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This collection, which is based on a conference on new perspectives
in Islamic science held in 1998 at MIT’s Dibner Institute, provides
a snapshot of current research in this rich field for specialists and
non-specialists alike. Established scholars have contributed each of
the 12 articles, and while they do not cover all fields (e.g., scientific
instruments and theoretical astronomy are omitted), the articles are
nevertheless wide-ranging. The editors, Jan P.Hogendijk and A. I.
Sabra, have divided the articles into categories which are generally
topical: cross-cultural transmission; transformations of Greek optics;
mathematics; philosophy and practice; numbers, geometry, and ar-
chitecture; 17th-century transmission of astronomy; and science and
medicine in the Maghrib and al-Andalus. To provide an additional
perspective, I will group the chapters into four general categories
(Transmission; Critique; Awareness of Disciplines; and Theory, Prac-
tice, and Applications); and because the volume deserves a wide
readership, I will attempt to explain the relevance of each chapter to
the field of Islamic science and to the general history of science.

Transmission

Those who use Hindu-Arabic numerals know something of the nu-
merals’ origin through their name. Hindu-Arabic numerals, though,
resemble the numerals of the Muslim West much more closely than
the numerals of the Muslim East. Paul Kunitzsch [3–21] addresses
the transmission of these numerals (from the Muslim East to the
Muslim West, in particular) and agrees with the scholarly consensus
that the Arabs received their system of nine decimal numerals and a
zero from India most likely in the eighth century (all dates are ad).
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The numerals were used for reckoning on a board (takht) covered
with dust (ghubār). In the Islamic West, this same type of reckon-
ing was called h. isāb al-ghubār (Hindu reckoning, literally dust-board
reckoning).

The development of the Western forms of Hindu-Arabic numer-
als was gradual. Certain Latin mss from Spain from as late as the
15th century retained the Eastern forms of the numerals, whereas
Latin mss from the 10th century began to have the Western forms.
Some have suggested that the numerals came to the Islamic West via
Spain, or that certain numerals (5, 6, and 8) derive from European
models. In light of similarities between the Eastern and Western
forms of the numerals, though, Kunitzsch suggests that the Western
forms developed directly from the Eastern forms, and that the most
likely route of transmission for the numerals was through texts on
Hindu reckoning. Because no Arabic mss with the Western forms
of the numerals from before the 13th century have been discovered,
more detailed conclusions about the precise origin of Hindu-Arabic
numerals are premature.

Another well-known instance of transmission was the passage
of certain scientific texts from the Islamic world to Europe to spur
what Haskins [1957, 278–302 or 1927, 109] famously called the 12th-
century renaissance. Charles Burnett’s chapter ‘The Transmission of
Arabic Astronomy via Antioch and Pisa’, though, broadens our un-
derstanding of transmission in the Middle Ages both chronologically
and geographically. A close comparison of the Greek and Arabic ver-
sions of the Almagest shows that MS Dresden, Landesbibliothek, Db.
87 is a translation of the first four books of the Almagest made di-
rectly from Arabic into Latin in the first quarter of the 12th century,
before the better-known period of transmission noted by Haskins.
Similarities between numerical notations in the Dresden Almagest
and the Liber Mamonis, and the use of eastern numerals in the lat-
ter, lead Burnett to date the Liber Mamonis to the same period. His
conclusion is that Stephen of Pisa and Antioch composed the Liber
Mamonis and that cAbd al-Mas̄ıh. of Winchester, from the same cir-
cle of translators, translated the Dresden Almagest. The Dresden
Almagest, then, represents the earliest Latin translation of the Al-
magest and the Liber Mamonis is evidence for an equally early recep-
tion of Ptolemaic cosmology. The Liber Mamonis, however, does not
depend directly on the Dresden Almagest. The connection between



ROBERT G.MORRISON 30

the Liber Mamonis and Antioch is made by virtue of its relation to
a third work, the Tables of Pisa. Perhaps these early instances of
transmission from the Eastern Mediterranean spurred translations
later in the 12th century in Spain and Sicily.1

