoken exposition

is to guide others towards understanding, by articulating the truths that

they must recognise if they are themselves to master the science of harmon-

ics. Scientific understanding establishes these truths and the treatise does

not. Then a science is not something that can exist in a book or a library

or a data-bank: there is no impersonal corpus of scientific knowledge. A
science must satisfy conditions that can be satisfied only a by mind that

can draw on its own experience in confirmation of its claims: it is a SwafiL?

06ti)p‘nTLicn, a mental capacity or disposition, something that can be neither

contained nor represented in the written or spoken word [cf. Harm. elem.

41.6-24].

Such a conception of a science is closely related to that of a or

practical skill (though there are differences, emphasised in 41.6-24.) The
principles of such a skill may have been fully discovered and developed

^3 Exposed with acid precision by Ptolemy, Harm. 21.21-24.29.
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long ago: they may even have been written down in works entitled, ‘The

art of such and such’. But plainly the art or skill does not exist in anything

written: it is not even the sum of the propositions enunciated there, but

consists of the capacities and dispositions of individuals who have mastered

it. Similarly, a science is a mind’s organised and systematic grasp of a

determinate domain. What a treatise expresses can be knowledge only in so

far as its principles are grasped by a mind that has recognised their truth;

and that recognition depends on the mind’s own experience, since their

truth cannot be established by anything independent of that. Aristotle

himself says something in this vein:

Demonstration is not directed to external discourse, but to that in

the soul . . . for it is always possible to raise objections against the

external discourse, but not always against the internal.

OX) yap TTp09 tov \6yov f] aTTodcL^Lg, dXXd irpog tov ev Tfj 4^uxt|

. . . del ydp eoriv €VGrf\vai irpog tov e^co Xoyov, dXXd Trpog tov eao)

Xoyov ovK del. [An. post. 76b24-27]

In that case it seems misleading to treat the An. post, as offering only

a framework for teaching, if this implies that it is not also designed to

describe the form of a finished science and to commend certain approaches

to research. In describing the conditions of dirodeL^Lg and the ways in

which the dpxaC must be established, Aristotle is analysing the structure of

a system of understanding that can exist only in a mind, not in a teacher’s

presentation of his material.

Again, since our grasp of a domain of experience becomes knowledge

only when it is systematically ordered and grounded in the appropriate

way, research in that domain must be, at least in part, a search for ways

in which the phenomena of experience can be so ordered. Aristoxenus’

success in finding principles and categories under which an empirical grasp

of musical facts can be converted into an Aristotelian science is the core

of his achievement; and it would be curmudgeonly to refuse his endeavours

the title of research merely because they did not necessarily involve the

discovery, or even the pursuit, of hitherto unsuspected first-order facts.

The expression of the results of this research in writing ceases to be science

and becomes pedagogy. No doubt it is appropriate to teach students who
seek to become knowers by a method that brings out, as clearly a^ possible,

the system of relations that must hold between propositions in their mind

and between these propositions and their experience if knowledge is to

be achieved. The treatise or lecture should therefore mirror the structure

of the science so far as it can. But the structure of pedagogy, like that

of research, is derived from that of the science itself as it may exist in a
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knowing mind and not the other way round; and as we have also seen, there

are crucial aspects of the science, as Aristotle describes it and Aristoxenus

pursues it, that the teacher’s pronouncements have no power to represent.

2. The ‘same domain’ rule and Aristoxenian phenomenology

A scientifically perspicuous description of what I heard when I heard some

sequence of sounds as a melody would draw attention to properties and

relations that contributed essentially to its being heard as melodic or as

being of some determinate melodic kind. The dpxaC of harmonic science

are abstracted inductively from observations of phenomena to which such

descriptions could be attached, clarifying, generalising, and coordinating

them, but not introducing new matter from elsewhere. Subordinate rules

are derived from principles deductively. It is considerations like these that

underpin Aristoxenus’ enthusiastic endorsement of what I shall call Aristo-

tle’s ‘same domain’ rule, according to which no aTToSei^LS of what belongs to

a subject in one domain can be derived from principles proper to subjects

in another. In short, as Aristotle says, one cannot demonstrate 6^ dWov
yevovs [ieTdpavra [cf. An. post. 75a38].

Aristoxenus lays great stress on this rule. To break it is dXXoTpLoXoyeLV

[32.20: cf. 32.27] or el? tt]v wepopCav €p.TrL7TT6LV [44.17-18], and scientific

understanding cannot come that way. In so far as a statement belongs to

harmonics, it mentions nothing that falls outside the domain defined by

the essence of the kind with which harmonics is concerned, to f]pp.oap.evov

and its species. Crucially, no laws describing the regular behaviour and
properties of what is melodic as such can be demonstrated from princi-

ples expressing what is essential to things of another kind. Each principle

of harmonic science, we are told, must be both true and (j)aLv6p.evov: it

must be such as to be accepted as a primary principle by ata0qaL? [44.9-

14], 14 That is, it must express what is essentially involved in something’s

presenting itself to our hearing as melodic, not offer descriptions referring

to entities of another sort or even to sounds conceived under an aspect

which is not that presented to musical aiaQr\Gis. It may not, then, impose

rules based on a conception of sounds as movements of the air, differing

in the rapidity of their transmission or in the frequency of the impacts

that initiate them, since it is not as patterns of relative speeds or frequen-

cies that sequences of sounds present themselves to the ear as melodic or

Compare for instance An. post, i 6, particularly 74b24-6: the dpxii of a demon-
stration is TO TTpdiTov ToO yevou? TTcpL b SeLKVuTar Kal ToXT^Se? ou irdv oLkclov. See also

81a38-b9.
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unmelodic. Nor, for the same reason, can harmonic rules be founded in

a representation of pitch-differences as ratios of numbers. 15 The entities,

properties, and relations mentioned in the dpxaC must be exclusively ones

to which precisely articulated observation-statements would already need

to refer—statements saying just what it was about an experienced set of

sounds that constituted it as melodic or as an instance of some specific

melodic kind.

Aristotle grounds his ‘same domain’ rule in considerations of just these

sorts, though of course without reference to the special domain of harmon-

ics. The reasoning is essentially simple. Any putative demonstration that

broke the rule would not display its conclusion, which asserts that some

property belongs to entities of a given kind, as flowing from the nature

of the entities themselves and, hence, as being explained by reference to

that nature. The link between any entity’s possession of that nature and

its possession of that property would remain ilierely contingent, even if

the pseudo-demonstration showed in the light of something else that the

conclusion was indeed true. 16 If in fact the inherence of certain properties in

things of kind K cannot be demonstratively explained from dpxaC express-

ing the <|)uaLg of that kind, then either there is no such 4>i3aL9 and K is an

arbitrarily designated class of accidental aggregates, or else the properties

in question do not belong to things of kind K as such but only under some

description that applies to such things contingently (xard oup.p€3T]K69).17

j

But Aristotle allows exceptions to the ‘same domain’ rule in cases where
|

one science falls under another in a specified manner. There are cases
|

where it is the task of one science to describe the perceived properties of
|

phenomena in a specific domain and the relations between these properties,
j

but that of another to explain why the properties belong to them and why I

they are so related [see An. post. 75bl4-20, 76a9-15, 78b32-79al6]. The
|

situation seems to be this. The ‘empirical’ version of a science identifies
|

a range of properties that perception finds attached to subjects of a given
|

sort. The ‘explanatory’ version then identifies these properties as special
|

instances of a more generalised class of forms, instances whose perceptible

character derives from the inherence of the forms in the kind of perceptible

15 These issues are mentioned several times in book 1 in ch. 8-12, esp. 9.2-11,

12.4-32: see also ii 32.19-28.

16 The statement at An. post. 75a38 that one cannot demonstrate aXXov yeuovg

peTopavra is introduced with the particle dpa, indicating that it is the conclusion
|

of an argument and not a new assertion. The argument is contained in the whole I

of i 4-6. What I have said here is not even a summary or a paraphrase of those
1

chapters, but may serve to indicate their general drift.

17 See the forceful statement at An. post. 75a28-34: cf. for instance, Phys.

192b28-32.
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matter under investigation, though they can, at least in principle, occur as

forms organising matter in other perceptible domains. These forms remain

what they are independently of the genus of matter on which they are

imposed, and their nature and relations can be studied in abstraction from

any such matter (though of course they cannot exist in separation from

matter of some determinate sort). The prime examples of forms that are

properly studied at this abstract level are the objects of mathematics, and

in each case the explanatory version of the sciences that Aristotle mentions

is a mathematical one.

We can extract the skeleton of an example from De sensu 439bl9-440a6,

where Aristotle compares certain properties of colours and of sounds. He
offers the view (though it is not clear whether he endorses it) that the same

numerical ratios which characterise the relation between sounds that are

perceived jointly in certain special ways, also express the relation between

instances of the basic colour-types, dark and bright, when they are so re-

lated as to produce jointly certain perceptible results. He seems to suggest

that the acoustic and visual phenomena explained in terms of the same
numerical ratio may themselves be somehow analogous. The perceived

property is of course different in each case, since one is seen and the other

heard: but within its own perceptual domain, each is the analogue of the

other.

For the colours that are in the most well-ratioed numbers, like the

concords in the other case, appear to be the pleasantest of the

colours, ones like purple and scarlet and a few others of that sort

(for which reason the concords too are few), while those that are

not in numbers are the other colours.

Td ydp ev dpL0potg efiXoyLOTOLs Ka6dTTcp CKet tq? cm|i<j)a)-

vCa?, Td -nSLOTa Tcav elvai Sokowtu, oIov to dXoijpyov kuI

<f)OLVLKOi)y Kal oXCy’ uttu TOiafiTa, 8l" f^vTTep aiTidv kuI al ai;p.<t)a)VLaL

oXCyaL, Td 3e pf| ev dptSpoXg TaXXa xp^paTU. [De sensu 439b32-440a3]

In each case, then, the subordinate, empirical science classifies the prop-

erties by the way they appear to eye or ear. They appear as colours or

as sounds because of the character of the matter in which they are present.

But the reason why they have their special perceived characteristics within

18 Por valuable accounts of Aristotle’s views on these paired sciences, see Lear

1982 and Lennox 1986, particularly 31-44, which builds on Lear’s approach.
But while they give substantial help with the question how mathematics makes
contact, in Aristotle’s view, with the empirical subject matter of physics, I would
argue that Aristoxenus’ grounds for resisting Aristotle’s position with respect to

harmonics remain untouched. I discuss this resistance below.
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any domain, and axe related in their own special ways to other properties

in that dimension (e.g., as concords stand to discords, or as primary and

attractive colours stand to muddy intermediates) is revealed through some

branch of mathematics. It is revealed when the perceived properties and

relations are shown to be instances, in particular types of matter, of mathe-

matical properties and relations, quantitative forms that can be abstracted

in the same way from each.

It is striking that when Aristotle needs an example of such pairs of sci-

ences, he finds it natural to turn to harmonics in its perceptual and mathe-

matical guises (explicitly twice, and by implication in a third passage). 19

Yet Aristoxenus rejects with the utmost vehemence the suggestion that

this relation holds, that the aiTLa of the phenomena which ‘perceptual’

harmonics classifies can be provided by mathematics or by mathematical

acoustics [ii 32.18-28: cf. i 9.2-11, 12.4-32].

He does so not because he disputes Aristotle’s theory of scientific expla-

nation, but precisely as a good Aristotelian. The phenomena harmonics

describes and classifies are the properties of groups of sounds heard as form-

ing a melodic sequence: ‘being melodic’ is a property of sounds presented

to the ear and exists nowhere else, and the properties that a melody has as

such are necessarily and essentially those grasped Kurd tt]v tt\s alaBqaeci)?

(^avraoiav [8.23, 9.2-3: cf. 48.22]. It may be true, Aristoxenus seems to

concede [cf. i 9.2-11, 12.4-32], that the pitches of sounds are in fact deter-

mined physically by their velocities, or by some other quantitative variable.

It might even be open to him to accept, for instance, that the movements

causally responsible for sounds an octave apart stand to one another in the

ratio 2:1, those generating sounds a fourth apart are in the ratio 4:3, and so

on, as the Pythagoreans had proposed, and both Plato and the acoustic

scientists of the Lyceum agreed.20 But facts like these, in Aristoxenus’ view,

could in principle do nothing to explain why certain sequences of intervals

and not others present themselves to the ear as melodic. There are no

mathematical reasons, or reasons within the province of physical acoustics,

^9 An. post. 78b32-79al6, 87a32-4: cf. 90al8-23. The other passages mentioned

above [75bl4-20, 76a9-15, 78b32-79al6] are also relevant. It is only at 79al-2

that the two sciences are described as dppovLKr] fj re |ia0q|iaTLKT] Kal t] Kara Tf]v dKoqv:

elsewhere they are dpL0pr|TLicd and rd dppovLKd (or dpiiovito^).

20 But to accept this would invite difficulties. Notably, since there is no mean
proportional between terms in superparticular ratio, that is, in one of the form

(n-f-l):n [see Boethius De mus. iii 11; Sect. can. props. 3, 16, 18], it would be

impossible to specify ratios of velocities belonging, for example, to notes an exact

half-tone apart. Aristoxenus insisted, but mathematical theorists denied, that the

tone and other superparticular intervals such as the fourth (4:3) can be divided

into equal parts.
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why there can be, for example, at most two notes between given notes a

fourth apart in a single scale-system, or why no more than two dieses can

be sung successively in the course of a melody, or why the lowest interval of

a tetrachord between fixed notes is always smaller than the highest, and

so on. Nor can such sciences explain why the boundaries of the genera lie

where they do, or why the melodic structure called the tivkvov cannot span

an interval equal to or greater than half the magnitude of a concordant

fourth. It is true that the boundaries of the genera and the limits of the th;-

Kvov can be quantitatively specified (a fact that raises difficulties of its own,

to which I shall return). But the boundaries marked in this way correspond

to no distinctions that are mathematically significant: from a mathemat-

ical point of view their placing seems quite arbitrary; and mathematical

principles cannot show why melodically significant boundaries should lie

there, rather than somewhere else. Thus, it is a fact of musical experi-

ence, according to Aristoxenus, that the sequence of two quarter-tones is

heard as generically different from that of two intervals of one third of a

tone, while the latter sequence differs only in in genus, from a

sequence of two semitones [see, e.g., 50.22-51.1 with 48.21-26]. Nothing

in mathematics would lead us to expect this result nor can mathematical

laws explain it.

Indeed, nothing can explain it outside principles generalising or abstract-

ing from the perceived data of harmonics itself. For Aristoxenus, harmonic

truths are not to be explained by reference to something external to our

perception of melodies. Rather, they are to be organised and understood

solely in terms of the system in which they themselves appear. The task of

harmonics is to reveal the structure of phenomena taken as phenomena,
to show that for something to be melodic is for it to fit within a certain

orderly system, and to describe that system’s anatomy. It is not to show
how the structure of the system is determined by something else, mathe-

matical or physical, because there is nothing that so determines it. It is an

independent essence, existing only in the realm of audible musical sound.

It is not an ordering of entities that ‘really’ exist in some more fundamental

domain, of which the heard sounds are just one aspect; nor is the ordering

one that can be abstracted without loss from the ‘material’ of sound and
transferred, even in principle, to another domain. The crucial relations can

no more be abstracted from the domain of the audible than can the relation

of sweet to bitter, for example, from the domain of taste.

Even among authors who espoused mathematical harmonics in Aristo-

tle’s sense, there were those who recognised a problem to be solved in this

connection. It could not just be assumed that the forms which appear as

properties of melodic phenomena are the very same forms as those with
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which the mathematics of ratio and proportion concerns itself: in hearing

sounds as melodically related we plainly do not hear them as standing to

one another in certain classes of ratio. That they are indeed the same

forms is something that must be shown, a task that the writer of the Sectio

canonis at least undertook, however unsuccessfully, in the introduction to

the treatise [Menge 1916, 148-149: but see chapter 8 in this volume].

I do not mean to imply, of course, that Aristoxenus’ stand on these

matters is impregnable. Several points could be urged against him, of

which two are worth mentioning here. First, he may have misconstrued

the Pythagorean conception of the relation between audible phenomena and

their mathematical counterparts. I shall not argue this question (though

for what it is worth, I do not think that he was wrong), since some of

his criticisms are in fact quite independent of the subtler nuances of inter-

pretation that these relations may be given. In particular, he claims as a

plain fact that there are significant differences between melodic systems,

scalar systems, and so on, to which no comparably significant mathemati-

cal distinctions correspond, and that there are rules of melodic sequence
j

whose mathematical counterparts could be derived from no rationally com-

pelling principle: from the mathematician’s point of view the rules must

seem merely arbitrary. Now the Pythagorean ratios might be conceived as

analyses of relations between physical events distinct from the sounds they

cause. Alternatively, they might be conceived in various ways as character-

isations of the mathematical form of the melodic relations between musical

notes themselves. To Aristoxenus, however, such details are unimportant.

Any audible relation between sounds, or any relation between the ‘phys-

ical’ causes of the component pitches, could no doubt be described in the

language of ratios. But if the rules of melodic progression turn out to be

purely accidental with regard to the principles of mathematics, or if in dis-

tinguishing between the mathematical counterparts of perceptually distinct

melodic forms we are making classifications that are mathematically cirbi-

trary and unintelligible, these translations into mathematical terminology

will have achieved nothing. They will have brought us no nearer to the goal
|

of explaining the musical phenomena or of elucidating the grounds of their

coherence and order: this orderliness will, if anything, have been obscured

under the ‘accidents’ to which mathematical descriptions draw attention.

Secondly, however, it might be argued that Aristoxenus is mistaken in

supposing that the Pythagoreans intended, as he did, to analyse and coor-

dinate the rules and distinctions implicit in ordinary musical experience:

their real project was prescriptive rather than descriptive, concerned pri-

marily with the excogitation of mathematical or metaphysical ideals. There
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would probably be some truth in this accusation if, for example, Aristox-

enus’ main targets were theorists of a more or less Platonist persuasion.

But not all mathematical theorists were concerned solely with rational

paradigms. I would argue that Archytas, for one, was deeply interested in

the description, analysis, and coordination of the systems implied in cur-

rent musical practice, as were such writers as Didymus and Ptolemy in later

antiquity. Others, it appears, were not: examples would be Plato himself,

at least in some of his moods, and later commentators such as Theon of

Smyrna. Certain mathematical writers—Eratosthenes, for instance, and

Theon’s main source, Adrastus—seem to show traces of both approaches.

There was no uniform ‘Pythagorean’ project with a single, unambiguous

goal: mathematical analyses were offered by different authors for different

purposes. But in so far as mathematical theorists did share Aristoxenus’

ambition to describe and explain the credentials of melodic systems in fa-

miliar contemporary use, there can be little doubt that he had the better

of the argument, for the reasons given above. His approach enabled him
to identify and coordinate a far richer collection of musical forms and dis-

tinctions than the Pythagorean scheme of concepts could even describe,

let alone subsume under mathematical principles. Even if Pythagoreans

and Platonists could offer a mathematical account—an analysis and an

explanation— of some properties essential to melodic systems, still a vast

storehouse of properties and relations remained untouched.21

21 The representation of pitch-relations as ratios was flexible enough to express

many different forms of attunement or scalar series. In the fourth century, three

distinct ‘generic’ versions were described by Archytas [Ptolemy, Harm. 30.9-

31.18 = Diels and Kranz 1951, i 428.15-37], and these differ again from the

‘Pythagorean diatonic’ of Philolaus (if we accept as genuine the disputed fragment
from Nicomachus, presented as the second paragraph of Diels and Kranz 1951,

i 408.11-410.10) and Plato [Tim. 35b-36b], which is the same as that implied in

Sect. can. props. 19-20. Different ones again were later offered by Eratosthenes

and Didymus, and with impressive sophistication by Ptolemy: for all these, see

Ptolemy, Harm. 70.5-74.3. But their mathematical principles, even Ptolemy’s,

could cope with relatively few tasks in the field of explanation. Attempts were
made to account for the perceived difference between concord and discord [e.g..

Porphyry, In harm. 107.15-108.21 = Diels and Kranz 1951, i 429.1-27; Menge
1916, 149.11-24: cf. [Aristotle] De and. 803b26-804a9]. More importantly, the

Archytan theory of means [Porphyry, In harm. 93.5-17 = Diels and Kranz 1951,

i 435.19-436.13] was held by some authors to provide a rational basis for the

construction of well coordinated systems; and it could then be used to explain one
feature of a legitimate attunement that distinguishes it from improper ones—the

former and not the latter divides the octave proportionally (most clearly Plato,

Tim. 35b-36b: the same principles are also at work in Archytas’ own divisions).

Other authors found different principles to do similar work. Those adopted by
Ptolemy have features that arise from reflection on the special characteristics of
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Aristoxenus’ concept of these essentially melodic properties and rela-

tions is closely linked to what he calls SwaRig. He has no corresponding

adjective, but we can reasonably use ‘functional’ or ‘dynamic’ to describe

the relevant properties of notes, intervals, and sequences. The notion of

melodic Swafu? is the central pivot of Aristoxenus’ approach to his subject

in books 2 and 3. (The fact that it appears nowhere in book 1 constitutes

the most significant difference between its ideas and those of the presum-

ably later treatise.) It is too large a subject to be explored fully here', but a

sketch is essential. The subject is best approached through the contrasts

Aristoxenus draws between 8uyd[i€Lg on the one hand and purely quanti-

tative features of notes and intervals on the other, particularly what he

calls the peyeGr) (magnitudes) of intervals. A pitched sound may take its

place in a melody by being perceived, for example, in the character of the

note called Xtxai/og—that is, the note immediately below the note Rear)

which is the principal focus of the system. To be Xixavos is not to be a

sound of any particular pitch. Nor is it even to be a sound standing at an

interval of some definite size ([icyeBog) below fieaq. That is, perceiving a

note as XLxavdg is not identical with perceiving it as a note at such and

such a distance below pcoq. Our perception of a note’s melodic function,

its 8f)vap.LS, is distinct from and may not even include a perception of the

magnitudes of the intervals between it and other notes: in fact the note

Xixavo? may stand, according to Aristoxenus, at any distance from a tone

to a ditone (inclusive) below pear). Its being Xtxavog and so its finding

a genuinely melodic role depends only on its being perceived within the

prevailing system as the note between which and peaq no other note can

melodically be inserted.22 (Meaq, of course, is also dynamically determined,

and so is every other note in the system: all notes exist in their relations to

one another, relations constituted partly by their sequential order, partly

superparticular ratios [see esp. Harm, i 7], whose privileged status was recognised

before Archytas, though he gave it new emphasis [cf. Harm, i 13]: but they do

not depend on the Archytan theory of means, relying instead on applications

of several subtle and distinct conceptions of mathematical ‘equality’ [see Harm.
i 7, 15, 16]. But none of the other essential features of melodic systems as

Aristoxenus identified them could be accounted for by such purely mathematical

expedients. Ptolemy is commendably frank about this, despite the ‘rationalistic’

ambitions declared in Harm, i 2. The point is most explicit in Harm, i 15, where he

distinguishes sharply between ‘principles of reason’ and ‘theses based on agreed

perception’, and insists that these are independent and equally indispensible

starting-points for the derivation of properly ordered systems of attunement. On
Archytas’ own conception of the relations between mathematical principles and

the data of experience, see Barker 1989.

22 Aristoxenus discusses and defends his position elaborately in 46.24-50.14.
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by relations of concordance between certain fundamental notes, and partly

by the ways in which the actual locus of one note, within the boundaries of

these concords, carries implications for the positioning of the others.)

To tahe another example, a chromatic sequence is not to be defined as

an ordering of some particular set of intervallic magnitudes nor even as

a disjunction of such orderings. A chromatic sequence is essentially one

heard as having a certain melodic character, which it is the business of

trained musical perception to recognise. That character is preserved no

matter which of indefinitely many different sets of magnitudes its intervals

may possess within determinate ranges: it is this character that constitutes

its 8i3vapL9 as a form of melody, and it is only when we have recognised this

character as definitive of the chromatic that we can begin to enquire which

sets of intervallic magnitudes, in which melodic contexts, in fact present

it to the ear [see 48.15-49.2]. Again, the so-called ttvkvov is not in essence a

pair of intervals of such and such a size, or even one with a determinate

range of magnitude. In fact all TTUKvd do fall within a determinate range

[50.15-19] but it is not this fact that defines them as such, nor is it in

that character that they are perceived as ttvkvo.. A ttvkvov is to be defined

as a pair of intervals that presents to perception a certain character of

sound [ttukvou tivos <|)(i)i/n: 48.30], and it is in having that sort of sound,

not in being of some size or other, that a ttdkvov plays its dynamic part

in melody and affects the melodic character of what we hear. Conversely,

two intervals of equal size may differ in Sijvafug by differing in their locus

within the system or in the genus of the system to which they are heard

as belonging [see, for instance, 47.29-48.6]: this difference will determine

distinct melodic roles for each of them and different possibilities for melodic

continuation from them.

In general, if we identify the absolute pitches of sounds in a sequence

or spell out the sizes of the intervals between them, we are not thereby giv-

ing an explication or analysis of the fact that they form a melodic series or

that they possess some specific melodic character [see 40.11-24]. In hearing

pitches as melody it is not these features as such that we attend to. Rather,

their melodic character depends on their being heard in determinate dy-

namic roles that form a consistent pattern of reciprocal relations, relations

which cannot be described in other than dynamic terms. The language of

harmonic 8i)vdp.eLg cannot be translated into that of peyeGri. A basic task

of the student of harmonics is to learn to identify the melodic relations he

hears under their dynamic categories, since it as 8uvdpeL9 ,
not as peyeSri,

that they constitute the data that he must come to understand. Harmonics

seeks to articulate the system in which the dynamic relations exist; to ex-

plore the implications, for the structure in which it occurs, of a note’s being
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heard as Xtxotv'og, a sequence’s being heard as chromatic, a pair of intervals’

being heard as a ttukvov, and so on; and to show how these implications

arise from a unified set of dpxoLt that express the (f>uaL9 of melody. That

dynamic relations have these specifically melodic properties involves and

arises from their existence as elements in that (|)i3aL9 which is articulated by

the theorist as a systematically integrated relational structure.23

In the context of Aristoxenus’ insistence on the primacy of perception,

this entails that individual instances of the Bwapet? with which he is con-

cerned are themselves objects of perception. The Swapet? must be present

as such to ordinary melodic experience and cannot exist only as concepts

of reflection or theoretical constructs of the harmonic scientist. Harmonics

studies the melodic: being melodic is a property only of sounds as heard,

and to be melodic is to fall under dynamic descriptions of the sorts I have

sketched. This raises problems of two sorts. First, is the claim the 8uvdp€L9

are objects of perception an intelligible and plaqsible one? And secondly,

is Aristoxenus consistent in maintaining it? One passage, at least, suggests

otherwise.

The first question is perhaps tangential to an exposition of Aristoxenus’

ideas, but it is worth a moment’s attention. One might argue that the

directly perceived character of a sound must be limited to such features as

its pitch, timbre, and volume, that is, to features determined by the physical

processes through which it impinges on the ear. The intricate pattern of
j

dynamic relations that Aristoxenus conceives cannot exist in the physical
I

event of sensory reception and, hence, a note’s melodic 8wapi9—which

consists, precisely, in its place within that network of relations—cannot be

part of our perceptual experience of it. The large issues raised by such

argument cannot be pursued in any depth here. So I shall be dogmatic.

The restriction of direct perception to a grasp of the so-called proper

objects of each sense, though traces of it may be found in philosophers

as eminent as Aristotle, seems to me quite without foundation. We hear

sounds as standing in certain relations to one another, and these include

relations of melodic implication just as surely as they include relations of

pitch and loudness: similarly, we see things in visual relations, not just of

colour and size, but also of symmetry and pattern. Of course, our reception

of these relational properties is a complex matter, and it would be legit-

imate to set aside the expression ‘indirect perception’ to describe it just so

long as this description does not serve surreptitiously to insinuate that it is

23 The striking orderliness of p.eXog is emphasised at 5.23-4: compare the

description of the <j)uaLS toO owexoO? at 27.17-33. References to the 4)uaL?, of peXos

and of M.eXCi)8La and of to fjppoopevov recur frequently in this connection throughout

the Harm. elem.
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not really perception at all. In the case of sequences of sounds, such percep-

tion is conditioned by (at least) short-term memory, generating a complex

within which the relations are grasped. Again, our capacity to engage in it

can be heightened and sophisticated by training. Both of these are facts

about which Aristoxenus is clear and emphatic [see 38.31-39.3, 33.1-26].

But there is no reason why they should impugn the status of these relations

as inhering in what is perceived. A melody is something heard: its char-

acter as melody is not something intellectually constructed and imposed

from outside our perceptual resources onto what is given to us only as a

set of differently pitched sounds. To say that it is would imply that what

makes something melodic is a structure discernible only by the intellect,

a set of voqxal alTLat: such a Platonist or Pythagorean approach leaves it

wholly mysterious how we can tell that something is a melody without the

least recourse either to measurement and mathematical analysis or to the

sophisticated investigations of Aristoxenian musicology. It would also fail

to explain how Aristoxenian or similar conceptualisations can be recognised

as accurate or inaccurate articulations of what we ourselves experience.

Whatever the truth about these issues may be, Aristoxenus is plainly

committed in most of books 2 and 3 to the thesis that melodic 8wd[i6Lg are

indeed given to perception, and that it is in hearing sounds as related in

these ‘dynamic’ ways that we hear them as forming a melody. But one

passage can be read as denying this:

The project depends on two things, hearing and reason. Through
hearing we assess the magnitudes of the intervals, and through rea-

son we study their functions.

’AvdyeraL 8 '
f| TTpaypaxeCa elg 8i3o, €L9 re tt]v dKof|i/ koli elg Tf]v 8id-

voiav. TT] fi€v ydp dKofj KpCvopev rd tojv 8LaaTT][idTa)i/ peye0r|, tt] 8e

8LavoCq OecopoOpev ras toijtwv 8wdpeL9 .
[33.4-8: Macran emends toii-

Tiiiv to T&v (f>06yya)v, but unnecessarily]

This suggests that only the quantitative aspects of intervals are detected

by the hearing, while all grasp of 8uvdp6 L9 lies in the province of didvoia

(intellectual reflection). Now if that is what Aristoxenus meant and if

anything in his procedures hung on it, it would be the ruin of his science. If

the hearing can discriminate only intervallic peyeBri, it can have no grasp of

any of the major distinctions that are said to determine melodic form. But

the immediate continuation of our passage makes such an interpretation

impossible. At 33.32-34.10 it is said that we perceive (ala6av6p€0a) such

things as the differences between genera, the differences between intervals of

the same size lying in different parts of the system, the difference between

two placings of an interval such that one, but not the other, creates a
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modulation; and all these are differences of not of fieye0O9 ,
or of

anything reducible to the quantitative.

So what do the sentences quoted mean? I think the answer is clear

enough. Aristoxenus is not concerned here with the way in which we stan-

dardly perceive melody and melodic relations. He is discussing the special

resources we must deploy in order to generate the analyses characteristic of

harmonic science (TTpayfiaTeCa, the project). To hear a melody is to hear

sounds in certain dynamic relations: but to articulate what these relations

are and how they fit together demands reflection (SidvoLa). That seems

clear and unobjectionable. On the other hand, we do not hear something

as melody by hearing its notes as standing to one another at certain in-

tervallic distances. But there are certain distances at which, as a matter of

fact, they stand in any given case; and the identification of these distances

has a part to play in harmonic analysis. Now this is not something that

can be achieved by didvoLa: to say that it is would again be to lapse into

Platonism or Pythagoreanism by supposing that given melodic relations

must be associated with specific quantitative values for mathematical or

other intellectual reasons.24 We can discover what quantitative relations

hold between melodically related notes only through perception, by devis-

ing a technique of auditory measurement that enables us to find what the

quantities in fact are. But it must be emphasised—and Aristoxenus un-

derlines it repeatedly—that though the ear is capable of these quantitative

discriminations, and though their results help in the scientific articulation

of harmonic structures, they are no part of the original perception of a

sequence as melodic. Here is Aristoxenus in full flow:

The fact that the perceptual discrimination of the magnitudes as

such is no part (ouSev eoTi pepo?) of the complete understanding

[of peXog] was stated in outline at the start, but is easy to see from

what I shall say next: for neither the bwdpcig of the tetrachords, nor

those of the notes, nor the differences between the genera, nor, to

put it briefly, the differences between the composite and the incom-

posite, nor the simple and the modulating, nor the styles of melodic

composition, nor one might say anything else whatever, becomes

known through the magnitudes as such. [40.11-24]

24 See in particular Aristoxenus’ contrast between harmonics and geometry [33.10-

26] which he seems to have developed out of considerations like those discussed

by Aristotle in An. post, i 12, Phys. ii 2. Aristoxenus’ position is analysed, with

this comparison in mind, by Didymus in Porphyry, In harm. 27.17-28.26 (esp.

28.9-19).
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The knowledge and understanding of which Aristoxenus speaks depend on

principles abstracted from what is essential to our perception of the melodic

character of given sequences. Perception of magnitudes contributes not at

all to this understanding. Hence, the perceptions that do so contribute

are exclusively qualitative and dynamic. The perception of magnitudes as

such, which we might call calculative perception, is a scientific resource

that enables us to identify quantitatively the ranges within which given

dynamic properties are found. It thereby gives some help in mapping

the interrelations of 8wdp6 L9 ,
but it has nothing to offer to the project

of discovering and articulating the nature of these 8i;ydpeL9 themselves.

Perceiving melodic 8wd[ieLg and perceiving intervallic peyeGi] are entirely

distinct operations.

Let us review the gist of this part of our discussion. To hear a set of

sounds as a melody is to hear its constituent notes as standing in certain

intrinsically melodic relations, relations of the sort we are calling dynamic.

Harmonics seeks to articulate precisely the nature of the melodic 8i;yd|ieL9

and the ways in which they are related, to describe fully the anatomy of

the system of relations that they compose, and to spell out the principles of

behaviour by which these relations are governed. These principles express

the nature of [leXo? as such: from them follow special and subordinate rules

such as those demonstrated in book 3. As a matter of method, the princi-

ples are abstracted inductively from a careful survey of perceived instances:

they must be such that perception, not just the abstract intellect, will recog-

nise their appropriateness and authority as dpxaC [44.11-13]. As a matter of

metaphysics, it is because the principles are as they are, because the essence

of pcXog is as it is, that we hear certain sequences and not others as melodic

and discriminate perceptually in the way we do, for example, between the

various generic forms. It follows from Aristoxenus’ phenomenalism, which

is grounded in his rigid adherence to Aristotle’s ‘same domain’ rule, that

nothing can stand as an dpxil and assert for instance that every melodic

sequence necessarily has such and such a property unless an instance of the

inherence of that property in a sequence would be recognisable as such by

perception. More than that, it must be recognisable as such by melodic

perception, not just by the sort of perception that I have called calculative:

it must be recognisable as one of the properties we discriminate in the act

of hearing something as a melody.

Now these properties, as I have tediously repeated, are dynamic proper-

ties: they are not, as such, quantitative features of intervals. In hearing

melody, we may hear, for example, a sequence presenting the character of

the enharmonic hvkvov: and it is no part of such hearing to notice that
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its constituent intervals span exactly a quarter-tone each. Indeed, as Aris-

toxenus emphasises, the subintervals may not always be of just that size:

the enharmonic character on which attention focusses is preserved so long

as the pair of intervals falls somewhere within a certain range of quantita-

tive variation. The half-tone ttukvov, broken down into two quarter-tones,

is merely his favoured instantiation of this enharmonic sequence [see, for

instance, 49.10-21].

It would be natural to draw the conclusion that the relation between a

sequence’s perceived quantitative features and its melodic ones is wholly

contingent. Further, if melodic properties are neither constituted by nor

inferable from quantitative ones, then by the ‘same domain’ rule the latter

should apparently not even be mentioned in any of the classes of proposition

proper to the science—not in the observation-statements from which the

dpxaC are inductively abstracted, nor in the dpxaC themselves, not in either

the premisses or the conclusions of the apodeictic demonstrations. In that

case assessments of the magnitudes and statements about them seem to

have no place in the science. The fact is, however, that in Aristoxenus’

actual text they recur continually. What role can such propositions have?

We shall look at his treatment of them in a little more detail shortly. But

first we must consider briefiy a stratagem that promises to provide a route

between dynamic and quantitative propositions, a way of showing that

they are after all essentially and not merely contingently related. I have
j

tried to make sense of this stratagem elsewhere [Barker 1984, esp. 52-62],
j

but I am increasingly doubtful about its credentials. The main effort is to

persuade us that even if some of Aristoxenus’ statements about magnitudes

are methodologically anomalous, still there remains a large group that can

be intelligibly accommodated into his science. Let us assume two things:

(a) that the relations of concord and discord are properly functional or

melodic (that, I think, is uncontroversial); and (b) that though melodic

perception does not identify magnitudes as such, it nevertheless does have
|

within its scope the relations ‘larger than’, ‘smaller than’, and ‘equal to’,
j

as applied to intervals.

These assumptions will get us a surprisingly long way. I shall not describe

the route in detail. But (i) they allow us to distinguish the three primary

concords, the octave, the fifth, and the fourth, as respectively the third-

smallest, the second-smallest, and the smallest of the concords presented to

perception; moreover, (ii) they enable us to identify the octave as the sum of

the fourth and the fifth; and (iii) to draw attention to the interval by which

the fifth exceeds the fourth, and which is called the Tovog or tone. Finally

(iv) Aristoxenus offers a method [Harm. elem. 55.8-58.5: cf. Euclid(?),

Sectio can. prop. 17], proceeding through the construction of concordant
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fourths and fifths, for determining the size of the fourth relative to the tone

(it is, allegedly, exactly two tones and a half); and by further, similar steps,

we can assign magnitudes measured by the tone to all intervals that are

a half-tone or its multiples.

Propositions correlating melodic phenomena with sequences involving

intervals other than these remain anomalous. But something seems to

have been achieved, for we have established links of a non-contingent kind

between melodic properties on the one hand and magnitudes on the other:

for instance, if an interval presents itself to perception as an instance of

the smallest perceptible concord, then it is an interval that ‘calculative’

perception will assess as spanning two tones and a half. Some quantitative

propositions are after all derivable from functional ones.

But this comforting conclusion cannot be allowed to stand, since it rests

on an assumption whose methodological status is itself open to question.

The assumption is made explicit by Aristoxenus at 55.3-11: this passage

states that the magnitude of each kind of perceived concord, though not

that of each kind of discord, is fixed and determinate, or so nearly so that

it makes no difference. That is, there may be some variation in the size

of interval capable of instantiating a given perceived type of discordant

relation, but a given concordant relation can be instantiated in an interval

of only one size or something very close to it indeed.

The development of artificially tempered tuning systems since the six-

teenth century strongly suggests that this proposition is false.25 But let

us suppose that it is true and that we can check its truth against our

experience. The trouble is that if it is true, it seems to be a truth of a

wholly contingent sort. It is not implicit in our perception of something

as a concord that this concord admits no variation in magnitude, nor, cer-

tainly, would Aristoxenus have supposed that it was: his statement of the

proposition

€7761 8e T0)v StaaTTifiaTLKGJV ^.€‘>'€00)1' Td p.ev T0)v (Ji;[ict)c5va)y t)tol oXcog

ouK exeiv 8ok€L tottov dXX’ eyl peyeOet (optaat [55.3-6]

is noticeably tentative—it is no kind of necessary truth. The alleged fact

might be verifiable through experience, but that experience must be built

out of presentations that are not exclusively those of melodic properties

as such.

25 The problems that led to the development of tempered systems and the theo-

retical controversies that surrounded them are clearly and vividly described in

Walker 1978.
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Aristoxenus faces a dilemma. Either his propositions about tones, half-

tones, and so on are genuinely concerned with determinate magnitudes (in

which case they stand in no essential relation to our perceptions and con-

ceptions of melodic phenomena as such) or they are shorthand expressions

of relations that are properly melodic (in which case they only pretend

to say something about determinate intervallic distances). Even in these

most favourable cases, the attempt to build a necessitating bridge between

functional and quantitative propositions must fail.

Quantitative propositions appear in Aristoxenus’ work in various roles,

but their task is primarily to establish correlations between specific melodic

properties and particular magnitudes or ranges of magnitude. This is

exactly what Aristoxenus’ own principles seem to make methodologically

suspect. Before we pursue the matter further, there are three preliminary

points that need some emphasis. First, the problem is not (or not only) that

quantitative propositions cannot be demonstrated from functional ones, or

the converse. It would be entirely within the rufes to establish their cor-

relations inductively, as Aristoxenus generally seems to do. The problem

is that the necessary information about magnitudes is drawn from observa-

tions that are not essentially melodic: they introduce facts drawn from a

different domain.

Second, we are not concerned here with magnitudes that are problematic

because they are not given to perceptual experience: they are not relative

rates of vibration or anything of that sort. They are heard and identified by

ear, but not as intrinsically melodic properties. Quantitative relations are

never such that a set of notes perceived as standing in some such relation is

thereby perceived as making melodic sense or sense of some specific melodic

sort.

Third, I must underline the fact that Aristoxenus’ deployment of quanti-

tative propositions is far from being just incidental to what he is doing.

The claims I have drawn on about the centrality of 8uyafus and the irrele-

vance of peyeSq to an understanding of it can be exemplified in a number
of passages from about the middle of book 2 onwards. Yet this is hardly

what we would expect from the way book 2 set out, after a short discursive

introduction: here Aristoxenus seems to go out of his way to emphasise

how crucial the ear’s quantitative judgements are to the conduct of the

science and how important it is that the student should be trained to make
them accurately.

Thus, in the passage beginning at 32.18 we find those scathing remarks

about people who try to proceed from aiTLaL foreign to the domain (de-

scribed as dXXoTpLoXo'yoOvTcs and dXXoTpLO)TdTous \6yovs XeyovTcg), and

about others who neglect the need for proper diroScL^LS. Aristoxenus, by
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contrast, will adopt dpxat for his demonstrations that are all <|>aLv6[ievaL

T0L9 epTTeCpoL? [iOWLKfjs. Given all I have said, we would be surprised to

find much emphasis on [i€*y€0r| here. Yet he goes on at once, in another

passage we have already reviewed, to assert that the practice of the science

depends on two things, ukot] and SidvoLa: through dKOT^, he says, we assess

(KpLVopev) the magnitudes of the intervals, and through Sidvota we appre-

hend (SecopoOp-Cv) their dDvdpetg. I have argued that this does not imply

that 8wd[i6L? are inaccessible to perception, nor that hearing a sequence’s

melodic properties involves hearing as such the magnitudes instantiating

it: but plainly it does assign some crucial role in harmonic science, if not

in ordinary musical listening, to the identification of peyeSrj. By way of

an example of the role in which such assessment appears, we may take his

remark a page or so later [35.10-17] to the effect that his predecessors had

neglected the task of identifying the point at which chromatic divisions

of the tetrachord begin and enharmonic ones end. No sense can be made
of this task unless it is that of picking out the magnitude of the sma,ll-

est chromatic ttukvov, a task that Aristoxenus does indeed undertake [see

50.25-51.1].

We cannot solve the problem by arguing that Aristoxenus changed his

mind half-way through book 2. Propositions concerning magnitudes con-

tinue to appear throughout that book and in book 3. I have argued [Barker

1984, esp. 62] that the quantitative form of many propositions in book 3

can be taken exempli gratia and their import reinterpreted functionally,

but even so the difficulty remains. Towards the end of the third book, in

a long and ill-tempered digression, he argues [68.13-69.28] that harmonic

science must be concerned in the first place with 8wdp.€L9, not p.ey60r|, since

its objects must be determinate.26 In this sense duvdpeig are determinate

and fieyeSri are not: that is, there is a unique set of dynamic relations, but

not of quantitative ones, by which any given kind of melodic phenomenon
is to be defined. But in almost the same breath [69.22-28] he draws the

conclusion that progressions of melodically successive intervals must be

identified for just one xpoa at a time; and that claim makes sense only if

the identification is quantitatively conceived. The dynamic properties he

has in mind are common to sequences in more than one Xpoa: that indeed

is why they are determinate, in that definite general rules concerning them
can be formulated. It is the magnitudes of intervals instantiating them that

26 The emphasis on the determinacy of the object of scientific understanding

and the terms in which the discussion is couched may echo Plato, Phil. 16c-

17e: relations between Aristoxenus’ treatise and the Philebus are discussed in

Kucharski 1959. But the immediate source here may be Aristotle, specifically

An. post. 86a3-7.
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vary from XPO^t to XP^ct and cannot be specified for all, or for several, at

once.

Despite all I said earlier, irreducibly quantitative propositions are as

deeply embedded in the treatise as are dynamic ones. They apparently

describe two different domains of perceptual experience. Now the ways

in which harmonics can approach these domains are not parallel. Let us

consider them first separately, and then in relation to one another.

First, 8wd[i€L5 are objects of melodic perception. By reflection on'them

we proceed inductively to definitions of the 8uvd[i€Lg and rules governing

their interrelations.

Second, quantitative assessments of intervals are also made by ear. But

perceptions of intervallic magnitudes are not as such intrinsic to our ex-

perience of melody or melodic form. Hence, no rules of melodic progression

or the like can be derived (inductively or otherwise) just from remembered

perceptions of strings of peycOq. Quantitative hearing as such does not

discriminate the melodic from the unmelodic at all.

But third, what Aristoxenus apparently thinks we can do is to establish,

inductively, correlations between specified dynamic relations and the quan-

titative relations in which they are materially instantiated. It may turn out,

and indeed it does, that a given dynamic relation can appear only in notes

standing at distances within a determinate range of magnitude: yet there

is nothing in the dynamic relations as such to ensure that this must be so.

Then, if we can formulate rules governing such correlations, what stand-

ing have they in the science? They form no part of a definition of the

essence or ()>LiaLg of melody: they are neither dpxctt proper to the science

nor propositions derivable demonstratively from dpxai, precisely because

they serve to span the gap between one domain, one experienced ‘kind’,

and another. We may appropriately call them bridging rules but that is

just a name: it should not be allowed to disguise the fact that Aristoxenus

himself has no equivalent terminology, nor that they constitute an uncom-

fortable irregularity in the smooth surface of the scientific structure as he

conceives it.

There axe some slight signs, I think, that Aristoxenus was himself half-

aware of a distinction between proper dpxaC and the propositions I am
calling bridging rules. He does not articulate it; but the language in which

he expresses propositions of the two sorts does something to encourage the

belief that he approached them in rather different frames of mind, whether

he knew why or not. If the distinction did indeed have an influence on

his modes of expression, we would expect it to appear most clearly in

his handling of such notions as necessity and necessary connection. We
would anticipate that necessity-terms would appear in propositions dealing
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with relations between melodic 8nvdp.eLS, but would be absent or modified

in those correlating 8uvdp.€Lg and [leyeSri. Unfortunately, a survey of cases

does not give unambiguous results, and I place little weight on the statistics

reported below. In many cases relevant propositions are introduced only

with unilluminating indicative verbs. In others there might well be dispute

about the class—domain-bridging or purely dynamic—into which a given

proposition falls: the differences axe not always as clear-cut as my remarks

may have suggested. Since I do not want to over-emphasise the significance

of my findings, I shall present them very briefly.

First, we might anticipate that uses of the verb ov\i^alvew indicate some-

thing less than full-blooded necessity. There are some twenty-nine oc-

currences in books 2-3, of which five are casual and irrelevant. Of the

rest, I would construe nineteen as expressing relations between fieyeGri and

8Dvd[i€Lg. Only three plainly concern essential links between dynamic prop-

erties: two are doubtful.

Turning to the words most obviously expressive of necessity, dvdyKri and

dvayKOLog, these appear twenty-six times. Ten cases are irrelevant (three

being quite informal, two mathematical, and five representing logical re-

lations). None expressly links [leyeSri with dwapeig, though one may be

accounted doubtful. Fifteen seem to indicate relations between 8uvd[i€Lg

themselves.

These results look straightforward, but the amount of interpretation be-

hind them is such that they must be treated with extreme caution. Never-

theless, they give a little tentative and provisional support to the hypothesis

that Aristoxenus was not wholly unaware of the distinction I have made.

To draw attention to the distinction, however, is not to answer the ques-

tion how the domain-bridging rules are to be accommodated smoothly into

Aristoxenus’ enterprise: the problem is re-described rather than eliminated.

But perhaps we may get more help from Aristotle than from our own un-

aided wits. The problems we have encountered in Aristoxenus are already

implicit, I suggest, in authentic Aristotelian views concerning the relation

of matter to form; and Aristoxenus’ two major categories, the quantitative

and the dynamic, do seem to invite representation under these Aristotelian

headings.

Thus, the melodic, defined dynamically, is evidently a formal essence. As
such it requires matter of some specific kind for its instantiation and this

must be the movement of the voice in the dimension of pitch. (Aristides

Quintilianus helpfully describes KLi/qaLS 4>0)idi9 as the iiXq ^.ouaLKfig [De mus.

108.18].) Further, it turns out that any particular species of melodic se-

quence requires for its instantiation a set of magnitudes within some de-

terminate range in this dimension, if not ones that are uniquely fixed at
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definite values. But the thrust of Aristoxenus’ remarks about 8wd[ieLS is

plainly that the definition of such a species of melodic sequence does not as

such import any reference to the magnitudes that are its ‘matter’—which

is not, of course, to deny the Aristotelian view that there are some sorts of

things which do demand such reference in their definition [see, e.g., Meta,

viii 2-3]. The best statement of the sort of relation that may be conceived

as holding between melodic essences and the appropriate peyeSri is perhaps

Aristotle’s account of relations between form and matter in Phys. ii 9. The
existence of suitable matter is necessary for the instantiation of a given

form but is not sufficient for it, nor even a part or an aspect of it.

But what kind of necessity is this? Not, at any rate, one that can be dis-
i

played through the logical connections of apodeictic demonstration: Aris-

toxenus, at least, could certainly not regard it so, whatever may have been

true of Aristotle. It is a sort of material, even contingent necessity. But

what can that mean?

The matter of which a thing of a determinate natural kind is constituted

is as such only potentially an instance of the kind. But though it is only

potential, its being potentially that sort of thing marks it off from matter

of other varieties or in other types of arrangement. Not just any type of

material complex can be a tree or a bird or a thunderstorm: there is some

sort of necessity in the fact that only this kind of matter is potentially that

kind of thing.

Let us consider, briefly and impressionistically, how this relation is han-

dled in Aristotle’s reflections on organisms. An organism’s body, conceived

materially, is potentially an organism: its actually being a living organism,

its possession of soul, is the appropriate ‘actualisation of a body possessing

organs’. The student of the soul, the person who investigates the activi-

ties in which only living things engage, may choose to study them in the

abstract, in their essence and their relations to one another. His analysis of

sensation, for example, may bring out the fact that it is the reception of

form without matter, that a perceiver’s various senses are not independent

perceivers, that sensation is a precondition of (f>avTacjLa and (j>avTaaCa of

thought, and so on.27 But his enquiry will be incomplete if it fails to con-

sider also the material conditions under which sensation is possible, to ask

what organs are needed for seeing, hearing, and the rest, and to consider

what material constitutions they require. No organism can see if it lacks

eyes and nothing can be an eye unless it fulfils inter aha certain matericd

conditions.

27 These examples are all taken, of course, from De an. ii-iii.
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In cases like this we are faced once again with a kind of natural necessity

that cannot properly be presented as a necessity of logic, unless of course

an account of an entity’s matter is intrinsically involved in the definition

of its essence along with the account of its form. We have noted that

Aristotle recognises cases where this last condition is met, but in ones of

the sort we are facing here the possibility is unhelpful. No doubt we could

just stipulate that an account of the eye’s material constitution must be

included in what we are prepared to call its complete definition. Similarly,

we could decide to include in a definition of the note Xtxayog, along with its

formal, dynamic properties, an account of the ranges of magnitude within

which a Xlxolvo? must stand in relation to other notes in order to be capable

of playing the melodic roles that the dynamic properties identify. But the

problem would only be disguised: the definition would merely place two

sorts of description side by side without revealing how the kind so defined

is one kind and not two whose classes of instances just happen to coincide

or overlap [see, e.g.. An. post. 87a38-b4].28

Aristoxenus’ difficulty can then be stated adequately in Aristotelian

terms; and if it threatens the coherence of his enterprise, Aristotle’s own
scientific projects in biology and elsewhere must be similarly at risk. It

is all very well for Aristotle to say that the natural scientist must treat

a thing’s nature as comprising its matter as well as its form, though the

latter is more important; or that the relation between matter and form is

such that the form is essence and end, while the matter is what is necessary

if the end is to be attained [see Phys. ii 1 and 9] . The fact remains that this

necessity cannot be a matter of logic, and that the relation between a form

and its material conditions cannot be the object of scientific diroScL^Lg. It is

open to Aristoxenus to treat his 8uvdp.€Lg as the correlate of Aristotelian

formal essences and his fieyeOri as the correlate of matter. Hence, he can

stand by his thesis that no contribution towards an understanding of the

essence of fieXog is made by the perceptual grasp of intervallic magnitudes.