David Pingree’s chapter, ‘The Sarvasiddhāntarāja of Nityānan-
da’, extends the chronological scope of the study of the transmis-
sion of science within the Islamic world into the 17th century.2Shāh
Jahān (the builder of the Taj Mahal) had a vizier, Āsaf Khān, who
charged the scholar Nityānanda with the translation into Sanskrit
of Z̄ıj-i-Shāh-Jahān̄ı, a recent ephemeris (z̄ıj) based on Ulugh Beg’s
(d. 1449) Z̄ıj-i Jad̄ıd (The New Ephemeris). The translation, entitled
Siddhāntasindhu, was completed in the early 1630s. As Pingree [1996,
474] has found, those features of Islamic astronomy most closely
connected with Aristotelian philosophy, particularly a solid-sphere
universe, were extremely difficult for Indian astronomers to accept.
Indeed, in 1639, Nityānanda composed the Sarvasiddhāntarāja, an
apology for using Islamic astronomy in the Siddhāntasindhu. In the
following passage the Sarvasiddhāntarāja posits Indic origins for Is-
lamic astronomy:

the Sun, because of the curse of Brahmā, became a Yavana
[i.e., Muslim] in the city of Romaka and was known as Ro-
maka. After the curse was lifted, he became the Sun again,
and wrote the Romakasiddhānta ‘which has the form of rev-
elation (śrutirūpam)’. [Pingree 1996, 478]

Nityānanda claimed to be repeating the Romakasiddhānta and he ef-
fectively argued throughout the Sarvasiddhāntarāja that Indian and
Islamic astronomy were not really that different.

In the Sarvasiddhāntarāja, to facilitate computations, Nityānan-
da converted the mean motions from Arab years and months, and so
forth, into integer numbers of revolutions per Kalpa of 4,320,000,000
years. The text contains algorithms for computing each planet’s equa-
tion, and the near equivalence of the equations in both astronomies

Compare the flourishing of translations in Abbasid society in which existing1

knowledge created a demand for more translations: see Gutas 1998, 137 and
Saliba 1998, 69–72.
Pingree has been working on the transmission of Islamic science to India for2

some 25 years: see, e.g., Pingree 1978, 315–330.
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was another part of Nityānanda’s argument for their similarity. Given
that Indian astronomers did not favor the system of physical movers
found in Islamic astronomy, Pingree, with help from Kim Plofker,
reconstructs Nityānanda’s geometrical rationales for computing the
equations. Pingree’s work is valuable because the date at which the
transmission took place both indicates the continued vitality and use-
fulness of Islamic astronomy and encourages more research on Islamic
astronomy in India.3

Finally, Julio Samsó’s chapter, ‘On the Lunar Tables in Sanjaq
Dār’s Z̄ıj al-Shar̄ıf ’, addresses 17th-century transmission between the
Muslim East and West. Earlier astronomers from the Muslim West,
such as Ibn al-Zarqālluh (d. 1100), invented models that explained
variations in the rate of the precession of the equinoxes (trepidation),
and in turn entailed variations in the obliquity of the ecliptic. There
is evidence for observations in the Muslim West from the 13th and
14th centuries which put into question the viability of these models
for precession. Such attacks apparently motivated astronomers in the
Muslim West to replace their z̄ıjes with z̄ıjes from the Muslim East
based on a constant rate of precession. Samsó argues, through com-
puter analysis of the tables for lunar motion in the Z̄ıj al-Shar̄ıf, that
Ulugh Beg’s Z̄ıj-i Sult.ān̄ı reached Tunisia in the 17th century. And
so, as Pingree did, Samsó demonstrates that the often overlooked
17th century was not a period of stagnation. Additionally, Samsó
calls attention to how astronomers from the Muslim West critiqued
and replaced their own theories.

Critique

Research over the past century4has demonstrated that the scientists
of the Islamic world, over several centuries, both critiqued the Hel-
lenistic heritage and developed new theories to replace ones deemed

See Pingree 1976, 109: ‘The Sanskrit texts, however, though often either3

incorrectly or not at all understood by those who have transmitted them to
us, formed the basis of a scientific tradition that only in this century has
been destroyed under the impact of Western astronomy.’ See also Pingree
and Kusuba 2002.
See, e.g., de Vaux 1896; Dreyer 1906, 262–280.4
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flawed.5Until recently, these important general conclusions were typ-
ically defended on the basis of Islamic achievements in astronomy.
But just as the preceding section on transmission encouraged investi-
gations of less well-known instances of transmission, the volume un-
der review also reflects scholars’ growing awareness of a critical and
perhaps revolutionary attitude in areas of Islamic science besides as-
tronomy. In ‘Ibn al-Haytham’s Revolutionary Project in Optics: The
Achievement and the Obstacle’, A. I. Sabra argues that the achieve-
ments of 13th- and 14th-century astronomers of Islam may in fact
not be as revolutionary as others have alleged,6but the work of Ibn
al-Haytham (= Alhazen, d. 1040)7 on optics was. Ibn al-Haytham
was not only the first writer on optics in the Islamic world to evince
awareness of Ptolemy’s Optics, which had superseded Euclid’s Optics,
he was also the first to overthrow Ptolemy’s theory of vision. Sabra,
an authority on Ibn al-Haytham, argues that Ibn al-Haytham’s re-
jection of the two main earlier theories of vision (the intromission of
forms from the object to the eye and the extramission of a visual flux
from the eye to the object) and creation of his own theory of vision
should be considered revolutionary.

By any measure, Ibn al-Haytham’s phenomenological explana-
tion, in mathematical language, of how light enables the formation
of an image in the eye represented a radical transformation of the dis-
cipline. His Kitāb al-Manāz. ir included the psychology of vision and
his sophisticated understanding of refraction helped explain why the
eye’s crystalline humor sensed some forms of light and color which
reached the eye but not others.8 Ibn al-Haytham would have a sub-
stantial influence on European optics. Although Sabra’s conclusions
about Islamic astronomy are not fully accepted,9his engaging chap-
ter should draw the attention of all to Islamic optics, a field which
has sometimes been overshadowed by Islamic astronomy.

For a critique of Ptolemaic astronomy in the ninth century, see Saliba 1994a,5

115–141. For a 16th century critique, see Saliba 1994b, 15–38.
Sabra 1998b criticizes the claims of some historians of Islamic astronomy.6

Sabra 1998a addresses the question of Ibn al-Haytham’s identity.7

See Sabra 1972, 1978, 1987, and 1989.8

See Saliba 2000 and Sabra 2000.9
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Tzvi Langermann’s article, ‘Another Andalusian Revolt? Ibn
Rushd’s Critique of al-Kind̄ı’s Pharmacological Computus’, inves-
tigates whether there was an Andalusian critique of medical texts
resembling the Andalusian critique of Ptolemaic astronomy which
Sabra [1984] has described. Langermann focuses on the critique of-
fered by Ibn Rushd (= Averroes, d. 1198) in his al-Kulliyyāt f̄ı al-
t.ibb (The Generalities in Medicine) of the computus proposed by
al-Kind̄ı’s computus in his F̄ı macrifat al-adwiya al-murakkaba (On
the Knowledge of Compound Medicines). There al-Kind̄ı ranked the
qualities of non-temperate drugs in four degrees. A drug in the first
degree was twice as powerful as a temperate drug and one in the
second degree was four times as powerful, and so forth. Ibn Rushd
responded by presenting his own rules or laws (qānūn‚ pl. qawān̄ın)
governing the use of compound drugs. The most complex rule was
that when dealing with drugs composed of simples of opposite qual-
ities, the result could be determined by simple computations of the
drugs’ powers not of their weights. So, two units of a cold drug of
the first degree should reduce a hot drug of the third degree by two
degrees. (Al-Kind̄ı’s principle had predicted a reduction of a single
degree.) Then, Ibn Rushd went on to criticize al-Kind̄ı’s computus
for, among other things, classifying some drugs to be so strong rela-
tive to the first degree that they would be fatal.

Ibn Rushd’s attacks were an exception to the general lack of
interest in al-Kind̄ı’s computus. Most pharmacologists were more in-
terested in the medical formulae themselves, and not as interested as
Ibn Rushd was in methodological frameworks grounded ultimately
in Aristotle. Langermann situates Ibn Rushd’s critiques of al-Kind̄ı
within the context of an Andalusian effort to construct alternatives to
the science coming from the Muslim East. There are clear parallels
between the methodological critique of al-Kind̄ı and the view that
Ptolemaic astronomy, hence aspects of the astronomy of the Mus-
lim East, contradicted Aristotle’s physics. Recently Saliba [1999a]
has argued that while there was certainly a distinctively Andalusian
philosophy, there was not necessarily a substantial Andalusian astron-
omy.10Langermann’s chapter suggests, then, that a solution to the