Equally, since his science is a study of a class of perceptibles, not of abstract

28 Lennox [1986, 34] puts the point clearly:

The problem with offering a purely functional account of (say) man is

that it gives the impression that his soul is only incidentally related to

his body. But this is a false impression—a man is an animal of a certain

sort, a specific perceptive being, requiring precisely structured organs to

function properly. His psychological and physiological activities are simply

the actual realisation of his specific bodily structure.

But the last sentence quoted is not a solution to the difficulty I am indicating,

only a different way of expressing it. What is it, in point of scientific method,

that can show the truth of such a claim?
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or purely intelligible objects, it will be incomplete if it fails to discuss the

hXT) required for this essence’s instantiation both in general (where it is the

KLvqoL? (}>a)i/n9 KUTd TOTTOv) and for each type of dynamic property that a

melodic sequence can a,s such display (where it is a range of magnitudes

or distances in the tottos within which the voice can move). Essence and

material condition, dwdfieig and [leyeOri, can be correlated in a law-like

way by inductive generalisations from experience. The accusation that

this procedure either breaks the ‘same domain’ rule, or more simply just

places the results of two different scientific programmes side by side without

demonstrative justification, can be met if and only if 8wd|i€L? and peyeOri

are not after all two kinds (yei/q), the inhabitants of two distinct domains,

but are complementary aspects of just one. The study of muscle and bone,

after all, seems to belong to the same science as does the study of animcd

movement; and so would the matter and the form of natural entities of any

kind that are the subject of a coherent programme of investigation. If this

is the direction in which we should be led, the result will be Aristotelian

without a doubt; but it is one that leads to further difficulties. The ‘same

domain’ rule, on which Aristoxenus takes so firm a stand, is no longer the

clear and justifiable injunction that it seemed to be. In the case of domains,

what is sameness?29

3. Essence and history

I

It is easy to accuse Aristoxenus of presenting prejudice in the guise of sci-

ence. His conservative leanings are well known: in insisting that p.eXog has a

fixed nature, from which it follows that certain sequences are melodic while

others are not, is he merely trying to shore up established practices against

the perversions of modernism with the impressive but empty paraphernzdia

of pseudo-scientific argument? Can there be any justification for his thesis

that TO f|ppoap.€vov is a real and objective 4>ijaL9, not just the invention of

arbitrary human taste or whim? After all, it seems implicit in his procedure

that what is perceived as melody is melody: Can he properly insist that
i

some sequence is intrinsically non-melodic, if someone else asserts that to
j

his ear it is part of a perfectly acceptable melody?

These difficulties can probably not be neutralised completely. It is strik-

ing, however, that while Aristoxenus is free with his abuse of predecessors

who have failed in point of scientific method or who have given faulty

29 This is a question I shall leave unresolved. If it has an answer, an extension of

the analyses offered in Lennox 1986 may offer the best approach. The remainder

of this paper is by way of a coda: it has something to say about the issues aired

in this section but does not continue the argument directly.
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quantitative assessments of certain intervals, and while he disparages per-

formers who play out of tune and of connoisseurs who prefer saccharine,

quasi-chromatic versions of the enharmonic to the ‘noble’ one that he him-

self admires, nowhere does he suggest that there are those whose ears per-

versely accept as melodic something that in fact is not. On the contrary, he

goes to great lengths to accommodate all aesthetic preferences, including

ones that he himself finds distasteful. There is a best form of the enhar-

monic, for example, but its excellence is not demonstrated within harmonic

science (though Aristoxenus believes that its merits will gradually become

clear to people who attend to it carefully and often): the nature of peXog as

such is neutral between melodies in good and in bad taste. It discriminates

only what is a melody, whether good or bad, from what is not, and se-

quences of one melodic form or species from those of another [cf. 49.8-18

and 23.3—22].

Aristoxenus’ overall enterprise, therefore, involves from the start two lev-

els of judgement, distinguishing first what is melodic and secondly, within

that class, what is admirable or fitting for given musical purposes. The
sphere of harmonics, as he makes clear on several occasions, is restricted

to the former [see esp. 1.18-2.2, 31.16-32.8: cf. [Plutarch] De mus. 1142f-

1143e, 1144c-e]. Further, as we have already seen, there are at least two

sorts of judgement associated with harmonics itself: there is the properly

‘harmonic’ investigation of dynamic relations and there is the assessment,

by ‘calculative’ perception, of the magnitudes in which these relations are

instantiated. Since each dynamic relation is capable of several different

quantitative instantiations, which Aristoxenus shows signs of wanting to

designate as aesthetically better or worse, it would seem that breaches of

taste can occur in at least two ways. Legitimate harmonic relations can

be instantiated in the less admirable of the magnitudes available to them
as ‘matter’: alternatively (and this introduces a new dimension, beyond

harmonics altogether), legitimate harmonic patterns may be combined and

used in contexts and for purposes to which they are not suited. Deciding

what is and what is not legitimately harmonic, however, involves no judge-

ment of taste of either kind. But we may still ask what the grounds are

on which Aristoxenus bases his confidence in the harmonic principles he

asserts. If they stand on induction from his own experience and nothing

else, the ground is exceedingly weak.

In the Harm. elem. we can detect hints of another source of confidence,

the agreement of practical experts in the musical arts. It is fair to imagine

that Aristoxenus exchanged views with such people and in particular that

he took the trouble to find out how far the kinds of melody they aimed to

produce corresponded, in their intention as well as in his ears, to the rules
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he believed he could discern. His purpose, after all, was not to enunciate

a set of laws that prescribed obedience, but to articulate those that were

presupposed by current practice.

But the core and the grounding of his ideas are most clearly revealed, I

suggest, in his attitude to musical history. Very little of this appears in the

Harm, eiem., but long fragments and paraphrases of his extensive writings

on the subject have been preserved elsewhere, notably in the Plutarchan

De musica. Here the manner in which his conservative prejudices are artic-

ulated is highly instructive. His aim was apparently to demonstrate the

superiority of the music of an earlier period (up to and including the first

decades of the fifth century), not just by asserting the excellence of the

musical forms adopted by composers of those times, but by arguing that

it was by deliberate policy that they restricted themselves to those forms.30

The proliferation of elaborate new styles in the later fifth century and the

passion for chromaticism in the fourth draw Aristoxenus’ scorn. But his

central thesis is that the melodic possibility of such styles was already im-

plicit in the systems of the reputable ancient composers: it was by choice,

not through ignorance, that they left them unused.

There are two points to be drawn from this. The first is the simple one

that in proceeding by ‘induction’ to the articulation of dpxaC Aristoxenus

did not start merely from his experience of contemporary practice. He
took into account also what he knew—or thought he knew—of practices

throughout Greek musical history. That by itself adds some weight to his

findings. The second is the implication that even the earlier and simpler

practices carried within themselves the seeds of later and more sophisti-

cated ones: that is, even if earlier conventions restricted melodies to those

based, for example, on the diatonic genus of scale, these conventions could

not be understood except against the background of a system that em-

braced equally the possibility of the other genera. The nature of peXo?

as a whole is then implicit in the simplest tune: for no dpxaC acceptable

to perception can be found which would allow it to be understood, and

30 This, at any rate, is the position taken by the speaker at [Plutarch’s] dinner-

party: it is a principal theme of De mus. 18-21, and of much of the discussion from

ch. 28 to the end. But it seems safe to infer, from the nature of the Aristoxenian

material he cites, that the theme was already there in his source. Thus, it seems

likely, for instance, that the form in which the information on the a-rrovSeLdCwv

TpoTTO? is presented [ch. 19] reflects that given it by the source: the line of argument
in ch. 20 is plainly that of a fourth-century commentator: similar conclusions will

apply in many other places. Notice also how the theme, still explicit in ch. 32, is

merged without any sense of discontinuity into a wholly Aristoxenian discussion

of the relation between harmonic science and other modes of judgement [in ch.

33-39].
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its functional relations articulated, in isolated from the rest.31 It is in this

sense that the ({)ijaL9 toO f)p[ioa|i6VOi;, as expressed in the complex web of

propositions that Aristoxenus sets out, is an objective and permanent re-

ality. The musical conventions of particular times and places are partial

exemplifications of it and can be made comprehensible only through an

understanding of the whole.

This approach gives Aristoxenus’ polemics against ‘modern’ composers

a particular pungency. They have broken no laws of melody: they write

tunes that are heard as melodies and so are melodies, and that are indeed

much applauded by the vulgar. But their cheap and popular taste does not

even have the merit of originality, of daring experiment. What they did

was always there to be done: their achievement was only that of working

out in practice and putting on display those aspects of melodic nature

that earlier composers had deliberately and rightly avoided, deeming them

to lack nobility or to be unsuitable for the social context in which their

performances took place [cf. [Plutarch] De mus. 20-21, 28-30].

It was not Aristoxenus’ intention, then, to use his technical writings

on harmonics to defend his own conception of musical excellence. If it

had been, we would no doubt have found in them ‘proofs’ that practices

adopted by the composers he disliked are melodically improper, in breach of

the principles of melody. In fact his attitude is the reverse: the legitimacy

of these second-rate practices is implicit in the principles that underlie good

melody. When he defends peXog against the charge of being disorderly, of

having no determinate nature, he does not do so by showing that modern
manifestations of such disorder are outside the proper definition of fieXog:

he argues that in fact they depend, for all their superficial confusion, on the

same underlying system of order as does music of more traditional sorts.

The discrimination of noble melody from meretricious rubbish is not within

the scope of harmonics, though harmonics may provide some distinctions

in terms of which judgements of taste may be set. What makes noble music

melodic is no different from what makes a mere jingle so; and the melodic

legitimacy of the individual instance or type, whether good or bad, can be

understood only through its relation to the whole nature of peXog which

accommodates both [see [Plutarch] De. mus. 30-34].

This brings me to my final point, which is in a way the upshot of the

whole discussion. The Harm, elem., in my judgement, shows the principles

of the An. post, at work, and brings out very clearly the conception of a

31 See, for instance, [Plutarch] De mus. 34 (esp. 1143e-f), a passage that is cer-

tainly derived from Aristoxenus.
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science which that treatise implies. Its task is not conceived as the dis-

covery of truths of fact hitherto unknown, but as the articulation of what

is know and its ordering in relation to truths already implicit in what is

known. A domain of experience is held together and show to be intelligible

as a unity through the formulation of principles whose truth can be recog-

nised by inductive reflection on experience. These, related to one another

(not related by derivation from something standing outside of and ‘explain-

ing’ the experienced content of the domain) form a description of a single

essence or nature. From the principles expressing this nature subordinate

truths are derived, but not as surprising new discoveries. Surprises, in fact,

would be quite out of place. The dTToScLfeL? are designed to illuminate the

known, not to uncover the unknown. They show how particular and fa-

miliar facts in the domain are implicit in the web of relations constituted

by the primary essence, rather than being essentially disconnected items of

experience related only casually to one another. Harmonics, as Aristoxenus

envisages it, does not expel from the melodic domain anything we supposed

that it included or import any novelties on theoretical grounds: it seeks to

display the pattern within which our actual melodic experience falls and so

to draw our experience into the sphere of our understanding.32

321 should like to express my gratitude to the organisers of the IRCPS conference

in Pittsburgh for the opportunity to present an earlier version of this paper.

Comments made by participants on that occasion have been very valuable: my
thanks are due especially to Alan C. Bowen, James G. Lennox and Alexander
P. D. Mourelatos. The shortcomings of the product are of course my own.



10

The Relation of Greek Spherics

to Early Greek Astronomy

I.L.BERGGREN

My subject is the history of a tradition in the science of spherics that

developed from the fourth to the first centuries BC. Spherics is a name
which goes back to antiquity for that science whose subject is the mutual

relations of arcs and angles formed by circles on a sphere. This science as

it is found in texts of the fourth century has been variously described as

‘sufficient for the astronomy of its time’ [Heiberg quoted in Hultsch 1906],

as ‘fumbling attempts to obtain some quantitative and geometric insight’

[Neugebauer 1975], and as the kind of literature that Plato thought typical

of real astronomy [Mueller 1980]. In this paper I wish to examine these

and other views of this tradition of spherics in the light of the ancient texts

themselves and of the recent writing on this subject, in order to explore

the relation of this tradition to the mathematics and astronomy of its own
time.

All who have written on spherics have recognized its intimate relation

with certain problems in ancient Greek astronomy. These problems, like

all those which are at once beautiful and difficult, called forth a variety

of solutions; and I should like to begin with a summary review of these

problems and their ancient solutions in order to set ancient spherics in its

proper context. I begin, then, with Ptolemy’s Almagest.

After discussing some philosophical, physical, and mathematical prelimi-

naries to the study of astronomy, Ptolemy devotes the end of book 1 and all

of book 2 to solving a set of problems concerning spherical arcs and angles.

The importance of the solutions of these problems for both astronomy and

geography, is evident from the following sample:

227
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1. Find the height of the Sun above or below the equator (its

declination, S) and its distance east or west of the equinoxes

(right ascension, a) corresponding to any position of the Sun

in the zodiac.

2. Given one of the three quantities—the maximum length (M) of

daylight, the altitude (<^) of the north pole above the horizon,

or the ratios of equinoctial and solstitial shadows to the length
J

of the rod casting them—find the other two.
|

3. Find the variation in length of daylight during the year, given
;

any one of the three quantities just listed. ;

4. Find the angles between the ecliptic and such great circles as ^

the horizon or meridian. <•

Ptolemy’s solutions to these problems are the earliest recorded that use i

the trigonometric methods developed between the time of Hipparchus of
J"

Bithynia (150 BC) and that of Menelaus (ad 100).

However, Vitruvius in De arch, ix 7 tells us that already by his time in r

the late first century BC the problem of the length of daylight had been !’

solved by the geometrical method of the analemma, and Pappus in Coll, iv
;;

prop. 40 cites a (now) lost work on this method by Diodorus of Alexandria,

an older contemporary of Vitruvius. Otto Neugebauer [1975, 301] suggests ‘

that Hipparchus, who lived more than a century before Vitruvius, may have ^

used an analemma to determine the arc of a parallel of declination from

a setting star of known declination to the point of the same declination on ,i

the meridian. Further, we have it on the authority of Synesius of Gyrene i

(obit ca. AD 415) that a century before Diodorus, Hipparchus described the i

method for solving problems about the sphere now known as stereographic
|

projection. We also know from Vitruvius, De arch, ix 8.8-14 that by his i

time this method had given rise to an instrument, the anaphoric clock,
|

which provides a solution to the problem of finding the length of daylight
5

for a given position of the Sun in the ecliptic. •

Not all efforts to solve the sorts of problem Ptolemy addresses relied
|

on geometry, however. At about the same time as Hipparchus, the Alex-

andrian scholar, Hypsicles, in his Anaphoricus exploited a number of fairly

weak assumptions about relations between arcs on the ecliptic and those

on the equator in order to solve arithmetically the problem of the length

of daylight by beginning with the maximum length of daylight as the sole

datum. The methods utilize the linear increase and decrease of numbers;

they are very different from the geometrically-based methods we have been i

describing, and their origins are to be found in Mesopotamia. However, I
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Hypsicles’ computations worked with much smaller ecliptic arcs than we

find in related, earlier works; and his clear recognition that the same proce-

dures, further refined if necessary, could be employed in any of the seven

climata, showed that arithmetic methods were entirely capable of producing

what King [1987] has called universal solutions in spherical astronomy.

Thus, the mid-second century BC marks the beginning of a period when
two important geometrical methods developed, the one based on trigonom-

etry and the other on the analemma. It also marks the end of a period

of development of arithmetical methods. There is, however, another ge-

ometrical tradition, one in which none of the writers we have mentioned

participated, despite the fact that it began probably two centuries before

the time of Hipparchus and continued as a source of new treatises for an-

other century after him. This tradition comprised a body of theorems on

solid geometry which pertain to the sphere and whose principal interest

lay in their relevance to astronomy. It is known to us through the fol-

lowing works: De sphaera quae movetur (The Rotating Sphere) and De
ortibus et occasibus (Risings and Settings) both by Autolycus of Pitane,

who flourished in the latter half of the fourth century BC; Phaenomena
by Autolycus’ contemporary, Euclid; and Sphaerica, De diebus et noctibus

(Nights and Daysj, and De habitationibus (Habitations),^ all by Theodosius

of Bithynia, whose probable Horuit of 100 BC would make him a younger

contemporary of his countryman, Hipparchus. None of these writers makes

explicit reference to any of the others; and all presuppose not only basic

theorems of solid geometry such as one finds in Euclid’s Elements xi, but

theorems on arcs and angles of the sphere which are not found in the Ele-

ments. Apparently, then, none of these works stands at the beginning of

this tradition.

Indeed, the often-remarked relation of the entire theory of spherics to

some of the astronomical problems listed at the beginning of this paper

shows that the mathematics in these treatises originated after the time

when Greek astronomers began to try to derive explanations of observed

phenomena as well as predictions from the model of a spherical Earth

fixed at the center of a rotating cosmos. As to when this was, Goldstein

and Bowen [1983] argue that ancient Greek astronomy may be profitably

studied by dividing its history to 300 BC into two periods. The first of

these two phases is an ancient tradition characterized by a concern with

calendrical matters. In this tradition the dominant astronomical activity

^ Our study concerns only the first of these works; for the relation of the two

books of the latter work to each other, see Schmidt 1949.

21 have used only the first of these three works in this study.
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was the composition of parapegmata in which the phases of important

stars (that is, their first and last morning and evening appearances) were

given in terms of some calendar along with meteorological phenomena that

could be expected to accompany these astronomical phenomena. It was

an activity that attracted men of considerable distinction, as Ptolemy’s

inclusion of Meton, Euctemon, Democritus, and Eudoxus, in his list of

parapegmatists testifies. Indeed, Ptolemy mentions these predecessors in

his own parapegma, book 2 of his Phaseis, which is by far the acme of this

tradition. It is almost a corollary of the intent of this kind of literature that

there is no mention of eclipse-phenomena or planetary matters. In fact, it

was concern with eclipse-phenomena and the dimensions of the cosmos that
j

marked Greek astronomy after 300 BC.

Goldstein and Bowen also point to other activities, contemporaneous

with the ancient tradition of parapegmata and relevant to the history

of astronomy. Among them were the numerolqgical speculations of the

Pythagoreans and their idea of explaining the heavens by a dppovCa (har-

monia) of whole numbers. Indeed, as Aristotle reports, it was the primacy

of numbers in their science and the way in which numbers seemed to reflect

a moral order based on the properties and ratios of dpfiovLa which led the

Pythagoreans to suppose ‘the elements of numbers to be the elements of all

things and the entire heaven to be a harmonia and number ’.3 Also impor-

tant, according to Goldstein and Bowen, were the cosmological speculations

of the Presocratics, since they introduce elements that were later to become
|

basic parts of scientific astronomy. Thus, some time before Eudoxus, the

image of a sphere of stars rotating around a concentric, spherical Earth

had been proposed; and such an image is found in the cosmological-moral

tradition leading up to works like Plato’s Republic and Timaeus. Indeed, in

recent studies, Charles Kahn [1970, and in this volume] has argued that one

of the principal achievements of Presocratic speculation is the construction

of ‘a cosmic model, including a spherical heaven, a spherical Earth, and

a geometrical account of celestial motion’.

However, Goldstein and Bowen argue that this world-picture, held by

some Presocratics, was not yet a mathematical model, in the sense of an

explicit mathematical analogy between physical domains (both idealized

mathematically) that served as a basis for computation, or at leEist com-

parison, of magnitudes. They believe that with the work of Eudoxus the

second phase of early Greek astronomy began and that the distinguish-

ing feature was what they call the two-sphere model, so named because

3 Aristotle, Meta. 985b23-986a3 [quoted from Goldstein and Bowen 1983, 333].
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it placed a spherical Earth at the center of a spherical cosmos which ro-

tates daily around an axis passing through the Earth’s center. Although

components of this model can be found in various Presocratic texts, what

was new was the exploitation of the model with its reference circles, in-

cluding the horizon, equator, and ecliptic as well as those below, to provide

a mathematical explanation of phenomena associated with the risings and

settings of stars and the length of daylight. It is this that differentiates

Eudoxus’ tradition from that exemplified by the Presocratic and the Pla-

tonic writings mentioned above, and it is this that gave rise to the science

of spherics.

The mathematical utility of the model lay in its division of (the celestial)

sphere into five regions concentric around the poles: the torrid region be-

tween the tropics, temperate regions on either side of these, and finally the

frigid zones around the poles. Although these names reflect climatological

characteristics, the origin of the zones is astronomical. The tropics are

bounded by the parallel circles defining the northern and southern limits

of the Sun’s annual motion, and the boundaries separating the temper-

ate from the frigid regions are defined by the circle of always-visible stars

and the circle of always-invisible stars, circles dependent on the latitude

of the observer. All these circles and the regions between them were then

transferred to corresponding circles on the Earth bearing the same names.

Eudoxus and his successors elaborated this model to include not only

a sphere for the fixed stars but spheres for the Sun, Moon, and planets;

but this system of homocentric spheres lasted only until astronomers re-

alized it could account neither for the retrograde motion of Mars nor for

the variation in apparent sizes of such luminaries as the Moon and Venus.

After that time the general theory had no more impact on mathematical

astronomy; however, the two-sphere model itself became part of the pro-

fessional astronomer’s stock in trade and the science of spherics took the

place it occupied in the education of the astronomer throughout antiquity.

Since, however, not all recent writers have seen the Platonic writings as be-

ing so distinct from the mathematical tradition initiated by Eudoxus, we
must here take some account of Plato’s idea of what spherics should be, as

indicated in a well-known passage. Republic vii 528e-530c.'^ Here Socrates

rebukes Glaucon for his notion that simply looking at stars is somehow the

same as gaining knowledge through higher, rational speculation. Glaucon

accepts the rebuke and, on asking how Socrates thinks the study of as-

tronomy should be reformed, he learns that man must use his reason to

conceive ‘the true realities—the real relative velocities, in the world of pure

"^The following account and all translations are taken from Cornford 1951.
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number and all perfect geometrical figures, of the movements which carry

round the bodies involved in them’. The real astronomer, we are told, will

admire the observed sky as a geometer might admire ‘diagrams exquisitely

drawn by some consummate artist like Daedalus’. But,

when it comes to the proportions of day to night, of day and night

to month, of month to year, and of the periods of other stars to Sun

and Moon and to one another, he will think it absurd to believe that

these visible matericd things go on for ever without change or the

slightest deviation, and to spend all his pains on trying to find exact

truth in them.

After Glaucon assents, Socrates concludes that the genuine study of as-

tronomy proceeds as does that of geometry, by problems, and proposes to

leave the starry heavens alone.

What Plato meant by this is sufficiently illustrated in the following sec-

tion of the Republic where there is a discussion of apfiOvCa, and Socrates and

Glaucon lament the folly of those who in seeking to understand it ‘waste

their time in measuring audible concords and sounds one against another’.

Such people ‘do not rise to the level of formulating problems and inquiring

which numbers are inherently consonant and which are not, and for what

reasons’. Presumably, such principles when applied to the study of as-

tronomy as recommended earlier, would produce a calendar like Philolaus’

where numerological considerations forced a 59-year cycle in which each

year had 8641/2 days. This absurd number was chosen only so that the

number of months in the resulting cycle would be a Pythagorean number
for the Sun, 729, where 729 = 27^ = 9^ and 27 is the number for the Moon,

and 9 the number for the Earth [Neugebauer 1975, 619].

5

In a recent paper, Ian Mueller [1980] considers the passages in the Re-

public cited above and argues that Plato’s assimilation of astronomy to

geometry and harmonics to arithmetic is ‘not unreasonable’ given ‘certain

Greek scientific texts which, I believe, make clearer the kind of astronomy

and harmonics Plato has in mind in the Republic'. The texts to which

he refers are Theodosius’ Sphaerica, Autolycus’ De sphaera quae movetur,

and Euclid’s Phaenomena.

In regard to astronomy, two problems arise from Mueller’s arguments.

One of these concerns the interpretation of Plato’s intent in the passages

quoted and the other concerns chronology. I shall discuss them in turn.

First, as concerns intent, I proposed earlier that what Plato meant when

5 For other examples of numerology in Greek astronomy, see Neugebauer 1975,

630-631, 659-660, and 693.
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he talked about ‘real’ velocities and ‘perfect figures’ is sufficiently illustrated

by his remarks on apfiovla, where we are urged to study not the consonances

we hear but numbers which are inherently harmonious; that is, Plato’s

intent is uniform in the two sections I have mentioned. If this is correct,

then, it is hard to see in the geometrical and kinematical idealizations

of the three treatises mentioned above, the spatial analogue of the sort

of numerological speculations Plato suggests for harmonics. That is, if

Plato really had texts like those of Theodosius in mind, he could not have

intended the same sort of thing in his comments on astronomy as he did in

his remarks on dppovCa. Second, there are serious chronological problems in

assuming that texts like those of Autolycus were available at the time Plato

wrote his Republic. Under the current view of the composition of Plato’s

dialogues, the Republic was written before the year 370 BC. But comet-

observations reported by Aristotle [see below] suggest that the two-sphere

model was probably introduced after 372 BC and before 340 BC. Thus, there

is every reason to believe that the introduction of the mathematical model,

which must have antedated the three texts Mueller addresses, did not occur

until some time after Plato had written the Republic; consequently, these

three texts could not have been the genre of literature that Plato had in

mind when he wrote the Republic. Thus, I prefer to take Plato at his

(or at least Glaucon’s) word, when Glaucon asks Socrates, ‘How do you

mean the study of astronomy to be reformed, so as to serve our purposes?’

[emphasis added]. It is a reform of astronomy that Plato advocates; he

is not describing a current genre of literature. In fact, Plato underlines

how far his ideal is from current practice, at the close of that section when
Glaucon says, ‘That will make the astronomer’s labour many times greater

than it is now.’

If, then, the mathematical two-sphere model was introduced too late in

the fourth century to have any effect on the composition of the Republic,

when was the model invented? In this regard Goldstein and Bowen refer to

Aristotle’s report that

in the archonship of Nicomachus (scil. 341 BC) a comet appeared

for a few days about the equinoctial circle (this one had not risen

in the west), and simultaneously with it there happened the storm

in Corinth. That there are few comets and that they appear rarely

and outside the tropic circles more than within them is due to the

motion of the sun and stars.