In a paper currently in preparation, I argue that Ibn Nah.mias’ improvements10

on al-Bitrūj̄ı (ca 1217), a subject of Sabra 1984, indicate a rapprochement
with astronomy from the Muslim East.
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debate will depend on other fields besides philosophy and astronomy.
Thus, both Langermann and Sabra’s chapters encourage researchers
to look beyond astronomy for examples of Islamic science’s critical
attitude.11

Awareness of Disciplines

To understand the historical relationship of various scientific disci-
plines better, historians of Islamic science have relied on pre-modern
catalogues of the sciences. In ‘The Many Aspects of “Appearances”:
Arabic Optics to 950 ad’, Elaheh Kheirandish carefully reads the
three pages on optics (cilm al-manāz. ir) in al-Fārāb̄ı’s (d. 950) Ih. s. ā’
al-culūm (Enumeration of the Sciences) as a starting point for deter-
mining the state of the discipline in the 10th century. Kheirandish
demonstrates how problems of transmission, particularly the accu-
rate or inaccurate translation of technical terms, influenced the di-
rection of research. She examines five passages from Ih. s. ā’ al-culūm
which first address the matter of why objects visible at a distance
appear to be different from the way they really are. It is this epistemo-
logical question that distinguishes optics from geometry: al-Fārāb̄ı
does not mention the related matter of the veracity of vision (s. idq
al-ru’ya). The second passage focuses on the reasons why certain
appearances are at odds with the real properties. Kheirandish specu-
lates [61] that these questions arose due to the impaired transmission
of Euclid’s theory of vision, in which visual rays proceed from the
eye to the object of vision, and in which ‘that on which more of the
ray falls is seen more accurately’ [see Kheirandish 1999].

From a third passage we learn that while al-Fārāb̄ı was quite in-
terested in applications of optics, he said little about surveying and
catoptrics (mirrors). Kheirandish supplies the missing background.
The use of muncakis (reversed) to mean ‘reflected’ instead of muncat.if
(reflected) led to misunderstandings about how heights could be de-
termined by reflecting visual rays. Problems of transmission also

Langermann mentions other texts with critiques of Galen: see Abū Bakr11

al-Rāz̄ı, al-Shukūk calā Jāl̄ınūs [Mohaghegh 1993] and Pines 1986. We
know, too, of Ibn al-Haytham’s solutions of criticisms of Euclid: see Ibn
al-Haytham On the Resolution of Doubts in Euclid’s Elements and Interpre-
tation of Its Special Meanings [Sezgin 1985].
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explain why, in the fourth passage, al-Fārāb̄ı’s Euclidean theory of
vision lacks particular terms for perception (idrāk). In the the final
passage al-Fārāb̄ı’s limited knowledge of refraction confirms Sabra’s
important comment that early writers on Islamic optics did not under-
stand Ptolemy’s account of refraction. Kheirandish’s chapter, then,
connects the chapters on transmission with Sabra’s chapter on Ibn al-
Haytham. She has shown that catalogues of the sciences may prove
to be as informative for scholars of Islamic optics as they have been
for scholars of Islamic astronomy [cf. Saliba 1982].

In addition to catalogues of the sciences, the work of one scien-
tist can also yield a sense of the direction of a discipline, as J. Lennart
Berggren has found with the works of the 10th-century mathemati-
cian Abū Sahl al-Kūh̄ı (or al-Qūh̄ı). In ‘Tenth-Century Mathematics
through the Eyes of Abū Sahl al-Kūh̄ı’, Berggren draws on his ex-
tensive research on al-Kūh̄ı and that of Hogendijk, to argue that
al-Kūh̄ı’s choice of problems was determined by Hellenistic geome-
ters and that al-Kūh̄ı was the last mathematician to adopt their
perspective.

Indeed, the intersection of al-Kūh̄ı’s work with other fields of
Islamic science to which he also contributed stems from his broad
definition of geometry. Al-Kūh̄ı wrote a substantial and much dis-
cussed treatise on the stereographic projections (the representation
of a three-dimensional object in two dimensions) necessary for as-
trolabe construction.12He also applied geometrical methods to deter-
mine if an infinite motion could occur in a finite time period [see
Rashed 1999]. In an article that appeared after Berggren wrote his
chapter, Rashed [2001] finds that al-Kūh̄ı’s geometrical analyses of
observational techniques helped meteorology become a part of astron-
omy. After al-Kūh̄ı’s death, scientists continued to re-evaluate disci-
plinary boundaries. Ragep’s work on Nas.̄ır al-Dı̄n al-T. ūs̄ı (d. 1274),
and on the relationship between astronomy and philosophy, provide
later examples of how mathematics approached questions which had
traditionally been in the domain of philosophy (falsafa) [see Ragep
1993, 2001]. Such reconsiderations of disciplinary boundaries are a

See Berggren 1991, 1994. Abgrall 2000 draws on earlier work of Roshdi12

Rashed in continuing to investigate al-Kuh̄ı’s work on the astrolabe. See
also Rashed 1993, 2000.
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reminder that despite religious scholars’ critiques of falsafa, the inves-
tigation of some of the problems which philosophy addressed could
continue.

Ahmed Djebbar’s article, ‘A Panorama of Research on the His-
tory of Mathematics in al-Andalus and the Maghrib Between the
Ninth and Sixteenth Centuries’, examines the development of the his-
tory of the mathematics of the Muslim West. Ibn Khaldun (d. 1407),
in his Muqaddima, catalogued the sciences and effectively shaped the
research agenda until 1980 for the history of mathematics in the Mus-
lim West. An emphasis on arithmetic and algebra is notable. Since
1980, research (and Djebbar has been associated with a great of deal
of it) has focused on the beginning of mathematics in the Muslim
West, the communication of ideas and circulation of scientists be-
tween the Muslim East and the Muslim West, and the reasons for
the strikingly low level of content in mathematical handbooks. Djeb-
bar concludes his survey by identifying areas for future research such
as the details of the transmission of Euclid’s Elements and why cal-
culation dominates post-Almohad (after 1269) mathematics in the
Muslim West. Djebbar posits societal reasons for the latter. Djeb-
bar’s chapter, like Langermann’s, investigates reasons for regional
variations in the enterprise of Islamic science.

Theory, Practice, and Applications

Ibn Rushd’s concern for methodology, which we noted in the chapter
by Tzvi Langermann, is a theme of Gerhard Endress’ ‘Mathematics
and Philosophy in Medieval Islam’. Drawing inspiration from Ibn
Rushd’s statement in his Commentary on Aristotle’s Metaphysics
Book Λ,

In our time, astronomy is no longer something real; the model
existing in our time is a model conforming to calculation, not
to reality. [Genequand 1984, 179]

Endress traces the parallel history of two approaches to truth in Is-
lamic philosophy and science. One was a theoretical reality derived
from a close reading of Aristotle and the other, the mathematicians’
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(i.e., Ptolemy’s) reality based on mathematical and geometrical the-
ories which explained, in practice, the available observations.13 Ibn
Rushd hoped that the recovery of the true Aristotle would reconcile
the two approaches, yielding a philosophical account of the heavens’
matter and form that would also explain their observed motions.14

Al-Kind̄ı formulated the first notable compromise between the
two approaches in his treatise entitled Philosophy Can Be Acquired
through the Science of Mathematics Only [see Tajaddud 1971, 316].
Another significant step came with Ibn S̄ınā (d. 1037), who presented
all of the sciences according to the syllogism of Aristotle’s Posterior
Analytics. Ibn al-Haytham used a generally Aristotelian method of
demonstration to conclude in the Shukūk calā Bat.lamyūs (Aporias
against Ptolemy) that some of the principles Ptolemy used to account
for observations could not both account for the observations and be
in accord with theories of physics, and that these principles would
have to be changed [see Sabra and Shehaby 1971, Sabra 1998b]. Fol-
lowing an examination of the attempts by Andalusian philosophers
to restore Aristotle’s cosmos, Endress discusses how the theologians’
critique of philosophy forced scientists to re-examine their attach-
ment to philosophical principles. Some scientists, while acknowledg-
ing the impossibility of making a claim for science’s absolute truth,
argued for the value of the scientific process [see Ragep 2001, Sabra
1994]. Others questioned the need for such a strong critique of philos-
ophy [see Morrison 2002 and 2004]. Endress’ chapter, then, dovetails
nicely with recent research (and Berggren’s chapter) showing that Is-
lamic astronomers after Ibn Rushd became well aware of the extent
to which their science did and did not have to rely on Aristotelian
philosophy.