That Aristotle [Meteor. 343b 1-7] refers neither of the other comets he men-

tions (427/26 and 373/72) to any reference-circle increases our faith that

this one detail was not added in later times and that it thus supplies us
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with a terminus ante quern for the introduction of the mathematical two-

sphere model, namely, 341 BC. A terminus post quern is, to stay on the

conservative side, 372 BC, the date of the latest unspecified comet-sighting;

and so we have an interval of approximately thirty years within which the

mathematical two-sphere model was developed by Eudoxus. (Goldstein

and Bowen provide evidence that Eudoxus not only used this model in his

astronomy but actually invented it.)

There is good evidence, moreover, that the science of spherics developed

fairly rapidly. Indeed, two of the three treatises that will concern us were

written by two contemporaries who were active, it seems, at the end of the

fourth century. I mean, of course, Euclid and Autolycus, whose treatises

on the subject of spherics are the earliest we have.6

It is often said of Autolycus’ De sphaera quae movetur that it represents

the earliest extant Greek mathematical treatise; but one must agree with

Neugebauer that there is so little hard evidence to separate Autolycus and

Euclid chronologically that all we can say with any confidence is that their

treatises were all written at roughly the same time, probably in the second

half of the fourth century BC. Even Germaine Aujac [1984], who places

Autolycus and his writings some thirty years before Euclid, agrees that

in any case Autolycus was not a source for Euclid; and there seems to be

unanimity on the central point that both Autolycus and Euclid rely on an

earlier work for the basic theorems of the subject. This earlier work must

have appeared between the years of, say, 360 and 320 BC; of its content

and range we may form some notion indirectly from the writings of Euclid

and Autolycus.

We turn, then, to the nature and apparent purpose of these treatises. As

early as John Philoponus, who in the sixth century of our era provides the

first reference to the title of Autolycus’ work, De sphaera quae moveturJ
commentators have seen the difference in character between this treatise

and Euclid’s Phaenomena, for Philoponus points out that Euclid’s work

is the more ‘physical’ of the two in that it considers not only motion, a

distinguishing concern of ancient physics, but ouata (substance) as well,

that is, the Earth and the stars. (It also mentions by name all the prin-

cipal astronomical circles on the sphere.) Furthermore, Euclid’s treatise

6 Autolycus’ horuit is securely dated to the last quarter of the fourth century

BC: see Mogenet 1950, 5-7 for details. Regarding Euclid’s date, we have noth-

ing more secure than the claim that he lived in the period between Aristotle

and Apollonius. A later date would only strengthen the arguments I will give

subsequently about the purpose of Euclid’s work.

7 For the text and a summary, see Mogenet 1950, 160.
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is preceded by a long introduction whose purport is that the (mathemat-

ical) two-sphere model applies to our world; and it begins with definitions

of ‘horizon’, ‘meridian’, and ‘tropic circles’, while such purely geometrical

objects as tangent circles on the sphere and angles between great circles

on the sphere are not defined. I would conclude that in defining circles of

astronomical and physical importance and in passing lightly over purely

geometrical objects, Euclid is telling his readers what are the really impor-

tant idecis in his treatise relative to his intent in writing it. Indeed, he does

not mislead the reader: Phaen. prop. 1 (The Earth is in the middle of the

cosmos and occupies the place of the center in relation to the cosmos) puts

us in no abstract, geometrical setting but in our own cosmos. The proof

uses a diopter pointed at the beginning of Cancer rising and is obviously

intended to put an important physical image in the reader’s mind. The
structure of the proof, however, reflects in all details the structure of a

Greek geometrical proof; and I conclude from this that Euclid intends us

to take the proof as seriously as any of his proofs in the Elements. That

we have trouble doing so reflects our tastes and not Euclid’s, nor those

of his time. Indeed, Galen tells us, ‘Euclid showed in Theorem I of the

<Phaenomena> in a few words that the earth is in the midst of the cos-

mos, as a point or center, and the students trust the proof as if it were

two and two is four’ [quoted from Neugebauer 1975, 748]. In any case, we
know from proposition 1 onward that we are dealing with a demonstrative

science whose subject-matter is astronomical phenomena.

These phenomena are further defined by the following propositions. The
first part of proposition 2 states that a great circle through the pole is, in

one rotation of the sphere, twice at right angles to the horizon; and the sec-

ond part concerns the angles made by the ecliptic during its daily rotation,

with the meridian and horizon—the latter angles being of importance for

the phases of a star. Euclid’s remark that ‘this has been shown’ has often

been taken to refer to an earlier treatise, but it seems unlikely that out

of the large number of results on spherics which his treatise presupposes

Euclid should have chosen only this particular one to cite. Following this

are four propositions [Phaen. 3-6] on star-risings, of which we may take

proposition 5 as typical: Of stars on the circumference of a great circle

that cuts the always visible circle the ones more to the north rise earlier

and set later. The method of proof in both Phaen. props. 4 and 5 is to

project the stars from one parallel circle to another by means of great cir-

cles that are rotations of the horizon, thereby reducing the argument to the

case when the two stars lie on the same parallel circle. (The parallel circles

are not, however, identified as such in Euclid’s treatise, though they are in

Autolycus’ proposition 8.) As this technique is applied, there is abundant
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appeal to visual evidence from the diagrams,8 and the lemmas needed to

establish the necessary assumptions are never stated.

The same technique as that employed in Phaen. props. 4 and 5 is fun-

damental to Autolycus’ De ortibus et occasibus. In the Phaenomena, rota-

tions of the horizon are used to find points on the day-circle of one star that

rise and set simultaneously with a star on another day-circle. In Autolycus’

work, on the other hand, rotations of the horizon are used to find points on

the ecliptic that rise and set simultaneously with a given star. When. such
points are located, then the points 15° behind and ahead of them mark the

points that determine the four phases of the star.

The next two propositions, Phaen. props. 7 and 8, deal with arcs of the

horizon where the whole zodiac or individual signs rise, and would have

been of interest in the theory of lunar eclipses, that is, in what was called

the prosneusis of eclipses.9 The inclusion of such a theorem could indicate

that when the treatise was written some of the elements of the theory of

eclipses were in place. However, it also provides an introduction to the

idea of ortive amplitudes, that is, of the angle on the horizon north or

south of the East-West line indicating the point where the Sun rises, and

may equally well have been included for that reason. As is the case with

the whole treatise, the results here are entirely qualitative. Aujac [1984,

100] has pointed out that a good example of the more geometrical language

employed by Autolycus occurs in Phaen. prop. 7, where Euclid relies on the

theorem. That the zodiac rises and sets at all places of the horizon between

the tropics—the tropic circles are assumed to be at least as large as the

always-visible and always-invisible circles. Compare this with Autolycus’

statement of the same theorem in De sph. prop. 11:

If in a sphere a great circle, which is inclined to the axis, demarcates

[opC^cav] the visible (half) of the sphere and the invisible, while some
other inclined great circle is tangent to larger circles than the horizon

is tangent to, then it makes its risings and settings along the whole

arc of the horizon between the parallel circles that it (the other great

circle) is tangent to.

Perhaps Autolycus includes this proposition in order to introduce the idea

of the Sun’s ortive amplitude.

8 For a discussion of the principles on which the diagrams in extant mss of Greek

texts on spherics appear to be drawn, see Neugebauer 1975, 751-755.

9 ‘Prosneusis^ refers to the angle formed by the ecliptic and the great circle passing

through the centers of the Moon and the Sun (in the case of a solar eclipse) or

the Moon and the center of the Earth’s shadow (in the case of a lunar eclipse):

see Neugebauer 1975, 141-144.
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With Phaen. props. 9-13 we come to what appears to be the central

purpose of the treatise, a consideration of the rising-times of the signs of

the zodiac. The notion appears in proposition 9 but is nowhere defined, so a

word of explanation may be useful here. The rising-time of some arc of the

zodiac is simply the time it takes that arc to rise over the horizon; and one

may measure it either in equinoctial hours or in equatorial degrees (since

the equator rises over the horizon at a uniform rate), where the relation

between equinoctial hours and degrees is = 15®. 10 Since in the period

from sunrise to sunset of a given day, 180° of the ecliptic must rise, one

may use rising-times to compute the length of daylight at a given locality

on a given day by finding the rising-times of arbitrary semicircles on the

ecliptic.

The first two propositions on the subject, Phaen. props. 9 and 10, pro-

vide qualitative results concerning the rising-times of semicircles,H while

the next four, Phaen. props. 11-13 and the lemma, concern rising- and

setting-times of equal arcs placed variously. The notion of a rising-time

was obviously considered well understood, in contrast to the basic spherical

apparatus which was so carefully defined at the beginning of the treatise.

One imagines an audience already familiar with the idea of rising-times

from linear arithmetic schemes, but which still needed to be schooled in

the geometrical elements of the science of spherics.

Phaen. prop. 12 is a good example of the theorems demonstrated:

Equal arcs of the semicircle that follows Cancer set in unequal times.

Those nearest the tropics set in the greatest times while the following

set in lesser times. Those nearest the equator set in least times while

those equidistant from the equator rise and set in equal times.

The evidently qualitative nature of this result and those accompanying it

should not, however, mislead us into thinking that they are of little use;

for, in fact, these theorems justify all the inequalities on rising-times that

Neugebauer [1975, 712] shows to be sufficient for deriving arithmetic se-

quences for rising-times under either Babylonian System A or B. Indeed,

the inequalities Neugebauer uses are just those Hypsicles (who was a con-

temporary of Hipparchus) presents for the linear scheme in his Anaphoricus,

In making this definition I do not mean to imply that Euclid or his contempo-
raries had defined equinoctial hours. The expressions used in the Greek text may
be translated as ‘in the time that arc X rises arc Y has also risen’ or ‘arc X rises

in more time than arc Y’, where X and Y are arcs of the ecliptic. Nothing is

said of the units in which time is measured.

11 If one knows the rising-time for any semicircle, one can find the day-length for

any day of the year.
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and the scholiast to that treatise saw clearly that the theorems at the end

of the Phaenomena were just what were needed to justify the assumptions

Hypsicles stated [see De Falco and Krause 1966, 41-45]. I maintain, then,

that the Phaenomena represents an effort to provide a more systematic ba-

sis for those intuitively plausible symmetry-considerations needed to justify

linear schemes for rising-times. This would at least explain both Euclid’s

casual reference to the subject as well as his qualitative treatment of it.

Hypsicles lived some one hundred fifty years after Euclid; but his Ana-

phoricus was certainly not the first treatise of its kind, as is shown by his

mention of ‘those who occupy themselves with rising-times’. According

to Neugebauer,12 the earliest methods for calculating the length of day-

light were schemes which used linear interpolation to compute, month by

month, the length of daylight. These schemes began with the length of

the shortest day and increased this by a constant amount each month, an

amount calculated so as to arrive at the correct; value for the length of

the longest day. These schemes are found in ancient Egypt in a Rames-

side papyrus (12th century BC), in the Hibeh Papyrus and the so-called

Eudoxus Papyrus (both containing views from the 3rd century BC); and

they survive well into the Middle Ages. However, the more sophisticated

arithmetic approach to the problem, which sums up the rising-times of

ecliptic-arcs (these being taken to be in an arithmetic progression), was

used not only by the Babylonians of the Seleucid period but also by Epi-

genes (perhaps ca. 250 BC) in Alexandria and pseudo-Berossus (1st century

BC: cf. Kuhrt 1987, 36-44). Neugebauer suggests that a lunar tablet dating

from about 400 BC, which gives length of daylight as a function of the Sun’s

position on the ecliptic, may represent a transitional stage between linear

schemes for length of daylight and an approach which uses linear schemes

for rising-times and then sums these to obtain length of daylight.

It seems, then, that the method of calculating the length of daylight

by rising-times was introduced around the end of the fourth and begin-

ning of the third century. I suggest, therefore, that Euclid’s Phaenomena

reflects the kind of mathematics that was needed in contemporary astron-

omy. In this I am following Heiberg’s evaluation of the Phaenomena as

a treatise sufficient for the astronomy of its time [cited in Hultsch 1906,

col. 1048]. While I agree with Neugebauer [1963, 530b] that ‘Euclid and

Aristarchus . . . demonstrate the inadequacy of traditional mathematics to

cope with spherical astronomy and trigonometry at the end of the fourth

century’, I would suggest that Euclid at least was not trying to cope with

spherical astronomy or trigonometry but rather was aiming to give the

^2 For the following remarks, see the extensive discussion in Neugebauer 1975,

706-733.
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student the theoretical background to understand methods that had been

developed in astronomy.

In any case, with the inequalities of rising-times given in Phaen. props.

11-13, Euclid is in a position to finish the treatise with a comparison in

Phaen. props. 14-18 of the time it takes equal arcs of the ecliptic to leave the

hemispheres above and below the horizon. (I see no reason to doubt that

this material is genuine, despite the fact that the last two propositions are

found only in recension B.) The idea of leaving (viz. changing: e^aXXayq) a

hemisphere is defined at the end of the introduction to the Phaenomena as

the passage of an arc of the ecliptic from its first point being on the eastern

horizon to its last point being on the western horizon. Such a concept

would arise in the calculation of rising-times as follows. 13 When the Sun
rises, it is at a certain point P of the ecliptic which is on the horizon. Since

the Sun always moves slowly westwards along the ecliptic, it happens that,

when the rotation of the heavens brings P to the western horizon, the Sun

is not yet on the horizon because it has traversed a certain arc PQ on the

ecliptic (on the order of half a degree) in a direction opposite to that of the

daily rotation of the heavens. Thus, the arc PQ must leave the hemisphere

for the Sun to set, so the true length of daylight is the time it takes PQ to

leave the visible hemisphere. 14 Since this is just the rising-time of the arc

from P to P -|- 180° added to the rising-time of the 1
/2 ‘^-arc diametrically

opposite PQ, we may calculate a good value for the true length of daylight

by interpolating linearly between the values for rising-times which Hypsicles

gives at intervals of 1°.

Thus, again, one may see in Euclid’s Phaenomena a geometrical account

of topics that may have been known from the arithmetic methods of his

day. Although there is no evidence that points to such fine calculations

in Euclid’s time, it is still true of ancient mathematics—and more so than

of later times—that ‘absence of evidence is not evidence of absence’; and

the hypothesis of a relation with the arithmetic methods of the time at

lecLst gives some point to an exercise which otherwise seems rather mad

—

worrying about the rising-times of arcs on the order of 1
/2

° when one is,

in fact, unable to determine even approximately the rising-times of whole

signs.

Quite different from Euclid’s Phaenomena in character and subject is

Autolycus’ De sphaera quae movetur. I have already quoted the remark

13 This is pointed out in Schmidt 1943, a study from which I have derived great

benefit. It is a pity that it has never been published.

I am surprised to find nowhere in the literature a paradox of the Achilles-and-

the-tortoise type, since one is suggested by the fact that, by the time Q gets to

the horizon, the Sun has again moved away from it.
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by Philoponus on the more geometrical nature of this treatise, so we may
proceed immediately to a brief account of the subjects it treats. To begin,

there is no long preface as with Euclid; instead Autolycus starts by defining

the uniform motion of a point [but see Aujac 1979, 42nnl, 4] and then turns

immediately to a series of twelve propositions which treat the following

topics:

1-3 Generation of parallel circles, which are perpendicular to the

axis, and similar arcs by points on the surface of a uniformly

rotating sphere.

4-6 Cases when no points, all points or some points rise and set.

Introduction of the sphaera obliqua, that is, the sphere for an

observer not at the equator.

7 In a sphaera obliqua points rise and set on the same parallel

and all parallels are equally inclined to the horizon.

8 Great circles tangent to the same (parallel) circles as the hori-

zon are rotations of the horizon.

9 The co-risings and co-settings of stars in a sphaera obliqua.

10 In a sphaera obliqua a rotating circle that passes through the

poles is only twice perpendicular to the horizon.

11 Where, on the horizon, does a circle tangent to circles larger

than the horizon rise and set? [See my earlier comments on

Phaen. prop. 7.]

12 If a fixed circle always bisects a moving circle, neither circle

being perpendicular to the axis or passing through the poles,

then each of these is a great circle. 15

It is apparent from this list of theorems that this work, unlike the

Phaenomena, is not dedicated to a goal more specific than discussing vari-

ous phenomena arising in the sphaera obliqua. Certainly, some of the same

topics are broached, for example, the perpendicularity of circles through

the poles to the horizon and the arcs of the horizon which the ecliptic

circle passes by during its daily rotation. There is also a discussion of the

risings and settings of stars, a discussion which begins with rare cases and

then turns to the sphaera obliqua. But, on the whole, one senses that this

15 In his preface Euclid cites a weaker version of this theorem, in which the moving
circle is given as a great circle, in order to show that the horizon is a great circle.

His wording is slightly different and he neglects the necessary restrictions which

Autolycus states here. It is certainly the sort of result one would appeal to in

trying to apply the abstract model of spherics to observed phenomena.
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treatise, with its smattering of topics—all fundamental but none pursued

very far—is the sort of text that one would have a student read prior to

reading the Phaenomena. The half-physical, half-abstract nature of this

treatise is clearly exemplified by the fact that although the horizon and the

always-visible and always-invisible circles are mentioned, there is only an

allusion to the ecliptic and tropics in propositions 11 and 12, where these

circles are described rather than named.

From the mathematical point of view, there are several features of both

the Phaenomena and De sphaera quae movetur worth mentioning. First

of all, on a formal level, the Euclidean treatise defines astronomically im-

portant circles whereas Autolycus defines uniform motion. Moreover, the

similarity of the structure of the proofs of the propositions in both treatises

to that familiar to us from Euclid’s Elements—TTporaat?, eKGeaig, dLopiapog,

KaraaKeu'n, diroSeL^Lg, and oup.Trepaap.a—shows that both writers were writ-

ing within a mathematical tradition, whatever the degree to which physical

notions entered. Finally, the formal incompleteness of these treatises, both

of which quite casually cite results they need as apparently well known, is

evidence that these treatises are but individual patterns in a larger mosaic:

both writers are evidently working in a background of familiar results and

methods, not only in the special area of spherics but generally in solid

geometry as found in book 11 of the Elements. Both writers may have

aimed to train readers in special topics, but neither wrote for beginners

in geometry.

Turning now from the formal aspects of the treatises to the mathematical

methods they employ, let us consider Hultsch’s suggestion [1886] that the

theorems from Theodosius’ Sphaerica which Euclid and Autolycus refer to

as known and available for their use, together with the geometrical results

used to establish those theorems, may be taken as the kit of mathematical

tools available to writers on spherical astronomy at the time of Euclid and

Autolycus. According to Olaf Schmidt [1943, 11-12], however, the story is

not so simple. Certainly, if a result proved by Theodosius is cited word for

word by Euclid in the Phaenomena, one may assume that the result in that

form was part of the mathematics available to Euclid; but this does not

at the same time justify arguing that, because we know how Theodosius

proved the result, we may extract from the theorems used in this proof

other theorems Euclid must have known.

Schmidt’s example of how such an assumption can mislead concerns

proofs using tangent circles on the sphere. Neither Euclid nor Autoly-

cus defines these circles, but it is apparent from such proofs as De sph.

prop. 6, which shows that the parallel circles touching the horizon are ei-

ther always visible or always invisible, that Autolycus considers two circles
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as tangent if they have only one point in common; and there is no reason to

suppose that Euclid’s conception was any different. On the other hand, at

the beginning of Sphaerica ii, Theodosius defines two circles to be tangent

at a common point if the line through that common point and in the plane

of each circle is tangent to each circle. Theodosius then uses this to es-

tablish a group of propositions, Sphaer. ii props. 3-5, which together could

be called the Fundamental Theorem of Tangency, and whose import is that

two circles touching at a point are tangent if and only if that point and

their poles lie on a single great circle. Admittedly, the last of these three,

Sphaer. ii prop. 5, is used without proof by Euclid [Phaen. prop. 2] and by

Autolycus [De sph. prop. 10]; however, in light of the fact that neither of

these treatises contains any hint of the Theodosian definition of tangency,

it would be unwise to assume that the source Euclid and Autolycus used for

the theorem proved it from the same definition of tangency that Theodosius

used.

Another important group of theorems that is basic to the theory of tan-

gency is the group Sphaer. i props. 13-15, the import of which is that if

(j is a great circle and S a small circle on a sphere, then the following

statements are equivalent: (1) G bisects 5, (2) G is perpendicular to 5,

and (3) G contains the poles of S. The proofs of these propositions are built

on several previous propositions of book 1, which utilize Sphaer. i props.

1, 7, 8, and 9, and these propositions are, in turn, used in the construction-

problem, i prop. 21 (To construct the pole of a given circle on the sphere)

and in i prop. 17, which is itself used in the proof of i prop. 21. Sphaer. i

prop. 15 is also used in Autolycus, De sph. props. 5, 6, 7, and 10, while

Sphaer. i props. 13 and 15 are both used in Euclid, Phaen. prop. 2.

However, it is instructive to compare the different ways in which Sphaer.

i props. 13 and 15 are used by Autolycus and Theodosius. The latter uses

them in the proof of the first part of what we have called the Fundamental

Theorem of Tangency, namely, in Sphaer. ii prop. 3, which states that two

intersecting circles are tangent if the point of intersection and their poles

lie on a single great circle. His argument is that, by Sphaer. i prop. 15, the

two intersecting circles are perpendicular to the great circle joining their

poles, so that the line in which their planes intersect will be perpendicular

to the great circle. Also, by Sphaer. i prop. 13, the great circle bisects each

of the intersecting circles so that each circle intersects the great circle in

a diameter. Accordingly, the line of intersection of the planes of the two

circles is perpendicular to each diameter and is, therefore, tangent to each

circle. By definition, then, the circles are tangent.

In contrast, Autolycus, when he must prove in De sph. prop. 6 a par-

ticular case of Sphaer. ii prop. 13, namely, that the horizon and greatest



Greek Spherics and Early Greek Astronomy 243

always-visible circle are tangent, begins just as Theodosius does but ends

in a very different way. Autolycus starts by remarking that, since the

meridian contains the pole of the horizon, it follows [cf. Sphaer. i prop.

15] that the meridian is perpendicular to the horizon and bisects it. Now,

however, he takes a different tack. He observes that a section of a circle

(the meridian) is upright on the diameter of a circle (the horizon) and is

divided into unequal parts at the north pole. Next, as we remarked earlier,

Autolycus applies the result later proven by Theodosius in Sphaer. iii prop.

1 to show that the greatest always-visible circle is tangent to the horizon.

It is significant, I think, that although Sphaer. iii prop. 1 uses the notion

of tangent circles, Theodosius’ proof uses only the Pythagorean theorem

and some elementary results in solid geometry concerning one plane’s being

perpendicular to another—in other words, Theodosius’ proof makes no ap-

peal to his definition of tangency. This, then, is one result in Theodosius’

Sphaerica which is relevant to tangency and whose proof could go back to

a pre-Euclidean source. In short, it would appear that Sphaer. iii prop.

1 forms part of the ancient theory of tangents, but that at some time after

Autolycus someone saw how to apply Sphaer. i props. 13 and 15 to establish

a new theory of tangents.

Theodosius himself uses Sphaer. ii prop. 5 in the proof of ii prop. 13

which introduces the idea of disjoint semicircles of great circles on a sphere

that are tangent to the same parallel circle. This notion is used by Eu-

clid, Phaen. props. 4-7, 12, and 14 to prove that certain arcs are equal.

It is also applied in Autolycus’ De sph. prop. 8 which states that ‘great

circles tangent to the same circles as the horizon will, when the sphere is

rotated, coincide with the horizon’. Here Autolycus uses precisely the same
terminology of disjoint semicircles as found in Theodosius.

On the other hand, Sphaer. ii prop. 13 introduces a sequence of proposi-

tions, Sphaer. ii props. 13-16, which provides constructions [ii props. 14

and 15] and theory [ii prop. 13 and its partial converse, ii prop. 16] relevant

to comparing arcs on parallel circles. The centerpiece of this group, which

finds important application in the Phaenomena^ is Sphaer. ii prop. 15 on

the construction of a great circle tangent to a given parallel circle and pass-

ing through a point between that parallel and another which is parallel and

equal to it. As the table of the logical structure of Sphaer. ii shows [see

Table 1], this proposition is well embedded into the structure of book 2 and

makes use of the Theodosian theory of tangent circles. Euclid, however,

appeals to this theorem on three different occasions [Phaen. props. 4, 5,

and 12], and of crucial importance to these appeals is the result proven in

Sphaer. ii prop. 13 concerning arcs of two parallel circles cut off by non-

intersecting semicircles. Autolycus, too, states the enunciation of Sphaer.
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ii prop. 13 word for word in his treatise. Here again it seems plain that the

results of Sphaer. ii props. 13-16 represent 16 part of a pre-Euclidean chap-

ter on the subject, which some writer later than Euclid put on a different

basis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2 -

3

4 • • •

5 •

6 • • •

7 •

8 • •

9

10

11

12

13 • • • •

14 •

15 • • •

16 • • •

17 • •

18 •

19 •

20 •

21

22 • • • •

23 e • •

Table 1. The logical structure of Theodosius, Sphaerica ii

A • at row m in column n means that the proof of proposition m uses proposi-

tion n. For example, proposition 4 in book 2 relies on propositions 2, 3, and 4.

This table does not show that ii prop. 1 uses i prop. 10; that ii prop. 2 uses

i prop. 10; and that i prop. 15 is cited in the proofs of ii props. 3, 9, 10, and 21.

Further evidence of progress in the treatment of spherics between the

time of Euclid and that of Theodosius consists in the much more sophisti-

cated treatment of the angles of inclination between the ecliptic and horizon

as it is discussed in Sphaer. ii prop. 22.17 We are still dealing here, it is

16 See Aujac 1984, 104-105 for details and a convincing discussion.

17 According to Theodosius, one plane is more inclined to a base plane than is

another plane if it makes a smaller angle with that base than the other does.
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true, with angles between planes and not with angles on the surface of the

sphere; but, even given this, Theodosius’ treatment of the way the angle in

question varies monotonically from a maximum to a minimum, together

with its discussion of symmetries, goes far beyond the beginning steps in

the solution of the problem that we see in Euclid’s Phaen. prop. 2.