While the possibility of a connection between developments in
Islamic mathematics and their practical applications to architecture
has always seemed strong, the demonstration of such a relation-
ship and its details are remarkably slippery [see Saliba 1999b, 641].
Yvonne Dold-Samplonius’ chapter, ‘Calculating Surface Areas and

Not only did Ptolemy’s theories suffer from the well-known difficulty of the13

equant, but later Islamic astronomers would doubt his method of computing
planetary distances. See Hartner 1964, 1.282.
Both Harvey 1999 and Mesbahi 1999 investigate the extent to which Aver-14

roes was a return to Aristotle.
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Volumes in Islamic Architecture’, argues strongly for a certain con-
nection between pure mathematics and its applications and thereby il-
lustrates which other connections have yet to be fully understood. In
earlier articles, Dold-Samplonius has analyzed calculations of domes
and muqarnas (an architectonic and ornamental form characteris-
tic of Islamic architecture); now she focuses on arches and vaults.15
Her study of the last chapter of Ghiyāth al-Dı̄n al-Kāsh̄ı’s (d. 1429)
Miftāh. al-h. isāb (Key of Arithmetic), entitled ‘Measuring Structures
and Buildings’, shows that ‘al-Kāsh̄ı uses geometry as a tool for his
calculations, not for constructions [239].

Since al-Kāsh̄ı’s goal was to measure these architectural forms,
not to construct them, he used methods of approximation. While a
mathematical analysis of any type of arch would clearly have been
within al-Kāsh̄ı’s ken, his text facilitated approximations by show-
ing readers how to fit their calculations to one of five models of
arches. Dold-Samplonius has evidence that architects in 17th-century
Safavid Iran were paid according to the height and thickness of walls,
and she tentatively extends this finding to al-Kāsh̄ı’s milieu. Finally,
she interprets the evidence for architectural applications of mathe-
matics carefully and suggests that some of the applications, particu-
larly the calculation of a muqarnas, were rarely carried out due to
their complexity.

Although magic squares served primarily as brain-teasers, Jac-
ques Sesiano’s chapter, ‘Quadratus Mirabilis’, uses them to elucidate
a previously unknown level of complexity in 10th-century number
theory. A magic square (there is no single appellation in Arabic) is
a square array of integers with the sum of each row, column, and
diagonal being equal [xv]. The order of the square is the number
of cells on a side, and a bordered magic square (for orders of five
and up) retains the properties of magic squares as rows are removed
from the perimeter. The placement of numbers in a bordered square
was always determined by a rule. If k is a natural number, an odd
square has order 2k + 1, and evenly-even square has order 4k, and
an oddly-even square has order 4k + 2. The earliest texts on magic
squares are Treatise on the Magic Disposition of Numbers in Squares

On the measurement of the dome (qubba), see Dold-Samplonius 1992 and15

1993. On the measurement of the muqarnas, see Dold-Samplonius 1992–
1993 and 1996.
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by Abū al-Wafā’ al-Būzjān̄ı (d. 997 or 998) and a chapter from cAl̄ı
ibn Ah.mad’s (d. 987) Commentary on Nicomachus’ Arithmetic.

Sesiano’s chapter examines solutions to the difficult problem of
constructing an odd bordered square with the even and odd numbers
separated by a central rhombus whose corners are in the middle of
the square’s sides. Both authors begin by filling the inner square of
the rhombus by basically constructing a bordered square with only
odd numbers. After that, the authors diverge. Al-Būzjān̄ı’s solution
is the earliest of the two that survive, but the placement of some
of the numbers was ambiguous. Al-Ant.āk̄ı’s solution, which Sesiano
believes not to be due entirely to al-Ant.āk̄ı, explains how to place
the remaining odd and even numbers in the rhombus and how to
complete the rest of the square. Sesiano provides a detailed analysis
and a translation of the relevant parts of the text. Later, in the
13th century, magic squares would become increasingly tied to occult
practices and research into their theoretical foundations dissipated.
Sesiano has found a remarkable level of theoretical sophistication
within what might at first appear to be a more marginal use of Islamic
mathematics than architecture.

The editors deserve much credit for assembling an eminent group
of scholars whose solid articles represent important trends in the
history of science in Islam.
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