Theodosius’ method of proving the result is of some mathematical inter-

est in that it measures the variation in one magnitude, the angle between

ecliptic and horizon, by that of another, namely, the height of the pole

of the ecliptic relative to the horizon. The standard phrase for ‘height of

the celestial pole’ is l^apfia toO ttoXod, which refers to the arc of the great

circle through the zenith and the pole contained between the pole and the

horizon. The phrase does not occur in the Sphaerica, however: in compar-

ing two positions of the pole of the ecliptic, Theodosius describes the one

pole as [ierecopoTepog than the other, and measures the elevation of the pole

by the perpendicular from it to the horizon. The result is that in going

from greater elevation of the pole to greater inclination of the ecliptic, the

arc mentioned earlier is introduced secondarily and at the expense of some
complication in the proof of Sphaer. ii props. 21-22, as a quantity that

varies monotonically with the pole height and that allows one to pass from

it to inclinations of planes.

Any study of the mathematical methods of ancient spherics would be

incomplete, however, without some consideration of the methods used in

the theorems requiring some construction. 18 A propos of such theorems in

Theodosius’ Sphaerica, Schmidt [1943, 13-14] sees in them evidence that

those who worked with spherics in an astronomical context used construc-

tions on a solid sphere. This is no doubt correct, but there is more to be

said on this point.

Schmidt’s principal arguments concern the group Sphaer. i props. 16-

21 which provides the basis for the construction of a great circle through

two given points and for finding the poles of a given circle. However, the

proof of i prop. 18 assumes that one can draw lines on a circle within the

sphere, and this theorem serves in i prop. 19 which requires one to find the

diameter of a given sphere. Moreover, the very first construction-problem,

namely, i prop. 2 (To find the center of a sphere), is obviously not solved by
construction on the surface of the sphere; indeed, one wonders what use

it would be for working with a solid sphere. It seems to me that i prop. 2 is

an instance of a theorem that occurs in the Sphaerica, and, more to the

18 The question of the status of construction-problems relative to that of theorems
in Greek geometry has been discussed in Bowen 1983; the question of the motiva-

tion for constructions is discussed in Knorr 1983. These are recent considerations

of issues raised in Zeuthen 1896.
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point, was developed in the first place, because it was thought that such

a proposition belonged in an elements of spherical geometry.

Theodosius’ view of construction-problems, however, goes deeper than a

simple desire to do problems on the sphere analogous to those one wants to

do in the plane; and this is shown by the solution of Sphaer. i prop. 20,

which requires the construction of a great circle through two given points

on a sphere. He begins the proof as follows:

Let A and B be the two given points on the surface of the sphere. It

is required to draw the great circle through A and B. When A and

B lie diametrically opposite it is clear that arbitrarily many great

circles can be drawn through A and B, so let it be supposed from

now on that A and B are not diametrically opposite.

Now if Theodosius’ object had been to show astronomers how to do useful

constructions on a solid sphere, he would hardly have omitted a case which

is at least as useful as any other. Again, if the object were simply to write

a treatise containing what a treatise on geometry ought to contain, then

one would expect to see all cases treated. In fact, what the proof of this

problem suggests is that one function of some of the constructions was to

guarantee the existence of certain objects. 19 In this case the existence of

a great circle through two diametrically opposite points would have been

clear to any reader who had understood Sphaer. i prop. 6 and the meaning

of ‘diametrically opposite’.

Finally, Theodosius’ motives for including construction-problems are well

illustrated by the proof of problem Sphaer. i prop. 21, which requires find-

ing the pole of any given circle on the sphere. The existence of poles is

guaranteed by Sphaer. i prop. 8 together with the existence of the per-

pendicular to any given plane at any point on it (assumed, in cmy case,

in problem i prop. 2); yet Theodosius does not give such a proof. His

procedure for the construction is certainly such that one could carry it out

on the surface of the sphere. Yet, if it were intended simply as a ‘how

to’ recipe for the novice astronomer working with the solid sphere, it is

l^Zeuthen [1896] suggested that this was the motivation for construction-problems

in Greek geometry. Knorr [1983] argues, on the other hand, that such a purpose

accounts for only a very few of the extant constructions and is largely a backward
projection of mathematically trained 19th-century historians of then-current con-

cerns onto an ancient canvas. Knorr’s arguments are generally convincing, but

my point here is that there is internal evidence in the proof of Sphaer. i prop.

20 that one of the motives for including the theorem was to prove the existence of

great circles satisfying certain conditions. That other motives were also operative

is evident from the construction-methods Theodosius uses.
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curiously incomplete, since it assumes, without explanation anywhere in

the treatise, the bisection of axes of circles. Of course, the existence of the

midpoint of an axe is clear from the considerations of continuity, as is also

the case with the existence of a fourth proportional to three given arcs,

something Theodosius assumes in the proof of iii prop. 10. Given that

Theodosius says nothing more about the midpoint, it may well be that

continuity was what he was tacitly appealing to; but constructive proofs

are also at hand with the material at his disposal, so it seems we are in no

position to argue that Theodosius held any one attitude uniformly towards

all his constructions.

Such then are the mathematical methods of spherics in the fourth cen-

tury BC, partly as they are found in the texts from that century and partly

as we have reconstructed them from a text of the first century BC. The
goal of these methods was to explicate astronomical phenomena and their

origin lay in the mathematical two-sphere model of Eudoxus. That the ex-

planations were entirely qualitative should not surprise us given the state

of astronomy in fourth-century Greece, since astronomers only had avail-

able to them at that time a collection of data based ultimately on rough

observation and qualitative estimates.

On the other hand, interacting with this material in a complex way were

arithmetic methods of varying degrees of sophistication. We have seen

how, for example, in the case of the length of daylight, all such schemes

were based on the idea of interpolating a sequence of numbers between the

annual minimum (m) for the locality and the annual maximum (M). The
different levels of sophistication lay not in the values for M but in:

1. the rules according to which the sequence of numbers was cho-

sen,

2. the density of the derived sequence of numbers within the in-

terval [m, M], and

3. the integration of one sequence with another in a scheme such as

that of the climata which would, so to speak, cast a numerical

net over the whole olKOup€VT| (inhabited world).

This is but one example of how the precision of the ancient exact sciences

lay not in the exactitude of their observations, which was poor by modern
standards [see Aaboe and Price 1964], but in the fact that the scientists

developed or used mathematical methods to turn, if I may overstate mat-

ters slightly, observational dross into scientific gold. Thus, it is entirely

consistent with the qualitative, approximate character of ancient observa-

tional data that the first attempts to geometrize the world-picture should
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themselves display a similarly qualitative character. In fact, the subject

of spherics produced exact results only when it was combined, by means of

trigonometrical tables, with numerical procedures which had long preceded

it. But that belongs to the history of trigonometry and is another story.
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The Definition, Status, and Methods of the

Medical Texvn in the Fifth and Fourth Centuries

G.E.R. LLOYD

The debates on the definition, status, and methods of the medical t€Xvt|

that took place in the fifth and fourth centuries BC offer us a remarkable

opportunity to explore a whole range of issues. In part these are socio-

logical and concern the relationships between the various groups who laid

some claim to the title, larpos, or who were involved, in practice, in one

or other aspect of one or other rival or complementary tradition of treating

the sick. In part they also relate to epistemological and methodological

questions concerning the nature of a T6X1T|, its defining characteristics, and

the type of knowledge it presupposes. Although I shall be concerned chiefly

with the second group, it would be foolish to attempt to deal with those

questions in isolation from those that come under the first heading. Cer-

tainly in many Hippocratic texts besides the three treatises I shall be using

as my principal evidence (On the Art, On Regimen in Acute Diseases, On
Ancient Medicine), there is a recurrent preoccupation not just with defin-

ing medicine and setting down its methods, but also with how the doctor

is to be distinguished from the layman, and again how from imposters,

charlatans, or doctors in name alone.

It is well known that apart from the medical writers represented in the

Hippocratic Corpus (themselves a highly heterogeneous set) several other

groups were also involved in healing the sick. There were, for example,

the ‘midwives’ ([iaLai) concerned, of course, with much more than that

conventional translation might suggest. Again, the collection, sale, and ad-

ministration of drugs, especially herbal remedies, were chiefly the province

of those called pL^OTop-OL (root-cutters) and (j)app.aK07ro)XaL (drug-sellers).

On occasion, as texts such as [Demosthenes] In Neaeram lix 55-56 confirm,

the women of the household went and bought drugs and administered them

249
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themselves without, it seems, calling in an laxpo^ of any kind. There were

also those whose discourse on diagnosis and cure drew heavily on the cate-

gories of the divine and the supernatural; but again they can hardly be

treated as a single group, since there are important differences between on

the one hand the itinerant purifiers and sellers of charms and incantations

whom we hear about from Plato, for instance, as well as from On the Sa-

cred Disease^ and on the other those who practised temple medicine in the

increasingly well-established shrines of Asclepius and other healing gods or

heroes.

Now plurality of medical traditions is far from unique to classical Greece:

it can be paralleled in ancient Egypt and in ancient Babylonia to look no

further afield in ancient, let alone modern, societies. But what is more

exceptional is the overt and explicit attacks by one group or another. The
point must not be exaggerated. As I have recently had occasion to stress

elsewhere, not every Greek group of healers attacks or criticises every other

one. Some of the relations between more or less clearly demarcated groups

are marked by a certain tolerance and a mutual, though not necessarily

symmetrical, respect. We do not find Hippocratic writers of any kind en-

gaging in polemic with the midwives as a group, for instance, or with those

whom the author of On the Diseases of Women i 68 calls the women healers;

rather, as I tried to show in Science, Folklore and Ideology [Lloyd 1983a],

there is some cooperation between them. On the other hand, some of the

boundaries between one group and another were highly contested. The
onslaught on the itinerant purifiers in On the Sacred Disease is the best

known example, but we should be careful not to assume that it was always

those represented in the Hippocratic Corpus who did the attacking (even

though much of our evidence comes from them). It is clear enough from

Aelius Aristides that, in the second century AD at least, temple medicine

often set itself apart from and indeed criticised other styles of healing; and

there are signs of that developing already much earlier in the fourth century

BC in the inscriptions from Epidaurus.

Quite why in Greek society there are these explicit attacks is, to be sure,

a highly complex and controversial question which I shall not attempt to

reopen here. But that they existed is both clear enough and important.

Evidently, when some of the frontiers or boundaries were a veritable bat-

tlefield, it was not going to be enough for those within a particular group

to sit back and assume that sufficient raison d’etre for their style of ac-

tivity came from the very existence of the group itself. Self-justification

was the order of the day and many Hippocratic treatises revert to the

point, even when they are not devoted to it entirely (as On the Art is).

Of course, self-justification could take many forms. In some Hippocratic
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works (such as the Oath, Decorum, and especially Precepts) the writers

show themselves chiefly concerned with the moral respectability of their

fellow-laTpoL. Several of the deontological treatises are products of the

Hellenistic period, and Precepts in particular shows clear signs of influ-

ence from Hellenistic epistemology. Yet—whatever its date—it certainly

illustrates how methodological recommendations could be combined with

advice about bedside manner, about morality, about economic aspects of

medical practice, and so on. The author is as anxious about doctors getting

a bad name for themselves for ostentation, avarice, and lack of (|)LXav0pa)TTLT]

,

as he is about their doing so through faulty medical practice.

Attacks on other healers sometimes involve the exposure of an entire

group with whom the author certainly does not identify himself, as when
On the Sacred Disease sets out to demonstrate the fraudulence of the puri-

flers. But the accusations of bad practice, even charlatanry, can also be

levelled at those whom you recognise—or others do—as your colleagues.

Often in the surgical treatises, for example, criticisms of bad surgical prac-

tices involve no more than an explanation of the real or assumed harmful

effects—whether or not supported by reference to firsthand experience.

But sometimes such accusations lead to more general discussions of the

principles that should underlie medical practice, and of medical method
as a whole. Three treatises which can be used to illustrate both certain

shared concerns and certain differences of approach are On the Art, On
Regimen in Acute Diseases, and On Ancient Medicine. I shall begin with

the most theoretical of these, or rather with the one that is least secure

in its practical medical knowledge, the treatise On the Art.

As is well known, this is a sophistic type of demonstration-lecture (eTrC-

and it is possible that the author was no practitioner himself. But
from our point of view, that cannot be held to detract from the value

of the evidence the work provides on the type of question raised about

medicine as a TexvT|, the kind of challenge that was offered, and the nature

of some of the points used (whether or not from inside the ‘profession’) in

its defence. The treatise opens with some general remarks about those who
have ‘turned the abuse of the Tex^OLL into a T€XVT1 in itself’, and who are

accused by the author of On the Art of being nasty, malicious, ignorant

individuals and indeed of lacking tcxvti (i.e., of being dTexv'ot). He says

it is up to others to defend other rexvai, though chapter 9 seems to suggest

a promise by the author himself to deal with some aspects of these. But his

chief concern in this Xoyog is the defence of IqTpLKq.
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The question this opening chapter immediately poses is whom the author

has in mind. Who was in business to abuse the or speak shame-

fully of them? We have plenty of evidence of Plato’s eventually want-

ing to downgrade some of the Texv'oa and he certainly had little good to

say about those who practised them as full-time professionals. In Gorgias

464b-466a there is a contrast between certain genuine rexvai (including

laTpLKq) and their spurious ‘flattering’ counterparts, and again between a

and mere efiTreLpCa [465a]; Phaedrus 260e calls rhetoric no tcx^ti but

an dxexi^og TpL^fi and furthermore contrasts the practice of medicine as

a T€XVTTj with its practice only as a knack and by experience [xpipfi povov

Kal epTretpCq.: 270b] . Moreover, in the passage of fundamental importance,

Philebus 55e-58a grades the Tex^at according to their degree of exactness:

medicine, in particular, comes in the lowest category (along with music,

farming, navigation, and generalship) and below carpentry, which itself

comes below the mathematical Texv'ai (subdivided here into the impure,

mundane applied branches and the purer, philosophical inquiries).

But apart from the problems of dating (and it is difficult to think that

the author of On the Art 2, which concerns the relations between words and

things, was familiar with Platonic dialogues such as the Cratylus), it must

be thought unlikely for two main reasons that On the Art 1 was directed

at Plato. First, the attackers envisaged in this treatise apparently reject

the Texv'at wholesale; whereas, in the dialogues cited above at least, Plato

is concerned to draw distinctions between superior and inferior Tex^^o^i- and

indeed rates any T€XVT| higher than a mere knack. Second, the author of On
the Art refers to those who bring shame on the arts and their discoveries and

abuse them, and this hardly fits the character of the mainly epistemological

objections raised by Plato against the less exact rexvat.

Is it, then, some group of sophists who ‘turn the abuse of the Texv'ai

into a T6xvT|’? So far as our evidence concerning that highly amorphous

group goes, I do not believe that anyone can be made to fit the bill exactly.

Of course there were those, including Gorgias, who privileged the art of

rhetoric and wrote books called Texvat dealing with that subject; and in

the Platonic dialogue, Gorgias is represented as claiming that rhetoric is

more powerful than all the other arts: it is he, not his brother who was

a doctor, who persuades people to take their medicine [Gorg. 456b]; and

he claims that in any assembly or gathering set up to choose a doctor,

he would win the contest, thanks to his skill in speaking, and defeat any

actual doctor. That would obviously involve the discomfiture, the loss of

face, the shame, of any doctor unfortunate enough to be so defeated. Many
Hippocratic texts make clear just how upset their authors would be likely

to be at the prospect of losing an argument with a layman on a medical
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matter. Nevertheless the identification breaks down. Although the effect

of the Platonic Gorgias’ claim would be shaming, the Platonic Gorgias

himself says that rhetoric should not be used to detract from the 86^a

(reputation) of doctors [Gorg. 457b]: rather his case is the positive one,

that rhetoric, used justly, should be admired, not the destructive one that

the other Tex^ai should not be.

Is it, then, that the author of On the Art has simply invented the art-

abusers he attacks? That too seems a difficult conclusion to draw, not

least because of the huge gaps in our evidence for fifth- and fourth-century

‘sophists’ of one kind or another. That the Hippocratic author overstates

his opponents’ position, especially perhaps as regards their motivations,

may well be the case. But we have enough independent grounds in the

Hippocratic Corpus itself that radical challenges to the status of iT^TpiK'n

had been mounted, to allow us to say that, in this instance at least. On the

Art has—not just Aunt Sallys—but genuine opponents, even if we cannot

name them. We shall consider the evidence from On Regimen in Acute

Diseases and On Ancient Medicine shortly; but in what are probably later

works too, such as Precepts 9, there are signs of concern to defend medicine

against detractors and to show that it is a Tex^fi- That may be as far as it

is wise for us to go: yet even if the idea of a group of sophists attacking the

arts in general were a mere fiction, a figment of this author’s imagination,

it has one interesting implication nevertheless. Even if he had no such real

opponents, he has himself implicitly raised the very issue he accuses them of

pressing. They should not abuse the Texvat nor disparage their discoveries.

But this, of course, by implication poses the questions: What discoveries?,

and How secure are the claims of the rex^ai to be rex^^OLi'? These issues are

most pertinent in a period when claims for new inventions, for founding new
inquiries and for innovating in existing ones, were all the rage. Moreover,

these issues once raised, this author’s defence of the arts in general is both

thin and indiscriminate: ‘it seems to me that in general there is no Texvnr)

that does not exist’, the gist of his argument being that what can be seen

and recognised exists, and what cannot, does not.

What the author has to say on medicine in particular begins in chap-

ter 3, and is marked by a certain self-consciousness in style. Thus, he will

begin his demonstration or exposition (dTroSet^L?) of the t4x^ of medicine

with a definition (cf. opteOfiaL). This definition comes in two main parts:

(1) the complete removal of the sufferings of the sick, together with the

alleviation of the violences of diseases; and (2) the refusal to treat cases

‘where the disease has already won the mastery’, realising that in such

instances medicine is powerless. One cannot help admiring the cunning

and bravura of this twofold statement. On the one hand, the first part
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claims the possibility of complete success and later chapters show that this

is no mere opening gesture of the hand. Chapter 9 subdivides diseases into

two main groups—broadly those with visible signs and those without—and

affirms of the former group that ‘in all cases the cures should be infalli-

ble, not because they are easy, but because they have been discovered’.

(Chapter 10 goes on to say that in the latter group too the T€XVT| should

not be at a loss.) But the ‘heads I win, tails you lose’ character of his

original definition comes out when he deals with cases where the tcxvti is

not successful. There, the disease has already won the mastery and it would

be quite unfair to expect the tcx^ti to be able to achieve a cure: indeed

it is perfectly right for doctors to refuse to treat such cases [cf. ch. 13]. So

where there are successes, they are proof of the power of the rex^- but no

failure, no inability to produce some alleviation, is allowed to count against

the art, since he has made it constitutive of medicine, in his definition, that

it refuses to deal with hopeless cases.

How far these extravagant claims, with their all-purpose fail-safe clause,

were likely to carry conviction—even with an audience at a sophistic eTrCdei-

fig—we cannot know. Certainly the actual medical knowledge the author

displays is none too impressive. Yet his attempt to distinguish between

the products of TexvT] and those of mere chance, tux^I, chapters 4-6,

does score some notable points. Some attribute the successes of medicine

merely to chance, he says in chapter 4, and some point out that people have

recovered even without calling a physician [ch. 5]. Now while he does not

rule out chance—but claims rather that good luck follows good treatment,

and bad luck, bad [ch. 4]—he mounts an argument in chapter 6 to suggest

that the spontaneous (to airropaToy) is a null category. Everything that

happens, happens on account of something (Sid tl). Even if the patient

called in no doctor, his recovering from his complaint was due to doing

something or again to his not doing something [ch. 5], that is, to precisely

the means the doctor would have used, had he been called in. So the medi-

cal art is at work whenever there is a cure, whether or not the doctors are

in attendance—though chapter 6 ends with the further point that medicine

is real not just because it acts Std tl but also because its results can be

foretold.

The author of my second main text. On Regimen in Acute Diseases,

is altogether more knowledgeable about actual medical practice; but he

too shares some of the worries of On the Art. The art as a whole, he

says in chapter 3, has a very bad name among laymen, to the point that

there is thought to be no IqTpLKq at all. But here the problems arise not

—

as in On the Art—because of malicious slanderers, but rather because

of the incompetence of, and especially the disagreements among, doctors
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themselves. In chapter 3 he identifies a state of some chaos in the profession

on the question of the diet to be prescribed in cases of acute diseases; and he

follows this up with the remark that such disagreements are likely to make

laymen object that the Tcxi^ is like divination, where diviners disagree

about which birds on the right or left are propitious and on what the signs

in the entrails portend.

Now that comparison is interesting for several reasons and chiefly be-

cause divination (pavrucn) was in most quarters a highly respectable and

respected When Prometheus boasts of the benefits he has brought

mankind, pavrucn figures prominently; and On Regimen even cites it is as a

prime example of a T€Xvt|. Clearly, however, for the author of On Regimen

in Acute Diseases, if medicine were no better than divination, that would

not be enough. Yet we may note that one requirement he places upon the

doctor is to know features of the patient’s condition without being told,

that is, to practise ‘prognosis’, not here predicting the future, but inferring

the present, a practice medicine shared with divination (and the terms in

which both Prognostic 1 and Epidemics i 5 speak of the doctor ‘telling in

advance the present, the past and the future’ indicate pretty clearly that

they were aware of the parallelism with prophecy).

Once again, as in On the Art, the author of On Regimen in Acute Dis-

eases is led to explore topics to do with the nature of causation, particularly

in relation to the classification of diseases. One of the criticisms he has of

the revisers of the Cnidian Sentences is that though they were keen to

enumerate the types of each kind of disease, their account was incorrect;

and he goes on to complain that it is impossible to proceed on the assump-

tion that any difference in the symptoms constitutes a different disease—or

again that a mere variety in the name does so. Again the problems posed

by the fact that the same condition may be due to different causes are

mentioned in chapter 11. It is a very serious error, for instance, to mistake

weakness that is due to the pain of an acute disease for weakness caused

by lack of nourishment and to feed the patient. Conversely, it is also an

error not to see that the weakness is due to such a lack. That is not so

dangerous to the patient, but it does lay the doctor open to ridicule far

more. Another doctor or even a layman seeing what is the matter would

immediately be able to help the patient: that is the type of mistake that

leads to practitioners being despised by ordinary folk, while the doctor or

layman who comes in and saves the patient is like someone who raises him

from the dead.

On Regimen in Acute Diseases does recognize some insecurity in the

claims of medicine to be a Tcxvn^, and positively and constructively relies

on some detailed advice about diagnosis and especially the characteristics
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of different treatments. The author of this treatise frequently criticises his

fellow-practitioners, often claiming that current practice and procedures

are mistaken: yet most of his recommendations take the form of contrary

assertions, the plausibility or persuasiveness of which depend entirely on

how convincing his appeals to his own experience sound.

On Ancient Medicine—my third text—has, however, much more to say

about methodology. This author attacks those who try to base medicine

on the new-fangled method of postulates (vTToGeaeLg). You may have to

rely on these in dealing with ‘meteorology’, where it is not clear ‘either

to the speaker himself or to his audience whether what is said is true or

not, since there is no criterion to which one should refer to obtain clear

knowledge’. But that will not do in medicine: it would do there only if

medicine were no at all and just a matter of chance [ch. 1: cf. ch. 12].

But that is not the case, as is shown by the differences between good and

bad practitioners. Such argument depends, to be sure, on the successes

being agreed and being attributable to the Tex^ of those who achieved

them. But on that his chief point is that medicine has a principle (dpxij)

and a method (686?) which are tried and tested. It has been discovered (cf.

€i)pr|[ia, ^f|Tqpa) as the result of systematic inquiry: indeed he believes that

one day the whole of medicine will be discovered, using the same method

[ch. 8].

The claim is, then, that medicine has a methodology, delivers results, and

is not a matter of chance. But the particular argument the author advances,

connecting medicine with cookery and dietetics, in part to support a claim

that this was how the T€X^ started and to suggest its antiquity, has a

potentially embarrassing feature. It is perfectly reasonable, he says in

chapter 4, that dietetics is not considered an art, because no one is a

layman in it, but all are knowledgeable since all have to use it. But if

medicine starts from dietetics, trial and error procedures with the food you

eat and what you drink, at what point, precisely, it becomes a T€Xvt\ and is

not just what everyone knows, ought to be a question for the author to

take up: yet it is not one for which he has a very clear answer.

In other respects, however, he not only indicates the type of semiology

he suggests the doctor should practise in diagnosis and provides a number
of specific analyses of the effects of particular regimens, he also has further

points to add on the key question of isolating the causal factors that can

be held responsible for a condition. Chapter 21 identifies as a common
mistake among doctors as well as laymen the assumption that anything

unusual done near the beginning of a complaint was its cause—when it

may not be at all—and chapter 19 specifies that ‘we must consider the

causes of each condition to be those things which are such that, when
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they are present, the condition necessarily occurs, but when they change

to another combination, it ceases’. It is striking that this statement of

causal factors that are, as we might say, necessary and sufficient conditions

of a disease was propounded in the context of particular problems posed

by medical diagnosis.

But this treatise makes an even more important contribution towards the

definition of the medical T€Xvt^ in its remarks on the degree of exactness (to

dTpcKCS*, TO axpiPes, and their cognates) which it can attain and which it

should be expected to attain. Chapter 9 begins by noting that substituting

weaker for stronger foods is far from effective treatment in all cases. The
matter is more complex and requires greater exactness. ‘One should aim at

some measure. But as a measure you will find neither number nor weight

by referring to which you will know what is exact, and no other measure

than the feeling of the body.’ Exactness is difficult to achieve and small

errors are bound to occur. Up to a point the subject can be, and has been,

made exact; but perfect exactness is unattainable.

But I assert that the ancient art of medicine should not be rejected

as non-existent or not well investigated because it has not attained

exactness in every item. Much rather, since, as I think, it has been

able to come close to perfect exactness by means of reasoning where

before there was great ignorance, its discoveries should be a matter

of admiration, as well and truly the result of discovery and not of

chance.

While the medical T€XVT| has achieved exactness in some areas, in others it

has not and it could never be expected to be perfectly exact: in particular,

it is positively inappropriate in medicine to attempt to use the measures

produced by numbering and weighing. To appreciate the full force of this

set of statements we must refer both to medical and to non-medical texts.

As is well known, the date of On Ancient Medicine is controversial, as

also is the question of who exactly are those whom this treatise criticises

for importing uTToOeaeig into medicine. But it is less controversial, even if

not universally agreed, to identify mathematics as one domain in which a

method of UTToOeaig was developed before Plato: it is, after all, by reference

to how geometers proceed that Plato himself explains the method when it

is first introduced in Meno 86e, even though the term itself is not directly

attributed to them. It is possible, though far from certain, that the medical

writers attacked in On Ancient Medicine 1 were influenced by some math-

ematical usage; and I conjectured, some time ago, that Philolaus might

provide an appropriate bridge between medicine and mathematics. (We
know he was interested in both subjects and indeed the type of medical
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and physiological theories attributed to him, which are based on the hot,

correspond broadly to those particularly criticised in On Ancient Medicine.)

But whatever we may think about a conjectured mathematical context

to the method of uiroOecrtg attacked in On Ancient Medicine, the author’s

remarks about exactness obviously resist some notion or tendency to turn

medicine into an exact inquiry. We need not look far for examples in the

Hippocratic Corpus itself of just such a notion or tendency. The whole

topic of the periodicities of diseases is an extremely complex one. Different

texts set out different schemata, some based on odd/even contrasts (where

Pythagorean ideas are often seen in the background) and others using other

systems. Some such schemata are explicitly qualified as holding only ‘for

the most part’, even while others carry no such reservation. Prognostic, in

particular, after proposing an intricate theory of the periodicities of fevers,

goes on to remark [ch. 20] that the periods cannot be numbered in whole

days exactly—rather they are like the lunar month and the solar year. But

the evidence of a substantial group of texts points clearly in the direction of

their authors attempting precise, dogmatic theories in this area. Moreover

a similar controversy can be traced in regard to the question of exactness

in drug prescription, where some Hippocratic texts specify determinate

quantities, while others take a line closer to that in On Ancient Medicine

and insist that the ingredients and dosages have always to be adjusted

to particular patients. With its rejection of numbering and weighing. On
Ancient Medicine takes a stand on an issue about which the medical writers

were deeply divided: for some—whether or not they had the model of pure

or applied mathematics explicitly in mind—were all for turning medicine

into an exact inquiry, while others, as the author of this treatise, resisted

that ambition, though insisting nevertheless that medicine is a T€X^ based

on experience and reasoning.

Much more could be said, and many more texts adduced from the Hip-

pocratic Corpus, to illustrate and elaborate these themes. But it is time to

draw some of the threads of this selective discussion together. Medicine

exists in one form or another in every society, whether healing is entrusted

to specialists or not, to one group or to more. In the context of fifth- and

fourth-century Greece, where so much was being called into question, the

foundations of medicine and its status were made the subject of explicit

debate, maybe not earlier than other subjects, but among the earliest; and

that spirit of challenge itself raises a whole series of problems in a com-

parative perspective. In the process, as aspects of the pluralism of Greek

medicine and its relations with other inquiries became the topic of explicit

analysis, there was a heightening of self-consciousness and the construction
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of not one but several overlapping and competing models of what medicine

is or should be.

Many of the issues were sharpened considerably with Plato’s insistence on

the distinctions among various eTTLorfifiaL, on the contrast between T€Xvt|

and experience (epTretpLa) or mere knack (TpL^T)), and on the differences

between that were more or less exact, more or less tied to procedures

of measurement. But some of those questions are anticipated in earlier, or

made independently in contemporary, medical texts. Could medicine be

called a T6XVT| at all? Several Hippocratic writers were emphatic that it

could, though their ideas differ on how. Its successes are not the results of

chance but of reason based on experience, the effects of causal factors that

could be used by the T€X^ even when they were at work independently;

above all, predictions could be made on the basis of reliable signs, and that

w£LS a test of the doctor’s skill. Some, whether or not aware of the problems

that remained if the Tex^rj depended solely on the pragmatic criterion, went

further and insisted that medicine is an inquiry based on research conducted

according to its own methodological principles: its theories should not

be based on arbitrary assumptions but should, in principle, be testable.

Above all, while some might suppose, and some did suppose, that there

was nothing to stop medicine being turned into an exact inquiry, others

resisted that ambition and insisted that though not perfectly exact, it was

a T€XVTT] nevertheless.

As remarked, many of these themes become appreciably clearer and more
explicit with Plato—not that Plato was happy, in the final analysis, to con-

cede to medicine, as a conjectural art, a very high status at all. With Plato

and with Aristotle of the Posterior Analytics^ the requirement of certainty

for knowledge and the securing of incontrovertible conclusions by deduc-

tion from self-evident axioms, come into the foreground in philosophical

analysis

—

2is they were implicitly to dominate (and to some extent were al-

ready dominating) the exact sciences throughout antiquity. But Aristotle’s

practice in the inquiry concerning nature accommodates more easily than

some of his theoretical pronouncements the category of what is true ‘for

the most part’ as well as what is true always; and of course he explicitly

allowed differences in the degree of exactness of different disciplines, not

just between mathematics and moral philosophy but also between mathe-

matics and physics. Some of these Aristotelian themes may be represented

as picking up (though they do not do so explicitly) points already made
by Hippocratic writers, while in the next generations the continuing Hel-

lenistic debates on the status and methods of the medical T€X^ were to

be one context in which the issues between scepticism and dogmatism were

to be fought out. Sophisticated developments were to come: but whatever
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we may think of the many different ways the name of Hippocrates was

conjured with in the Hellenistic medical sects, at least the first beginnings

of important topics are to be found in some of the treatises that came to be

ascribed to him.
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Between Data and Demonstration:

The Analytics and the Historia animalium

JAMES G. LENNOX

There is a subset of Aristotle’s treatises which we usually refer to as his

biology or zoology. Aristotle himself occasionally mentions the investiga-

tion of animals and plants, although seldom in a way that marks it off

decisively from the study of coming to be and passing away in general [Me-

teor. 339a5-8, 390bl9-22; De part. an. 644b22-645al0]. When we turn to

these works individually and as a group, a number of simple but important

questions arise regarding the manner in which the study of animals is parti-

tioned and about the ways in which the different works are related to each

other. Of course, we may have ready responses to these questions, but such

responses are in part influenced by recent developments in the biological

sciences that have little to do with Aristotle or his conception of nature

or of science [cf. Balme 1987a, 9-11]. So, to answer these questions in a

way that will increase our understanding of Aristotle’s science, we need to

understand better his aims and methods.

Take the case of the Historia animalium. This treatise stands apart from

those aimed at offering various explanations for the parts, development,

motions, and so on, of animals. Much of the information it contains is du-

plicated in these other treatises,! and there are numerous casual references

to it in them. Further, unlike many of Aristotle’s works, the title of the

Historia animalium is used to refer to it within the corpus itself.2

! Le Blond [1945, 19] and Balme [1987a, 13-17] draw precisely opposed conclu-

sions from this fact.

2 Actually, Aristotle sometimes refers simply to ‘the histories’ [De part. an.

646all; De iuv. 478bl; De gen. an. 719al0, 740a23, 746al5] or to ‘the natural

histories’ [De part. an. 639al2, 650a31-2; De incess. an. 704bl0]: the majority

261
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Why, then, axe the ‘researches concerning animals’ distinguished from

these other studies? Obviously, there is danger that in answering this

question we will obscure Aristotle’s own purposes. Accordingly, the aim

of this paper is to answer the ‘what-is-it’ question about the documents

Aristotle refers to as ‘the animal histories’ or sometimes simply as ‘natural

histories’. I shall argue that attending to Aristotle’s wider logical and

epistemological vision C3n help us to understand better his approach to the

systematic study of living things.

3

1. Modern views of the Historia animalium

From a post seventeenth-century perspective, there are two standard ways

to conceive the function of the Historia animalium within a systematic

study of the animal kingdom. The first takes it as the classificatory ground

work of Aristotelian zoology. Yet so viewed the treatise is hopelessly in-

adequate [cf. Balme 1987b, 80-85; Pellegrin 1983, 1-12]. The taxonomic

vocabulary is restricted to the two terms yevo<g and elSog and these terms

refer to groups of animals at all levels of the taxonomic hierarchy. There

appears to be no concern for finding or consistently using certain features

as classificatory markers in order to provide either a classification which is

exhaustive or a hierarchy of taxa from widest to narrowest. The second

treats the Historia animalium as a collection of ‘natural histories’, that

is, as a series of more or less complete descriptive studies of each of the

kinds of animals discussed. But from this standpoint the work is even more

of the references in De part, an., however, are to specifically animal histories

[660a9, 660b2, 668b30, 674bl6-17, 680al, 684b4-5, 689al8j. It is presumably
from these references that some ancient editor (probably Andronicus: cf. Keaney
1963, 57-58) derived the title that has come down to us.

3 I will focus on the extent to which the theory of finding middles relative to

specific problems and the theory of inquiry in An. post, ii can give us a purchase

on Aristotle’s concept of an IcrropLa. In a companion study [Lennox 1987a], I

concentrated on the remarks in the An. post, about the move from incidental

to unqualified understanding, about how locating predications at the commensu-
rately universal level is a crucial part of this move, and about how the Hist. an. is

consistently concerned to locate such predications. Some of the results of this

companion study are directly relevant to this paper’s theme, and (in a somewhat
developed and modified form) will be presented in section 3 of this paper. I

intend to leave open questions of the chronological order of the research reported

in, and of the composition of, the various ‘zoological’ treatises and the Analytics.

That the Analytics may serve to shed light on the biological works, or vice versa,

is consistent both with the view that the Analytics is a result of reflecting on

scientific research and explanation done or in progress, and with the view that

it is a sort of model for the presentation of such research and explanation.
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disappointing [cf. Balme 1987a, 9; 1987b, 85-88]. As David Balme [1987b,

88] has put it, ‘To any reader looking for information about given genera or

species, the HA seems an incoherent jumble.’

The Historia animalium is clearly not organized according to a rigorous

taxonomic scheme, nor as a reference work on the various kinds of animals

discussed. To expect such an organization is to rely in part on the ety-

mological tie between the name given to modern works of this character

and Aristotle’s [Pratt 1982]. But since the Historia animalium is so disap-

pointing when looked at in these two ways, we must either dismiss it (with

an excuse, perhaps) or ask in charity whether we have misunderstood it.

It is one of the lasting achievements of David Balme’s scholarship to have

provided us with the framework for a serious re-evaluation of the Historia

animalium.

Yet Aristotle does state his purpose: ‘first, to grasp the differen-

tiae and attributes that belong to all animals; then to discover their

causes’ (HA I. 491a9). The HA is a collection and preliminary anal-

ysis of the differences between animals. The animals are called in as

witnesses to differentiae, not in order to be described as animals.

[Balme 1987b, 88]

The thesis developed in this paper is fully in the spirit of this reassessment:

like Balme [1987b, 80], I shall insist that the Historia animalium is a work

directed ‘toward a methodical apodeixis of living nature’.

2. Pre-demonstrative science

In this section I wish to accomplish two interrelated tasks: to present

evidence that Aristotle distinguished a pre-demonstrative yet theoretical

scientific inquiry in his philosophy of science; and to show that he was

inclined to refer to this pre-demonstrative inquiry as loTOpia.^

^ Previous theoretical uses of the term do not take one very far. Herodotus

[Hist, i 1] announces his work as an eTTL8€L^L9 loropCri?, but the context suggests

that he means little more than a presentation of reliable information. There
is a consistent implication that loTopCa is a basis for knowledge [cf. Hist, i 44,

ii 118, 119], though often this basis is a reliable report rather than something
Herodotus has directly observed. In De vet. med. 21, the author tells us that

by loTopCa he means knowledge of what man is and of the causes of his coming
to be. In Phaedrus 244c8, Plato conjoins loTopCa with voOs", where it seems to

have the force of information acquired on the basis of signs. And at Phaedo
96a8-10, Socrates tells us that those who have investigated natural coming-to-be

and passing away describe their wisdom as Trepl (jjvaecos luTopCa. The wider context

suggests that they meant their wisdom to include an understanding of the causes
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The Posterior Analytics is well advertised by scholars nowadays as the

first attempt in the history of philosophy to provide a rigorous theory of

explanatory proof. Its first six chapters do characterize scientific under-

standing of a fact in terms of deductive proof from premises which are

true, unmediated, and primary, and which state facts more familiar than,

prior to, and causative of the fact stated in the conclusion [71bl9-23]. But

this advertising has been so successful that the work is often discussed now
as if its second book—which announces itself as an extended account of

different sorts of inquiry and their interrelations—did not ex-

ist.5 The result is a general interpretation of the Posterior Analytics which

makes it seem oddly out of touch with Aristotle’s substantive scientific and

philosophical works.6 The subject of this section, then, is An. post, ii and,

specifically, its concept of a stage of inquiry aimed at establishing that a

predication holds, an inquiry preliminary to investigation of the reason why
it holds.

‘The things we seek (xd ^r|TOUfieva) are equal in number to the things

which we understand’ [89b23-4]. So opens book 2 of the Posterior Analy-

tics. Aristotle claims [89b24-35] to be able to reduce the objects of scientific

investigation to four: the fact (to otl), the reason why (to 8l6tl), whether

something exists (el ecm), and what it is (tl ecm). These inquiries are

paired, in the following way:

(1) Is it the case that 5 is P? Why is it the case that S is P?

(2) Are there 5s (or Ps)? What are 5s (or Ps)?

where the arrows indicate that the first question in each pair must be

answered before the second, as Aristotle’s remarks in An. post, ii sug-

gest. Like so many of Aristotle’s introductory sentences, this apparently

straightforward, sensible division of investigations opens up a Pandora’s

box of difficulties which the rest of the book aims to resolve. In An. post.

ii, perhaps the most important concern the ways in which the two pairs

of natural things. I draw attention to three points. First, while it is common to

translate IcrropCa as ‘inquiry’ or ‘investigation’, the term more often designates the

report or result of inquiry. Second, if Aristotle is restricting it to the report of a

pre-causal inquiry, he is legislating this usage, which is not reflected in the above

passages. Third, Herodotus does use the term to refer to reports and information

which serve as the basis for knowledge, rather than to the state of knowing or the

report of knowledge itself. Cf. Louis 1955.

5 There are a number of recent correctives to this: cf. Ackrill 1981, Bolton 1987,

Ferejohn 1982, Lennox 1987a.

6 Jonathan Barnes’ two papers on this subject [1975b, 1981], for example, are

limited almost entirely to the theory of demonstration in the An. post.
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of inquiries, as well as their respective results, mesh with one another. I

will, however, overlook most of these problems, since I am here primarily-

interested in whether this broad picture of types of inquiry has any parallels

in Aristotle’s various works which record the results of his investigation of

animals.

De incessu animalium presents itself as a work concerned with why each

of the parts involved in animal locomotion is as it is, and lists a large

number of specific causal questions it aims to answer. Toward the end

of this list of why-questions, which constitutes most of the first chapter,

Aristotle states:

For that (otl pev) these things are in fact thus is clear from our

inquiry into nature (Tqg IcrropLag Tf\g <})uaLK-rjg), but why (8l6tl 8e)

they are thus we must now examine. [De inc. an. 704b9-10: cf. De
part. an. 646a8-12, Hist. an. 491a7-14]7

It seems probable that the wording of this remark intentionally refiects the

distinction between the two stages of the first pair of inquiries (1) listed

above. If so, it indicates that the ‘natural histories’ mentioned are supposed

to establish that certain predicative relationships hold true and, thus, that

they are a necessary preliminary to the inquiry aimed at establishing the

causal basis for these predications.

A similiar distinction is defended as a matter of principle in De part,

an. i, which is sometimes referred to as ‘Aristotle’s philosophy of zoology’

[Balme 1972, 69; Le Blond 1945, 51-72]. This book begins by distinguish-

ing two sorts of ‘proficiency’ relevant to a given study: a first order profi-

ciency in understanding the subject-matter, and a second order proficiency

in judging whether the study is well presented. The rest of the book is

then organized around a series of questions bearing on the second type of

proficiency, since

. . . the inquiry about nature (rq? Trepl 4>uolv loTOpCag), too, must

possess certain principles of the kind to which one will refer in ap-

praising the method of demonstration (dTrode^CTat Toy rpoTToy Twy

Theophrastus introduces De causis plantarum by way of a similar contrast:

That (otl pey) the modes of generation of the plants are numerous and how
many they are and of what sort was said previously in the histories; but

since not all modes of generation occur in all the plants, it is appropriate to

distinguish which belong to each plant and through which causes, making
use of principles in accord with their proper being ....

On the overall relationship between the methods of Aristotle’s Hist. an. and the

Hist, plant, by Theophrastus, cf. Gotthelf 1987b in Fortenbaugh 1987.
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8€LKi/i»p.€ya)y), apart from the question of how the truth has it, whether

thus or otherwise. [De part. an. 639al2-15]8

The second question^ in the series is,

Should the natural philosopher, like the mathematicians when they

demonstrate (SeLKvOvai) astronomy, first survey the appearances (tu

4>aLv6peya) in regard to the animals and their parts in each case, and

only then go on to state the because-of-what (i.e., the causes), or

should he proceed in some other way? [De part. an. 639b7-10]

The question is answered in the affirmative at 640al4-15: ‘[natural philoso-

phers axe] first to take the appearances in respect of each kind, and only

then go on to speak of their causes.’ Now the stage of natural inquiry

in which one surveys (Gecopetv) the appearances regarding a kind before

stating their causal explanations is not here described as laTopla. Still,

the connection between the use of this term in referring to the Historia

animalium and the sort of survey of the appearances that is discussed in

De part. an. i 1 can be made more secure in two steps.

First, Aristotle introduces the distinction as familiar from the domain of

astronomy. An. post, i 13 records that astronomy is one of the sciences

which have mathematical and physical aspects, where the latter are called

rd <j)aLv6p.eya [78b39].l0 The general point Aristotle makes about such sci-

ences is that to establish the facts one attends to the appearances, whereas

one considers the appropriate mathematical principles in order to demon-

strate the reasons why the facts are as they are [79a2-6j. That is, he sees

this difference in aspects as an instance of the more general distinction

between the two sorts of inquiry given as pair (1) above. Second, De part,

an. ii 1 opens by noting that ‘in the histories’ it was made clear from which

parts each of the animals is constituted, while the present work will in-

vestigate the causes through which each of the animals is so constituted

[646a8-12].ll This would appear to be the same distinction as that found in

8 All translations from De part. an. i are from Balme 1972 unless otherwise in-

dicated.

9 The first question Aristotle raises is discussed in Lennox 1987a, 114-115.

^0 It is of historical interest that the treatise by Euclid which comes to us under

this title is highly mathematical in character.

Though, as Allan Gotthelf has reminded me, after making the distinction Aris-

totle goes on to say that the investigation will proceed x^^P^cravTag Ka0’ aura tqv iv

Tolg loTopCaLg elpriiiei/wi/ [De part. an. 646all-12j. Since De part. an. gives us all

the data to be explained, and since at least some of it is inconsistent with Hist,

an., Gotthelf suggests that this passage instructs us to ‘put aside the information

reported in HA’. I prefer the sense of Ogle’s translation [1912, ad 646al2 nl]
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De part. an. i 1, with the Historia animalium serving as the treatise which

reports on the first investigation.

I need not rely entirely on indirect evidence of this sort, however. For

there are two passages, closely allied in language, one in the Prior Analytics

and one in the Historia animalium itself, which explicitly describe the pre-

demonstrative stage of inquiry as loropCa. The first passage insists that, just

as demonstrations in astronomy were discovered only after the principles

were supplied by astronomical observation, any craft or science has its

principles supplied by experience [An. prior. 46al7-22].

So that if the predicates (rd wdpxovra) about each thing have been

grasped, we will be well prepared to exhibit their demonstrations

(dTToSeC^eLg). For if none of the predicates which truly belong to the

subjects have been left aside by our inquiry (laTopta), we will be

able, with respect to everything for which there is a demonstration,

to discover the demonstration and carry it out; but of that which in

the nature of things has no demonstration, we will be able to make
this apparent. [An. prior. 46a22-27]

The function of the laTopCa is to enable one to ‘grasp’ the predicates which

hold of each item in the general subject being investigated. This is appar-

ently intended to explicate the way in which experience with the phenomena
of a subject sets the stage for demonstration.

Treating this passage in isolation does not, however, give one a sense of

how detailed Aristotle’s recommendations in fact are. For this one must

turn to the beginning of chapter 27, regarding the proper method to be used

in ‘picking out’ or ‘selecting’ (eKXapPdveiv, eKXeyeLv) premises appropriate

to the deduction of a given predication [An. prior, i 27-29]. Very briefly, the

method involves taking as given the subject and predicate of the predication

at issue, and developing a list of everything that the predicate belongs to

universally as well as a list of all the things that belong universally to the

subject.

For those wishing to establish something of some whole, they must

look to the subjects of what is established, that is, the subjects of

which it happens to be predicated, and to whatever follows that of

which it is to be predicated. For if any of these are the same, the

one must belong to the other. [An. prior. 43b39-43]

which takes Aristotle to distinguish these causal inquiries from the sort of report

found in Hist. an.
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Suppose the predication we wish to prove deductively is that A belongs

to every C (i.e., AaC). Aristotle recommends that we generate lists of

propositions of the form,

Predicate: A Subject: C

AaD FaC
AaE GaC
AaF HaC

in the hope of finding, as here, a middle term which can ‘unite’ the terms

[cf. An. prior. 41all-13]. For . no syllogism can establish the attribution

of one thing to another unless some middle is taken, which is somehow
related to each by predication’ [41a2-4]. Chapter 27 is careful to state

that this rather algorithmic procedure is only relevant to demonstration

in so far as the lists identify other true predications, and it provides a set

of rules for identifying predications at the appropriate levels of generality

and specificity as well as distinguishing what is in the essence, what is

predicated as a property, and what is predicated as an accident [cf. esp.

43b 1-32]. That is to say, this is a recipe for organizing information in such

a way as to identify middles: it is not a description of how the credentials

of the information are established.

Since nothing is said here about how one is to establish the truth of

a predication, or about how one is to determine which among a set of

universal predicates are predicated in the essence and which are not, this

is clearly not a method which will simply allow us to read off demon-

strations. When Aristotle concludes his account of selecting premises and

division by remarking that ‘it is apparent from what things and in what

way demonstrations come about and to what sorts of things we should look

concerning each problem’ [46b38-39], we must take him to mean, I think,

that the foregoing method is a necessary condition for the production of

demonstrations. Suppose, for example, that in addition to the statements,

AaF and FaC (which yield AaC), one’s selection also provides FaA] in

other words, that according to our divisions, F and A are commensurately

universal terms. Thus, we have two syllogisms in Barbara:

AaF FaA
FaC AaC

AaC FaC

There is nothing here that will help us determine which of two commensu-

rate predicates of a subject is explanatory of which, or even whether there
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is any explanatory relationship between them at all. This is, of course,

the problem which Aristotle raises in An. post, i 13 when he distinguishes

demonstration that and demonstration why; and it is the problem that he

returns to and discusses in detail in An. post. 98a35-b24. There, we are told

that the predicate which is in the account of the other is the explanatory

middle, though nothing is said about how one acquires this knowledge.

The description of IcTTOpCa as an inquiry establishing which predicates

truly belong to which things is consistent with Aristotle’s occasional claims

that this algorithmic procedure for selecting premises is relevant to demon-

stration—which one would expect, since demonstration is a species of de-

duction. The organization of true propositions in this way is presented as

facilitating the development of a demonstrative science. And one can see

why: it aids in using information imbedded in divisions to identify com-

mensurate universal predications and gives us a ‘short list’ of candidates

for demonstrative middles.

The Historia animalium characterizes IcrropCa in terms very similar to

those used in An. prior. 46a22-27.

These things have now been said thus in outline to give a taste of the

number of things that one must study and how far—we will speak in

detail later—so that first we may grasp the differentiae present and

the attributes in every case. After this, we must attempt to discover

the causes of these. For it is natural that the study (pe0o8og) be

carried out in this way, when there is an inquiry (loTopCa) concerning

each thing. For about which things (Tiepl &v) and from which things

(Sv) the demonstration (diroSeL^Ls) should be becomes apparent

from these. [Hist. an. 491a7-14]12

The technical language of the theory of demonstration in this passage is

hard to deny; and equally clear is the distinction between an investigation

aimed at establishing the differentiae as well as the incidental features of

each kind of animal and a search for causes based on this. It is as a

result of the first investigation that the elements of demonstrations become
apparent. As in the Prior Analytics this investigation is called a loropCa.

It is time to take stock of our progress thus far. A number of passages

from the biology and the Analytics agree in detail that there is a distinction

to be made between an investigation aimed at establishing that p is the

case and one aimed at establishing why p is the case. The former is.

^2 For detailed discussion of this passage, see also Kullmann 1974, 196-202; Lloyd

1979, 137-138 (and n64), 212; Lennox 1987a, 101-102; Gotthelf 1987b; Balme
1987b, 79-80.
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apparently, a pre-demonstrative inquiry, that is, an inquiry devoted to

organizing empirical information in such a way that the identification of

middle terms is facilitated. This suggests that the causal inquiry may not

actually be a search for new, more basic entities so much as an inquiry

into the causal relationships which hold among the predicates established

during the initial inquiry.

Aristotle, as we have seen, is inclined to restrict the range of the term

loTOpCa to the first stage of natural inquiry, that is, to a particular sort of

pre-demonstrative investigation. The second stage of inquiry is directed

toward scientific demonstration. 13 This suggests that the way to under-

stand the distinction between the Historia animalium and such works as

the Parts ofAnimals or Generation ofAnimals is in terms of Aristotle’s own
distinction between two stages of inquiry into predications, one involved in

grasping that the predication is the case, another involved in establishing

the reason why. The reasons for dividing up the investigation of living

things as Aristotle does are to be found in his theories of explanation and

inquiry in the Posterior Analytics.

3. The Analytics on ‘problems’

These passages, however much they may cohere, are all theoretical in na-

ture, even those in the biology. In order to show that we must understand

the distinction between the Historia animalium and the other biological

works in terms of the distinction between factual and causal inquiries, we

need to look carefully at the Historia animalium to test the claim that it

does in fact respect these theoretical ideals. But to perform such a test,

we need to know what to look for. Now, to determine whether the His-

toria animalium is an inquiry of the sort described in An. post, ii as a

OTL-investigation, we require some idea of what the report of the results

of such an investigation would look like. The key here, as I have argued

elsewhere, is to work back from Aristotle’s concept of demonstrative under-

standing. For that concept places constraints on how empirical information

is to be organized if it is to be converted by demonstration into science [see

also Lennox 1987a].

'3 For other passages indicating that biological explanation is to be demonstrative

in character, see De gen. an. 742bl8-743al; De part. an. 639al4, 640a2-9, 645al-

2; De incess. an. 704bl2-705a2. Gotthelf [1987a, 170-172, 197-198] makes a

strong case for a technical sense of dTToScL^L? in these passages.
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What, then, are these constraints? First of all, we must recognize that

not just any universally true predication can be the subject of demonstra-

tion. Two sorts of predications are distinguished at the end of An. post.

i 4.

If, then, a chance case is proved primitively to have two right angles

or whatever else, it belongs universcdly (kuBoXoi;) to this primitively,

and the demonstration of this [universal primitive predication] holds

universally in itself (Ka0’ auro . . . KaGoXon); but it holds of the others

in some fashion not in itself, nor does it hold universally of the

isosceles but further than it. [An. post. 73b39-74a3]

The use of Ka06Xou is restrictive and based on a stipulation made in this

chapter, viz. a predication is universal if the predicate belongs to the sub-

ject ‘in every case, and in itself and as such’ [73b26-7j. That is, the subject

and predicate of the proposition to be proved must be coextensive, and

the predicate must belong to the subject as that subject, not incidentally.

Notice, for example, that when Aristotle says that the property of having

interior angles equal to two right angles does not hold of isosceles univer-

sally, he does not mean merely universally, because all isosceles triangles

do in fact have this property. His point is that the property is true of

other sorts of triangle as well (‘extends beyond isosceles’), and so does not

belong to the isosceles qua isosceles. Rather it belongs to the isosceles tri-

angle qua triangle. Thus, it is the proof showing why this property belongs

to triangles as such that is ba,sic.

Aristotle does, however, allow for demonstration of the weaker pre-

dication, though he insists that the demonstration holds in some weaker

fashion. In later passages, it becomes clear that Aristotle has in mind a

special class of non-coextensive universal predications, namely, those cases

where a predicate belongs coextensively to a kind and, consequently, be-

longs to all the differentiated forms of that kind. To describe such pred-

ications he will occasionally remark that a predicate ‘extends beyond [this

form], but not beyond its yevog’ [see An. post. 85b7-15, 96a24-31, 99al8-

21 and 24]. In such cases Aristotle admits partial demonstrations [see An.

post, i 24], meaning, I take it, demonstrations covering a part of the kind.

Thus we come to the first constraint on IcrropLa imposed by Aristotle’s

theory of demonstration: it must aim for predications in which the predi-

cate is coextensive with its subject. Furthermore, the subject kind must be

Translations of the An. post, are by Barnes [1975a], unless otherwise noted.

The expansions in square brackets are my own.
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differentiated into its immediate sub-kinds or forms if there are to be ‘par-

tial demonstrations’ asserting that the sub-kind has the feature in question

because it is of the kind that has the feature primitively.

An. post, i 5 discusses extensively the types of ignorance that can pre-

vent one from having unqualified rather than sophistical understanding,

and each type turns on failure to recognize the primitive level at which

a predication holds [cf. 74a25-32]. But in An. post, ii 13-18, there is a

marked concern with the manner of acquiring predications at the primitive

level, and it is to this problem that we shall now turn.

An. post, ii 14 opens with a cryptic statement of method.

Relative to grasping problems one should select (eKXeyeLv) from both

the dissections and the divisions, and do so by positing the kind that

is common to all of them. For example, if the objects of study are

animals, select what belongs to every animal; and, having grasped

these, once again select what follows (eTreaSat) all the first of the

remaining kinds. For example, if this is Bird, select what follows

every bird; and in this way always select what follows the proximate

kind. For it is clear that we will immediately be able to say why
(to 8Ld tl) the things which follow belong to those kinds under the

common one, for example, why they belong to Human Being or

Horse. Let A stand for Animal; B for the things which follow every

animal; and C, D, and E for certain animals. It is quite clear why
B belongs to D, for it is because of A; similarly with C and E. And
the same account always applies in the case of subordinate kinds.

[An. post. 98al-12; my trans.]

The recurrence of the process of singling out certain features that ‘follow’

indicates that An. prior, i 27-30 is the formal background for this chapter

[cf. Barnes 1975a, 239-240; Lennox 1987a, 97-99]. Further, that one must

select from divisions suggests (as does An. prior, i 31) that division is

at best a preliminary stage of the method described here. 15 Clearly, it is

from divisions already made that one selects, at each level of generality,

what belongs universally; and equally clear is the fact that this division

presupposes a division of the kind, animal. So it looks as if An. post.

ii 14 describes a procedure for using information imbedded in divisions to

produce propositions of the sort required for a demonstrative science.

15 Cf. Alexander, In an. prior, i 333.19ff. It is worth noting that Diogenes Laertius,

Vitae V 25 lists a Dissections in eight books and one book of Selections from the

Dissections; regrettably neither work survives, and to my knowledge there is

nothing in the doxographical tradition which even hints at the form they might

have taken.
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This procedure directs attention to predications at the level of commen-

surate universality. If, among the things which follow, that is, which belong

to every 5, one finds a feature also belonging to T, the natural question

to ask is whether S and T are both forms of some kind K which has that

property primitively. (Or, if one is already aware that 5 is a iiT, one would

note that the property in question belongs not just to S but to K in gen-

eral.) So if, for example, one finds that having a heart belongs to birds

in virtue of the fact that hearts belong to all blooded animals, the next

step is to ask why hearts belong to all blooded animals. In fact, one would

not really understand why birds have hearts until this more basic question

is answered: saying that birds have hearts because they are blooded an-

imals means that they have hearts for the same reason all blooded animals

do. 16 Notice that the grasp of the problem one ends up with in the above

16 My remarks on this problem owe a great deal to Allan Gotthelf ’s contribution

to the Symposium on Classification and Explanation in Aristotle’s Biology at the

APA Pacific Division Meetings in 1986.

Partial demonstrations raise two central questions, one having to do with their

form and the other with their explanatory force. I suggest that the form of such

explanations is that the middle term will refer to the kind to which the referent

of the minor term belongs as a sub-kind [see also Lennox 1987a]. For example.

Having a heart belongs to all blooded animals

Being blooded belongs to all birds

Having a heart belongs to all birds

The virtues of this model are three in number. It appears to underlie numerous
passages in the An. post, [e.g., 73al6-20, 74al-3, 74a25-32, 85b4-15j; it is a

pattern of reasoning that is found regularly in the biology [cf. Lennox 1987a,

108-110]; and the major premise is the sort of proposition one would expect to

find as the conclusion of the more basic explanations of commensurately universal

predications, thereby giving a means of logical transition between universal and
partial demonstrations. This is clearly the way in which Philoponus [In an. post.

417.26-28] reads the passage: ‘Since these things follow animal, you will prove

that perception or motion belong to humans and the rest through the middle,

animal.’

But this reading also has certain drawbacks. The discussion of demonstration
and its relationship to definition in An. post, ii 8-10 generally treats the middle
term as giving an account of the minor term, and that seems quite unlike the

model just suggested. There, progress in understanding comes through acquiring

more basic middle terms of the same logical sort, thus giving us better accounts of

the minor term. It is not clear where this leaves us, however, for that discussion

is not concerned with the move from knowing that a sub-kind has a feature to

knowing that it has the feature in virtue of being the kind of thing that has the

feature in itself.

This brings us to the issue of the explanatory force of partial demonstrations.

Professor Gotthelf has urged that the appearance of the yevog in the position

of the middle term may simply be shorthand for saying ‘the sub-kind has the
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passage has the same form as that achieved by the move from incidental

to unqualified understanding in An. post, i 4, 5. Aristotle’s method, then,

is intended to identify the widest kind to which a predicate selected from a

division belongs. Once this has been done, that predicate will immediately

show itself as belonging to immediate forms of that kind: the subject in

question will have this feature just because it is (a form of) the kind to

which the feature belongs universally.

The continuation of An. post, ii 14 also echoes concerns of i 5. In the

latter it was noted that while there once were distinct proofs that propor-

tionals alternate in the case of numbers, lines, solids, and times, now it is

proved universally in a single demonstration. The original failure to see the

universal demonstration was because ‘all these things ... do not constitute

a single named item and differ in sort (elSo?) from one another’. 17 The
lack of a name to signify the universal contributed to the mathematicians’

failing to see that ‘it did not belong to things as lines or as numbers, but as

this which they suppose to belong universally’ [An. post. 74a23-25].

An. post, ii 14 says more concerning what it is to ‘grasp problems’.

Now at present we argue in terms of the common names that have

been handed down; but we must not only inquire in these cases,

but also if anything else has been seen to belong in common, we
must extract that and then inquire what it follows and what follows

it . .

.

[98al3-16]

Searching for ‘what follows that which belongs in common and what follows

it’ is the method recommended in An. prior, i 28 for finding a middle term

that is relative to a problem, and the example which follows, an example

familiar from De part. an. 674a23-bl8,18 clarifies the strategy:

having a third stomach and not having incisors <follow> having

horns; again, <we should inquire> what having horns follows. For

feature for the very reason that the kind does’ [cf. Ackrill 1981, 380], and there

are passages which do suggest this gloss [e.g.. An. post. 91a2-5].

At the very least, Gotthelf has convinced me that formulations in Lennox 1987a

and earlier drafts of the present work which suggest that partial demonstrations

(which I term A-type explanations in Lennox 1987a) could be demonstrative prior

to understanding why the more primitive predication holds are wrong, for the

reasons given in the text above.

^7 A scholium to Euclid, Elements v attributes the discovery of the general theory

of proportion to Eudoxus [cf. Heiberg and Stamatis 1977, i 213.1-12; Heath 1956,

ii 112-113].

See also the careful analysis of this passage in Gotthelf 1987a, 179-185.
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it is clear why what we have mentioned will belong to them, for it

will belong because they have horns. [An. post. 98al6-19]

Here two differentiae are noted (one negative, incidentally) which follow

‘the possession of horns’. Thus, given

(1) having a third stomach belongs to every horned animal

(2) lacking upper incisors belongs to every horned animal,

we are asked to inquire, to what does ‘the possession of horns’ belong

universally?, that is, to find a value for P such that

(3) horns belong to every P.

For, given this, we may then infer that

(4) having a third stomach belongs to every P.

As Aristotle says, having a third stomach belongs due to the possession

of horns, the possession of horns being the middle through which the link

between the possession of a third stomach or the absence of a second row of

teeth and the third item, P, is established.

The choice of this example in An. post, ii 14 is interesting. Aristotle

needs a case that clearly goes beyond the common nomenclature, for that

is the point he is making. Thus, his example requires the use of specialized

descriptive phrases 19 to refer to items predicated of one another. Appar-

ently, Aristotle wishes to emphasize that this predication is established by

realizing that the possession of these other two features follows from the

possession of horns, and that they will thus belong to anything which pos-

sesses horns because that thing is horned.20 The final lines of An. post, ii 14

extend the method even further, and likewise use an example familiar from

the biological works: ‘Again, another way is by excerpting in virtue of anal-

ogy; for you cannot get one identical thing which both pounce and spine

19 Not true names, as Allan Gotthelf reminds me [cf. Balme 1962, 90]. The
An. post. 93b29-32 allows for definitions of ‘name-like phrases’, as does Top.

102al-5. While I suspect that terms in the biology such as rd K6paTO(})6pa, rd
oorpaKoSeppa, rd Cwotoku t&v TeTpairodwv, are among the sort of name-like phrase

he has in mind, we need to know more about the significance of ‘name-like’ here,

specifically, about how name-like terms differ from terms which cannot be defined

[see Bolton 1985, for some suggestions].

20 See De part. an. 663b35-664a3, 674b7-17, where the production of horns (for

self-defense) leaves less earthy material for teeth (accounting for the lack of two
rows of teeth) and, thus, indirectly necessitates the possession of more stomachs
(for the digestion of the poorly chewed nutrients). In this way, an animal’s

possession of horns accounts for these features.
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and bone should be called; but there will be things that follow them too, as

though there were some single nature of this sort [An. post. 98a20-23].’

Let us try to reconstruct the steps in the process here sketched. The three

sorts of ‘skeletal’ parts referred to are related by analogy. But there may be

predicates within the divisions being used which belong to all of them (as if

they had a single nature). Thus, ‘excerpting in virtue of analogy’ means

searching ‘the dissections and divisions’ for difFerentiae common to subjects

related by analogy. At De part. an. 653b33-36, Aristotle says that ‘among

those animals having bones, the nature of the bones, being hard, has been

devised for the sake of the preservation of the soft parts; and in those not

having bones the analogue <has been devised for this>, for example among
some of the fish, fish-spine, among others, cartiladge.’ Accordingly, An.

post. 98a20-23 may propose that certain passive capacities, e.g., hardness

or brittleness, belong to each of these analogous parts in virtue of a common
function that each plays in the life of its respective kind, or in virtue of a

common material nature (since all these parts are earthen). Again, it might

also mean that all three analogous hard parts are associated with soft flesh

and viscera, an association which would naturally suggest the idea that the

analogous parts play an identical functional role in their respective kind’s

life [so Barnes 1975a, 240].

Here, then, is a characterization of methods for achieving predications of

the sort that prepare the investigator for acquiring understanding through

causal explanation. The methodology is clearly an application of the more

formal methods of An. prior, i 27-31 to the specific goals of the scien-

tific investigator, which should be no surprise given that the Analytics is

introduced as an investigation of demonstration and demonstrative under-

standing [An. prior. 24al0-ll, 25b26-31j.

An. post, ii 15-17 explore the complexities involved in finding a causal

account relative to a pre-established problem, where a problem is here

essentially a why-question asked of accepted facts: That P belongs to all

the 5s is clear; why then does it belong? A botanical example will allow us

to tie the concerns of An. post, ii 14 to the second stages of each pair of

the investigations with which we began, the whether-it-is/what-it-is pair

and the that-it-is/why-it-is pair.

In An. post, ii 8-10, Aristotle finally come to grips with the question of

the relation between definition and demonstration within a science. In the

process, he has much to say about the way in which inquiries 8lo. tC and

inquiries tl eoTL are related to one another. The interpretation of these

chapters is controversial [see Bolton 1976, 1985, 1987; Sorabji 1980; Ack-

rill 1981]. But certain features of the debate may be lifted from the fray for

present purposes. At least in cases relevantly similar to the examples in



Between Data and Demonstration 277

these chapters, the middle term in a demonstration of why some predicate

belongs to some subject will also serve to account for what the predicate

is [An. post. 93a3-5, 93b3-14, 94al-10, 95al6-21, 99a3-4, 99a25-9]. An
investigation of why those occasional noises in the clouds occur—an inves-

tigation based on our awareness that they do—is completed when we have

grasped the most fundamental causal explanation of those noises. Aristotle

claims that not only is ‘quenching of fire’ a candidate for the middle which

accounts for the occurrence of thunder in the clouds, but that it is also

a possible answer to the question. What is thunder? Thus, the familiar

account of thunder as a certain characteristic noise in the clouds is under-

written by a more basic account—more basic in that it serves to explain

the perceptually familiar features by which we became acquainted with

thunder initially [see Bolton 1976].

Can one take this view of the way the results of these two inquiries

converge in the case of the sorts of facts biologists wish to explain? Aristotle

seems to think so.

The middle term is an account of the first extreme, and thus all

the sciences come about through definition. For example, loss of

leaves follows the vine while exceeding it, and follows the fig while

exceeding it; but it does not exceed all, but is equal in extent with

them. Now if one takes the primary middle term, it is an account

of shedding leaves. For there will be a first middle in the other

direction, that all are such; then a middle of this, that sap coagulates

or some other such thing. But what is shedding of leaves? It is the

coagulation of the sap at the connection of the seed pod. [An. post.

99a21-29; my trans.j

At the outset we see once more the language of ‘following’ (i.e., belonging

to all), and the idea of a predicate which both follows and exceeds two kinds

of plant while being coextensive with (one must suppose) all the kinds that

shed their leaves. Aristotle is not making the less than startling point

that all the kinds which shed their leaves shed their leaves; rather, he is

indicating the necessity of identifying the group of plants with differentiae

coextensive with this one if we are going to account for it scientifically. As a

matter of fact, in the previous chapter at 98b4-21, Aristotle identified just

such a group by noting a feature common to them all and coextensive with

the shedding of leaves, namely, being broadleafed (TrXaTTjcjjuXXov). The fact

that these differentiae (being broadleafed, shedding leaves) are coextensive

is noted [98a35-b3] within the context of the question. Does the causal

basis of something have to be coextensive with that of which it is the

cause? The question is then raised (as it has been ever since of attempts



278 JAMES G. LENNOX

to describe explanation in purely extensional terms) as to whether either

of the coextensive terms can be used to prove the other—there being no

question that one can construct a valid and sound syllogism in B 2irbara

with either term in the middle position.21

Throughout this discussion Aristotle assumes that being broadleafed

is the cause of any plant’s losing its leaves, and the sample explanation

we are given ‘demonstrates’ that vines lose their leaves because they are

broadleafed [An. post. 98b5-16]. In the language used elsewhere, this is

a ‘partial’ or ‘incidental’ demonstration, given that the ‘problem’ being

explained predicates loss of leaves to one of the sub-kinds which loses its

leaves. An. post, ii 16 closes by correcting the impression that this is a

primitive scientific explanation.

Or if problems are always universal, must the explanation (to ultl-

ov) be some whole and what it is explanatory of universal? E.g.

shedding leaves is determined to some whole, even if it has sorts,

and <it belongs> to these universally (either plants or plants of

such and such a sort); hence in these cases the middle term and

what it is explanatory of must be equal and convert. E.g. why do

trees shed their leaves? Well, if it is because of solidification of their

moisture, then if a tree sheds its leaves solidification must belong

to it, and if solidification belongs—not to anything whatever but to

a tree—<it must> shed its leaves. [An. post. 98b32-38]

Problems need to be universalized, in the sense, as Ross notes, of An. post.

i 4. But when this is done, the kind that took the middle position in the

partial demonstration is now that to which shedding leaves belongs, the

subject of the predication to be explained.

We are now in a position to make sense of An. post, ii 17. Aristotle tells

us that if one takes the primary middle term, it is an account of shedding

leaves: ‘for first there will be a middle in the other direction, that all are

such; then a middle of this, that sap coagulates or some other such thing’

[99a25-28]. Two middle terms are mentioned here, only one of which is

identified as an account of shedding leaves. The other is called a ‘middle in

the other direction’. Suppose that this is the property of being broadleafed.

Being broadleafed serves as a middle in the direction of the various forms

of plants which shed their leaves
—‘Shedding leaves belongs to all the vines

because they are broadleafed.’ But there will now be a primary middle for

this, where ‘this’ indicates the proposition which predicates shedding leaves

21 Cf. An. post. 78a28-bl3. These are, of course, the passages at the bctsis of

the distinction between demonstratio quia and demonstratio propter quid.
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of being broadleafed.22 Thus, only when one has elevated problems (or why-

questions) to the level of the commensurate or primitive universal does

the middle term also become an account of what the predicated property

is. Here is one further way in which the methods outlined by Aristotle

are important in setting the stage for a demonstrative understanding of a

subject. These methods move us to the stage where further exploration

can aim for the primitive definitions that may serve as the starting-points

of our explanations.

4. The Historia animaJium as pre-demonstrative science

In section 2, I reviewed the evidence that the Historia animalium was of-

fered by its author neither as a report of a systematic taxonomy of the ani-

mal kingdom nor as a series of natural histories of them, but as a rendering

of the true propositions currently known about animals for the purpose of

causal demonstration. The theory of problems and the methodology for

working with them that are presented in the later chapters of An. post, ii

and discussed in section 3, indicate that Aristotle would have something

quite specific in mind, when he came to organize information into propo-

sitional form for scientific purposes. He would, for example, make use

of information imbedded in divisions. This would mean that the terms

he was working with would refer to differentiae which were ordered so

as to reveal how a general feature could be specified or determined (e.g.,

wing—^feathered wing v. membranous wing v. dermatous wing). Thus,

Aristotle would seek to identify the coextensive relationships among differ-

entiae from different divisions, that is, to identify groups all of which and

only which had certain differentiae.23 This process would have to begin by

identifying universal predications of a given subject, and what the subject

was itself universally predicated of. But doing this would lead to the recog-

nition of coextensive or ‘primitive’ universal predications; for example, that

wing follows bird but not vice versa, and that feathered-wing follows bird

and bird follows feathered-wing. Aristotle would not be concerned to stick

22 Broadly speaking, this interpretation of the passage has defenders from Philo-

ponus [In an. post. 429.32-430.7] to Ross [1949, 671].

23 On the developments in Aristotle’s theory of division and its role in the biology,

see Balme 1987b, 74-89.
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with the popularly designated kinds.24 If he identified a feature belonging

invariably to all the animals with some other feature, he would want to see

what these features followed and what followed them—even to the extent

of seeking features predicated of all of a group of analogically related fea-

tures. In doing this, he would prepare the ground for the sort of causal

understanding that he regarded as the goal of science.

We have seen that the Historia animalium aims to ‘grasp the di^Ferentiae

and the attributes which belong to all the animals’, since, after this is done,

one can try to discover their causes. In this treatise, Aristotle maintains

that this is the appropriate way to proceed on the grounds that, if the

loTOpLa has been carried out properly, one should be able to distinguish the

things from which demonstration proceeds from the things about which we

24 I am here passing over a set of very difficult questions about what Aristotle

would call a yevo? and why. In a classic article, Balme [1962] first distinguished

differentia-classes and true kinds. The former lack actual nominal identifications

and collect animals for convenience on the basis of some shared feature or other.

Pellegrin [1982; 1985, 103-106, 112; 1987, 334-337] argues that this is in fact

typical of the way Aristotle identifies kinds—indeed Pellegrin goes further and
argues that typically yevri are parts in Aristotle’s biology, that his biology is

more properly said to be a moriology than a zoology. (For my reservations on
this score, see Lennox 1984, which is a review of Pellegrin 1982.) And Allan

Gotthelf [1985,1987a] has raised a number of questions related to this topic in

the process of his work on the concepts of substance, essence, and definition in

De part. an. Two points from our discussion of the Analytics are relevant to this

issue. First, Aristotle clearly allows for definitions of things which have name-like

phrases along with those having actual names. Of course, this merely pushes the

question back one step to the question. What will count as a name-like phrase,

i.e.. How does Aristotle go about screening out those ‘names’ of merely accidental

unities? Second, at least part of An. post, ii 14 presses us to admit into our scien-

tific vocabulary phrases which are certainly not names (or even name-like), and
provides us with a rationale for doing so. These phrases are similar in character to

those Aristotle uses to designate previously unnamed iieyLora yevr) in the biologi-

cal works: translations usually mask this fact, ‘oviparous quadruped’ typically

rendering a phrase which might be translated literally as ‘the ones among the

four-footed that lay eggs’. Indeed, Aristotle will list the two differentiae in either

order (though I do not mean to imply that he does so randomly).

This is clearly an issue that requires fresh and thorough re-investigation. At
this stage, I am prepared to say that Aristotle is aware of the need to use certain

mechanisms to extend the vocabulary of science in the direction of identifying

unnamed groups that are unified in some way or other, that a syllogistic model

of the logic underlying science requires that most of its terms be expressible as

either subjects or predicates and be from diverse categories, and that Aristotle’s

zoological terminology is dominated by phrases that identify groups of animals

as ‘the ones that are (or have, or do) X, where A is a peculiar feature of those

animals. These are among the ‘phenomena’ which an account of Aristotle’s theory

of scientific yevri will have to explain.
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want demonstrations. I have argued that Aristotle’s An. post, ii and a num-

ber of related texts provide us with the theoretical background for viewing

loTopCa as a pre-demonstrative preparation for causal explanation—just the

sort of study that the Historia animalium introduces itself as.25

We are now in a position to ask whether the Historia animalium is a

work which aims to organize information found in divisions in a way that is

preliminary to demonstration as Aristotle understood it. Research carried

out in collaboration with Professor Gotthelf and with just this question

in mind indicates that in fact it does, though this should not be taken

to imply that this is all it does or that it reflects the workings of a mind
mechanically following a set of formal rules.26 But before exploring one

passage in detail, I should like to draw attention to the support for this

contention that is provided by the work’s overall organization.

As the important transition near the end of Hist. an. i 6 indicates, the first

six chapters of book 1 are in some sense introductory. At least five theoret-

ical preliminaries are addressed. (1) We are introduced to the distinction

between parts that are uniform (flesh, bone), simple and non-uniform (eye.

Anger), and complex and non-uniform (head, limb). (2) Aristotle then dis-

tinguishes sameness in form, sameness in kind, and sameness by analogy, as

they apply to animals, to the parts of animals, and to the degree of same-

ness and difference exhibited by animals and their parts. Special attention

is paid to the ways in which things differ when they are the same in kind

but not in form [see Lennox 1987b, 352-353; Pellegrin 1987, 331-336]. (3)

Having introduced these distinctions in the context of parts alone, Aristotle

next says that animals are differentiated according to their lives, activities,

dispositions, and parts.27 (4) The use of these ideas in the study of animals

is then clarified by a series of examples organized under the categories men-
tioned in (3), differences of the first three kinds being discussed down to

488b28 and differences among parts from there to the beginning of chapter

6. (5) Finally, Aristotle establishes a number of extensive kinds (peyLaxa

*y€vnr|), that is, kinds embracing a significant variety of forms sufficiently

alike to be treated together.

25 The extent to which elements of these ideas are reflected in Aristotle’s zoology

is explored in Kullmann 1974; Gotthelf 1987a, 1987b; Lennox 1987a; Bolton 1987.

26 For other products of this collaboration, see Gotthelf 1987b and Lennox 1987a.

Gotthelf 1987b points out ways in which this research is consistent with the late

David Balme’s most recent work on the Hist, an., work that was in progress as

part of the preparation of a new edition of this text as well as a translation and
commentary.

27 See Gotthelf 1987a, 192-193.
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Aristotle introduces (3) and (4) by writing, ‘the differences among the

animals are with respect to their lives, their activities, their dispositions

and their parts, about which let us first speak in outline (tOttco), while later

we will speak attending (cTTLOTijaai/reg) to each kind’ [Hist. an. 487all-13].

As we saw, he later refers back to this outline as a preliminary sketch that

is intended merely to give us a flavor of what is to come. One difference

between this outline and the remainder of Historia animalium is that the

later account will be about each kind (TTCpl eKaarov yevog). We will see

the force of this contrast shortly.

Now the preliminary material that Aristotle mentions in Hist. an. 487all-

13 clearly draws on divisions. Let me simply quote two brief passages which

can stand for dozens of a similar character in these chapters.

. . . some of these animals are water dwellers, others are land dwell-

ers; water dwellers are of two sorts: some live and feed in water,

take in and expel water, and are unable to live if deprived of it

(e.g., many of the fishes); others take nourishment and pass time

in the water, yet do not take in or expel water and give birth out of

water. Many of these are also footed, such as the otter, beaver, and

crocodile; others are winged, such zis the diver and the grebe; and

still others are without feet, such as the watersnake. [487al5-23]

Among fliers, some £ire feather-winged (for example, the eagle and

hawk), some membranous-winged (e.g., the bee and the cockchafer),

and some are dermatous-winged (for example, the flying fox and the

bat). [490a5-8]

A number of features of these passages are relevant to our earlier discus-

sion. First, even at the most abstract level, we begin with the assumption of

four broad categories of differentiae. No kind of animal can be adequately

characterized without a study of the life it leads in its environment, the

activities it performs (locomotive, generative, perceptive, nutritive), its

dispositional differences (Is it gregarious or a loner, timid or brazen, preda-

tor or prey?), and its parts. Further divisions are indicated under each

category: thus, under manner of life, water-dweller/land-dweller; under

water-dweller, those which do/do not take water in or generate in water;^8

under winged, feathery, dermatous, membranous. Specific kinds of animal

are presented to illustrate the differences mentioned: these kinds are not

28 This contrast is dealt with in much more detail and more systematically at the

beginning of Aristotle’s discussion of differences in manner of life: see Hist. an.

589al0-590al8.
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themselves the subjects of the division. This does not mean that the uni-

verse of division is differentiae, however. It is often said explictly, and it

is nearly always implicit in the method used, that we are first to identify

animals by a common feature (e.g., all the ones with wings rather than all

the wings) and then to divide according to the way in which that common
feature is differentiated [see n23 above]. Notice what strange bedfellows this

method produces: at the common level, birds, bats, and bees are united

as winged. Moreover, depending on which general differentia is chosen, an-

imals will be grouped and re-grouped, to use David Balme’s phrase. Such a

methodology will indeed perplex the reader bent on taxonomy.

One must be careful about what one views as a division in these texts.

In the first of the pair of passages just translated, Aristotle notes that some

of the ‘partial’ water-dwellers are footed, whereas others are winged and

others footless. Is this a further subdivision of this group? If so, since he

appears to insert a division by locomotive organs into a division according

to mode of life, Aristotle would seem to violate a basic rule of division,

namely, that one should never divide by something accidental to the axis

of division.

In fact, however, sketching out divisions is only a part of what one finds

in these pages. Aristotle is also concerned to correlate animals grouped and

divided according to one sort of differentia with those grouped according to

others. He indicates that animals sharing one mode of life are diverse when
viewed from the standpoint of locomotion. In a similar vein, he adds that

among land-animals all those with lungs inhale and exhale air [487a29-31j;

that all insects live and find their food on land [487a31-32j; that no crea-

ture which inhales and lives in water finds its food on land, though some

that inhale and live on land find their food in the water [487bl-2j; that all

animals have a mouth, stomach, the sense of touch (and an unnamed organ

for same), and a life-sustaining liquid (with container) [488b29-31, 489al7-

19, 489a20-24j; that all animals with stomachs have bladders, though not

every animal with a bladder has a stomach [489a3-6]—and so on. The
correlations are occasionally disjunctive (animals with feathered or mem-
branous wings have either two feet or none [490al0-12]), and occasionally

conjunctive (the feathered and the dermatous winged flyers are all blooded

[490a9-12]). Such material, then, combines a sketch of how one should

lay out divisions under various broad categories of animal differences with

sample identifications of positive and negative correlations between groups

in different divisions.

Aristotle himself constantly points out that he is here merely giving us

a sense of the method and the sorts of differences that occur under the four

categories he is discussing, and that the more systematic study to follow
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will need to center these methods on each kind (Trepl CKaoTov yevog). Thus,

the last step (5) in this introductory stretch of text, the articulation of

nine ‘extensive kinds’ (which are themselves broadly grouped according to

whether they have blood or its analogue) is very important.

None of this preliminary material is mere window dressing. The overall

structure of Historic animalium owes much to the principles articulated

and discussed in these chapters. At the broadest level, the entire work

is organized around the four categories of differentiae: a study of parts

[i 7-iv 7], activities and lives [v-viii], and dispositions [ix]. Within the

study of the parts, the investigation of the blooded animals [i 7-iii 22] is

distinguished from that of bloodless animals [iv 1-7]. And the investigation

of the parts of the blooded animals is divided into an account of the external

non-uniform parts [i 7-ii 14], the internal non-uniform parts [ii 15-17], the

genitalia which are not always clearly internal or external [iii 1], and, finally,

the uniform parts [iii 2-22]. In the bloodless animals, parts external in one

group are often internal in another; and this may be at least part of the

reason why Aristotle investigates the internal and external parts together

in each kind before moving on to the next.

We have seen that part of the more systematic nature of this work will

involve its studying animal differentiae ‘concerning each kind’. What role

do the peyLora yevr\ play in the way in which the information in the Historia

animalium is presented? The study of the external non-uniform parts of

the blooded animals moves from man to viviparous quadrupeds, through

those which are biped in one respect and quadruped in another (apes and

baboons) to the oviparous quadrupeds, birds, fish, and serpents.29 Yet parts

which extend (at some level of description) across more than one extensive

kind are said to do so when they are first introduced; consequently, the later

in the discussion a kind comes the less tends to be written about it. The
study of the bloodless kinds is organized similarly. In both cases, numerous

groups are noted which either do not fit into these extensive kinds at all or

fit into one of them in one respect but not in another. On the other hand,

the investigation of the internal non-uniform parts and the uniform parts

of the blooded animals is organized, not kind by kind, but part by part.

29 Serpents are denied the status of peyLorov yevo?, but they are discussed at

length. The cetacea, however, are listed as one of the blooded extensive kinds

[Hist. an. 490b9] and yet are not discussed in the review of external parts. Given

their extreme peculiarity, which Aristotle stresses elsewhere [Hist. an. 588a31-

b2], this seems doubly odd: cetacea are mentioned in books 2 and 3, but only

by way of contrast. The most extensive account of the cetacea occurs in the

sections of Hist. an. dealing with differentiae of activity [reproduction, 566b2-27;

respiration, 589a27fF.] and with dispositions [631a9-b4].
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This may reflect Aristotle’s belief that viscera do not differ as radically as

external features from kind to kind, and so may be considered across the

entire blooded clan.

The method of these passages can be seen clearly in the following discus-

sion of the lungs and related organs.

As many animals as are quadruped and viviparous, all have an eso-

phagus and windpipe,30 placed in the same way as in humans; the

placement is similar among the quadrupeds which are oviparous,

and among the birds; but these kinds differ in the forms of these

parts. Generally, all those which taking in air inhale and exhale,

have a lung, a windpipe, and an esophagus, and the position of the

windpipe and esophagus is similar, but these organs are not the same

in all, since the lung is neither alike in all nor similar in position.

[Hist an. 505b32-506a5]

Aristotle goes on to note that not all blooded animals have lungs, and

identifies those that do not (e.g., fish and any other animal with gills)

[506all-12].31 Differences in these three organs are regularly referred to

during the discussion of the other groups mentioned here [507all-12, a24-

27; 508al7-21, 32-33; 508b30-509al6].

This passage first establishes correlations between three distinct exten-

sive kinds and three organic parts, and goes on to record a more general

correlation between the animals that breathe and these three organs.32 This

is a move to the identification of the animals that have these organs as such,

that is, to the ‘primitive universal’. Such a move is achieved by uniting the

kinds with these features by means of another common differentia, their

breathing. Aristotle then discusses the differentiation of these organs under

two headings, position and ‘similarity’. Throughout the entire group the

30 The Hist. an. makes frequent use of ‘doubly quantified’ expressions of the form

oaa ecrrl X, Trdvn-a exet Y. Gotthelf [1987b] suggests that the preponderance of this

otherwise rare form of expression may signal Aristotle’s concern in Hist. an. to

identify primitively universal predications.

31 Notice that this provides a means of identifying animals without lungs while

leaving the extension of the group open-ended. No reason is here given as to

why animals with gills will not possess lungs, though one is provided in De iuv.

476a6-15.

32 Earlier, in his review of the parts found in humans, Aristotle [Hist. an. 495al8-

22] states that ‘the so-called esophagus (so named due to its length and narrow-

ness) and the windpipe are within the neck; but the windpipe is positioned in

front of the esophagus in all those animals which have it—and all have it which

also have a lung.’ Indeed, the entire passage, 495al8-495b23, is taken for granted

by the discussion in book 2.
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windpipe and esophagus are alike in position, though both differ both in

their ‘affective’ qualities and their quantitative dimensions from kind to

kind. The lung, on the other hand, differs in all these respects from kind to

kind.

What is not said is of equal interest—for instance, the functional rela-

tionships among these organs, the reasons why all breathers have all three,

the reasons for the differences in their character and position, and the rea-

son why animals with gills have none of them. But the level of generality

at which the search for such explanations should proceed is made progres-

sively clearer, as the coextensive difFerentiae at that level (including the

activities of inhaling and exhaling) are noted.

Aristotle’s procedure in discussing the lungs has a number of features

which recur to a greater or lesser degree throughout his description of the

viscera of the blooded animals:

(1) the specification of an organ’s pervasiveness among blooded

kinds,

(2) the identification of coextensive organic structures,

(3) the attempt to identify the entire class with the feature in

a unified rather than a conjunctive manner,

(4) in combination with (3) an emphasis on the diversity in the

forms of the parts in the variety of kinds which share them,

(5) the distinction between the qualitative and the positional

differences among the groups with regard to these organs,33

(6) the correlation of those differences with identified kinds of

animals, and

(7) the identification of features coextensive with the differences

primarily under consideration.

These features call to mind the ideas discussed in section 3 above, regard-

ing the organization of information in a manner suitable for demonstration.

That this was Aristotle’s intent is evident if one compares this discussion

with those of the same structures in the Parts of Animals ii-iv. Does

Aristotle there offer explanations at the level of primitive universality that

33 In his discussion of the ways in which the parts can differ, Aristotle [Hist,

an. 486a25- 487al] makes a broad distinction between the ways in which parts

can vary by ‘excess and defect’ (i.e., in degree, which includes variations in the

quality, size or number of a structure), by analogy, and by the position of the

part. This passage uses that distinction carefully, though the study of the relative

positions of the windpipe and esophagus and of the differences in form of the lung

at Hist. an. i 16 [see n30] is taken for granted and not elaborated.
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he ha^ here identified, and by reference to the activities and parts at the

same level? It seems clear that he does. For he begins by noting that only

animals which have windpipes and esophaguses have a neck, since the neck

is simply a device for their protection [De part. an. 664al2-17: cf. Hist,

an. 495al8-20]. He also remarks that the windpipe exists for the sake of

breathing, since it is through this that the air passes on its way to and

from the lung [De part. an. 664al6-20: compare the unexplained universal

that all animals that have a lung have a windpipe at Hist an. 495a20-22;

and the equally unexplained claim that all animals which breathe have all

three organs at 506al-5]. Moreover, he asserts that the esophagus is not

required for nutritional reasons (witness that fish get along without one). It

is rather a by-product of the fact that those animals with lungs must have

a windpipe of some length. The presence of a windpipe in turn produces

a certain distance between mouth and stomach; consequently, there must

be an organ to connect them. This explains why all and only breathing

animals have an esophagus, an organ that seems to have little to do with

breathing. [Compare De part. an. 664a20-31 with the purely descriptive

discussion at Hist. an. 495a22-30]. Next in this chapter Aristotle reviews

the relative placement of the windpipe and esophagus [cf. Hist. an. i 16,

ii 15]. He points out that having the windpipe in front of the esophagus

seems less than optimal, since food must pass over the windpipe when
such animals eat. Such organisms must have a means of closing the wind-

pipe when eating: in vivipara, this is accomplished by the epiglottis; in

ovipara, by a windpipe that can open and close at the top. By contrast

with this rich explanatory discussion, the Historia animalium is content

simply to describe these organs and their locations: it never says that they

are necessary or what they are for.

The discussion of lungs in Parts of Animals iii 6 presents an array of

interesting difficulties. I shall focus only on its conclusion.

Generally, then, the lung is for the sake of breathing, while it is

also bloodless for the sake of a certain kind of animal. But what

is common to animals with lungs is without a name, that is, unlike

‘bird’ which names things in a certain kind. Wherefore, just as the

being for a bird (to 6pvL0co elvai) is constituted from something, the

possession of a lung likewise belongs in the being (ofiaCa) of these.

[De part. an. 669b8-12]34

34 See Gotthelf 1985, 31 and Balme 1962, 90. As Gotthelf points out, while De
part. an. iii 6 explains why certain animals possess a lung, it concludes by saying

that having a lung is in their being. This raises a host of questions about the



288 JAMES G. LENNOX

Aristotle begins here by alluding to a teleological explanation for the pos-

session of a lung, and for its possession in a different form in a sub-kind.35

Not only do lungs belong to all the animals which breathe; they belong

for the sake of breathing. The discussion leading up to this passage, in

fact, shows concretely how closely tied together are the explanation of why
certain animals have a certain organ and the account of what that organ

is. Not only does understanding why animals breathe explain why they

must have a lung; it also provides us with an account of what the lung is.36

The remainder of these concluding lines is puzzling at first. But, re-

minding ourselves of the following points may help to remove some of the

problems. First, recall that the lung is neither limited to one of the ex-

tensive kinds identified by Aristotle, nor does it extend to all the blooded

kinds. And yet, as we have seen, there is a complex network of anatomy and

physiology related to breathing and the possession of lungs. Apparently,

the ‘universal’ common to all these animals has not been named (unlike

‘bird’, which picks out those feather-winged, beaked, two-legged creatures).

But that, we must remember, should not stop us from seeking scientific un-

derstanding: ‘we must not only inquire in cases where there is a common
name, but also if anything else has been seen to belong in common, we

must extract that and then inquire what it follows and what follows it’

[An. post. 98al4-16]. The basic account for lung, windpipe, esophagus,

and neck must show why all the animals which have them do in fact have

them. The studies of these interconnected organs and the animals that

possess them in Historia animalium and Parts of Animals and the relation-

ships between these studies, display the methodological concerns of the An.

post. ii. There appears to be a common conception of the activity and aims

of scientific inquiry underlying Aristotle’s science and his theory of science.

5. Hist. an. iv 1-7: A case study

In order to display the structure and aims of the Historia animalium con-

cretely, I will conclude with a study of Aristotle’s account of the parts of

sorts of feature to be specified in the account of an animal’s being, issues which

lie beyond my present concerns.

351 emphasize that this is merely an allusion to such an explanation, since all of

De part. an. iii 6 is devoted to this task, a task which must involve a physiological

account of breathing that can handle the fact that not all blooded animals breathe

(by which Aristotle meant ‘take in and expel environmental air’), and that some
water animals do: see Lennox 1987a, 110-111 for a brief discussion.

36 See Gotthelf 1987b and Lennox 1987a, 109-114.
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the bloodless organisms. Aristotle identifies four ‘extensive kinds’ among
bloodless animals: rd fiaXdKLa, rd fiaXaKooTpaKa, xd 6aTpaKo8epp.a, and rd

evTop.a. These groups correspond roughly to our cephalopods, Crustacea,

testacea, and insects, and in due course I shall use these terms. But it

is important to emphasize a number of points about these Greek names.

First, when they appear alone they are always in the plural.37 Moreover,

all are derived from vividly descriptive adjectives—literally, these kinds are

the softies, the soft earthenwares, the earthenware-skinned, the divisible;

and Aristotle’s initial differentiation of them remains close to this basic

sense. Aristotle distinguishes these kinds on the basis of whether their

hard parts are inside or outside (or all the way through!), and the na-

ture of that hardness. The cephalopods, if they have a hard part, have

it inside; the Crustacea have a hard but crushable exterior, a soft interior;

testacea have a hard fragmentable exterior and soft interior; insects are

uniformly hard throughout. This descriptive terminology is introduced in

Hist. an. 490bl0-16, with an occasional remark that suggests there are

no common names for these groups as such. But throughout the Hisioria

animalium these terms consistently identify kinds with a variety of forms,

forms possessing the general features of the kind differentiated ‘in degree’.

The parts of the bloodless kinds are discussed in Hist. an. iv 1-7, be-

ginning with cephalopods. The discussion opens in a manner typical of the

entire work with an account of the external parts.

The following are the external parts of the so-called softies: first,

the so-called feet; second, the head which is continuous with these;

third, the sac, which contains the internal parts and which some
erroneously call the head; and again the fin which encircles the sac.

But it so happens that the head is between the feet and the belly in

all the cephalopods. Now all have eight feet, and all have a double

row of suckers, except in one kind (yevos*) of the octopuses. But,

distinctively (l8C(jt), the cuttlefish and the small and large calamary

have two long tentacles, with rough tips and two rows of suckers ....

[Hist. an. 523b21-31]

Those external differentiae that can be predicated in general of the cephalo-

pods are given first. Aristotle then remarks on a peculiar feature common
to the cuttlefish and calamary, and goes on [524a3-19] to discuss features

peculiar to octopuses as a group. Next, he describes differentiations among

37 The importance of this point was brought home to me in discussion with Allan

Gotthelf.
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cuttlefish and calamary, and then among octopuses [524a20-32]. After de-

scribing the head, the eyes, and the mouth (with its two teeth and tongue-

analogue), he moves down the esophagus and discusses the internal parts:

features common to the cephalopods [524bl-22], a hard part peculiar to the

cuttlefish and calamary [524b22-23] which is nonetheless differentiated (dr

a<t>€peL Se), the sepia of the cuttlefish being harder, bonier, and fiatter than

the calamary’s firmer, thinner, more cartilaginous ‘pen’ [524b22-28]. The
octopuses as a group have no hard external part. Aristotle then discusses

sexually related differences at various levels and, finally, certain features

which distinguish a number of kinds of octopus [524al4-28].

Likewise, Aristotle begins his account of Crustacea with ‘Now common to

all these is, first. . . ’ [Hist. an. 526b21], and adds ‘But now the distinctive

differentiae must be studied with respect to each kind’ [526b34-527al: Tag
8* ISCa? 8La4>opd9 Ka0* eKaorov Set ©ecapeti/]. The insects are introduced as

a kind with many forms [531b21], and two groups are identified which

have numerous forms closely akin to one another but which are not bound
together by a common name [531b22-23: ouk eireCeuKraL Kotyov ovopa oij-

Sev]: bees, hornets, wasps, and the like [cf. 623b23], and those insects

with encctsed wings, which Aristotle refers to as KoXediTTepa [cf. 552b30,

601a3]. Then, as in his study of the cephalopods, Aristotle turns to features

common to all insects: to the articulation of the body into head, thorax,

and abdomen [531b26-28]; that they all live when divided [531b30-532a5];

and that all have eyes [532a5]. Yet only some have stings [532al4-17] and

wings [532al9-22]; and among these latter some have encased wings, while

others do not; but all their wings are membranous, lacking the stock and

divisions of feathers. In sum, as he says, ‘.
. . the parts of all the animals,

both external and internal, both those peculiar to and those common to

each kind, belong in this manner’ [532a27-29].

In this passage we see a mind striving to identify the widest group of

animals to which a feature belongs universally. But ‘feature’ is ambiguous.

How widely one predicates a feature often depends on how generally or

specifically it is described. No one for whom division W2is a scientific tool

will forget this—all the calamaries and cuttlefish have a hard structure;

so if one wishes to understand why they do (and the octopus does not),

this is the predication that is crucial. But if one wishes to understand why
the cuttlefish has a sepium rather than a pen, that hard feature must be

described and identified more specifically. Aristotle’s method throughout

the texts we have surveyed is tailor-made to achieve these explanatory

goals, that is, to provide propositional descriptions of the animal world

that meet his strictures on proper explanation.
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There are, however, important differences between the chapters devoted

to the parts of the bloodless animals and the earlier discussion of the parts

of the blooded ones. The differences related to the order in which the

internal and external parts are surveyed has already been mentioned. In

addition, there are very few attempts to identify features which extend be-

yond a given extensive kind. And the universal predications are primarily

of the form which correlate a differentia of some sort with a named group,

rather than with another differentia. Thus, these chapters are virtually

devoid of the ‘as-many-as-are-X,-all-(most, some, or none)-have F’ form of

proposition that is found with such regularity in the earlier books. Attend-

ing to these sorts of differences among the various discussions that make
up the whole of Historia animalium is not likely to invalidate the claims

I have been making, but it will in all likelihood lead to a yet richer and

more complex picture of this great work.

An independent test of the soundness of this view of the Historia an-

imalium is to consider its ability to treat naturally those features which

are anomalies on other accounts. As David Balme [1987a, 9] has stressed,

one such anomaly for anyone who reads the Historia animalium either as

systematics or as natural history, is that various animals are mentioned

regularly, but only in order to point out some oddity. Balme’s favorite

example is the blind mole-rat: we are told on a number of occasions of its

peculiar, rudimentary, subcutaneous eyes, though, for all else we are told it

could also have wings, scales, gills, and ten feet [cf. 491b27-34]. Similarly,

there is a variety of octopus, the eXeSajvri, which Aristotle mentions only

once and only to tell us that it has a single (rather than a double) row of

suckers on its narrow tentacles. Such selectivity in Aristotle’s treatment

is to be expected if the majority of the features of such animals are in fact

more appropriately discussed as features of the wider kind of which they are

one example. As we have seen, the features common to all octopuses are

predicated of octopus, while those shared by all cephalopods are discussed

at this more general level. Only that peculiarity of the eXeSoivT), the single

row of suckers on its narrow tentacles, is termed an l8lov [525al6-19]. From
the perspective of the theory of explanation in the Posterior Analytics, this

feature will be explained, if at all, in terms of other features peculiar to

the eXeSojvT]. And as a matter of fact, the discussion of the cephalopods

in De part. an. iv does just that.

The other cephalopods have two rows of suckers, but one kind

(yevo9) of octopus has only one. The cause (aiTLOv) of this is the

length and slimness of their nature; for their being narrow neces-

sitates a single row. Now they have these things arranged thus not

because it is best ((09 PeXTiaxov) but because it is necessary due to
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the peculiar account of their being (09 dvayKoXov Sid tov lSlov X070V

Ths onatag). [De part. an. 685bl2-16]

Both the property identified as the cause and the property identified as the

effect in the De partibus animalium are said in the Historia animalium to

belong to the eXeSoi/ri alone; but there is not the slightest hint of a causal

relationship between these features in the latter. The eX€8ojvr| has a long

and slim nature and, thus, long and narrow tentacles. Accordingly, it niust

have a single row of suckers. It is not that having one row of suckers is better

than having two. If, however, a case could be made out that either one

or two rows were equally possible and that one of these possibilities were

better, Aristotle might be inclined to say of the eXeScavri that its possessing

one row is better than its having two rows, on the ground that ‘we see that

nature does nothing pointless, but always the best for each being among
the possibilities’. But, in this case, he takes the possession of one row as

necessitated by the antecedently given nature of animal.38

6. Conclusion

The methodological unity of the chapters in the Historia animalium which

are devoted to the parts of the bloodless animals is clearly not one imposed

by the aim of a hierarchical classification. There is, for example, no effort

to introduce a vocabulary for taxon-categories of different extension. Fevog

is the all-purpose word for animal-kinds at any level of generality. The

cephalopods as a whole are a ‘kind’ [523b3], but so are the large calamaries

[524a29], and there are many ‘kinds’ of octopus [525al3]. The Crustacea

are a ‘kind’, but so are the crabs and carids; and there are many kinds

of each of these [525a33-bl]. The testacea are a ‘kind’, but so are the

snails, oysters [528bll-12], and the sea-urchins [528a2]. Finally, animals

which do not fall into any of the extensive kinds, such as sea-anemones, are

kinds as well [531a31]. The inclusion of this last ‘kind’ indicates another

fact about the Historia animalium which points to its lack of interest in

systematics—the untroubled recognition of kinds which do not fit into the

wider kinds Aristotle has identified.

38 See Gotthelf 1985, 41-42 for a discussion of this passage and its relationship

to the patterns of explanation outlined in De part. an. 640a33-bl. Gotthelf

stresses the apparent difficulty for strong functionalist readings of Aristotle’s

biology posed by Aristotle’s inclusion of such features as the dimensions of a part

in the account of the being of an animal.
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Finally, at the most general level, this is a work organized as a study

of the differentiae which belong to animals; it is not presented as a clas-

sification of animals. This explains the fact that information regarding any

particular kind of animal is sprinkled, in a seemingly haphazard manner,

throughout the nine books of this treatise. But the appearance of happen-

stance is in the eyes of the modern biological beholder. It is in general a

well-ordered treatise—given its (declared) demonstrative aims, aims that

are revealed in a variety ways. For there is a persistent concern to identify

groups which share a number of features as a group and yet have not been

identified as a single unit, i.e., that have not been united by a common
name. Identifying such groups, I have suggested, is an activity fostered

by the scientific ideals of the Posterior Analytics. Moreover, there is a

recurrent effort to find the widest group to which a given organ or tissue

belongs universally; to note how these organs or tissues are differentiated

qualitatively, quantitatively, and positionally, in different subgroups; and to

identify the widest group which possesses the various differentiated forms of

the general type of organ or tissue being discussed. Again, this is what An.

post, ii 14-18 would lead us to expect. (It would be interesting to pursue

the philosophical issue of whether there are compelling reasons for prefer-

ring the (Linnean) methodology of establishing a hierarchy of kinds on the

basis of a single diagnostic character, and the historical question of whether

certain individuals—Baron Cuvier comes to mind—were so impressed with

Aristotle because of their own tendency to approach the biological realm

with an eye to understanding differentiation rather than with the aim of

organizing its species hierarchically.)

Aristotle’s guiding question in his zoology seems to be. Why do all and

only these animals have this feature? His answer seems to require starting

with the differentiae and asking how widely a given differentia extends in

relation to others—that is, he seeks to identify groups relative to some dif-

ference and not to identify the difference relative to a pre-established group.

This method succeeds in identifying animals with commensurately univer-

sal differentiae, the first step toward causal accounts in the explanatory

model proposed in the Posterior Analytics.

The distinction between otl- and StoTL-inquiries in An. post, ii 1 and 2

is general and theoretical. I hope that my study of Aristotle’s method in

the Historia animalium and of its relationships to its companion studies of

animals has given reasons for thinking that his zoological treatises took this

distinction seriously. At the same time, I also hope that my remarks have

deepened our understanding of OTL-investigations beyond the facile notion

that they ‘collect the facts’.
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