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This book is a collection of papers originally presented at a series
of meetings at the Dibner Institute for the History of Science and
Technology, Cambridge, MA. The volume is in two parts. In the
first, we find four essays devoted to the ‘motivations and methods’
of Newton’s research by M. Mamiani, I. B.Cohen, A. E. Shapiro, and
M.Feingold. In the second, we find five essays devoted to questions
concerning celestial dynamics and rational mechanics by J. B.Brack-
enridge, C.Wilson, M.Nauenberg, M.Blay, and G. Smith. An appen-
dix contains a paper by Newton’s well-known biographer, Richard
S.Westfall, prefaced by an appreciation honoring the late author by
I. B. Cohen. The specific subjects of the essays are as wide-ranging
as they are varied in argumentative style and methodology. I will
not review the essays by summarizing them one by one. Some of
their technical content might intimidate the reader unfamiliar with
this type of historical research. So I will discuss them according to
what I believe are the fundamental strengths (and a few weaknesses)
of this collection, trying to keep technicalities to a minimum. My
choice should by no means be taken as an implicitly judgmental ap-
proach to the book. The authors of the essays will, I hope, excuse the
limited competence of the reviewer. I have grouped my comments
under two broad headings, ‘Methods’ and ‘Results’.

Methods

I sometimes found myself baffled while reading this book, strangely
not because of the arduous mathematical notation which is frequently
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employed by the authors, but more mundanely because of their termi-
nological choices. Let me exemplify straightaway. Mamiani opens his
essay by claiming that the theme of his investigation is a ‘principle’
according to which ‘a dynamic point of view’ should guide ‘analyses
of the development of scientific ideas’ [3]. Thus, in Mamiani’s view,
a consequence of this principle is that ‘science proves, on close ex-
amination, to consist, to some degree, of radical “transformations”
of existing ideas, concepts, and methods’. A few lines below, we
learn that we need to look for the ‘growth of the scientific concepts’.
Eventually, the author explains that his goal is to ‘focus attention
on a particular transformation that marked the migration of cate-
gories and methods from one discipline to another’. Principles, ideas,
concepts, methods, development, migration of categories. . . I really
wonder. What is the theme of this essay? Mamiani wishes to argue
that the celebrated rules for philosophizing (regulae philosophandi) in
book 3 of the later editions of Newton’s Principia are simply a trans-
formed version of a set of rules developed by Newton in the Treatise
on the Apocalypse. The latter set of rules has a ‘source’, according
to Mamiani, a treatise on logic and rhetoric by Robert Sanderson,
his Logicae artis compendium published at Oxford in 1618. What
does Mamiani mean by ‘source’? No explanation is given. However,
in a further, even more confusing re-statement of the essay’s goals,
Mamiani claims that he will show that the rules for interpreting the
Apocalypse were in turn (mostly) a transformation of Sanderson’s
rules. What about the original theme of Mamiani’s essay, a ‘prin-
ciple’ according to which ‘a dynamic point of view’ should guide
‘analyses of the development of scientific ideas’? I am lost. Maybe
the author too got lost in his terminological maze.

At any rate, here is an instance of Mamiani’s conclusions. We
find in Sanderson’s book the following ‘law of brevity’: ‘Nothing
should be left out or be superfluous in a discipline’ [11]. This was
transformed by Newton in the Treatise into the following two rules:
‘To assign but one meaning to one place of scripture’, and ‘To keep
as close as may be to the same sense of words’ [11]. This couple of
rules eventually became Rule I in the 1687 edition of the Principia,
namely, ‘Causas rerum naturalium non plures admitti debere, quam
quae et verae sint & earum phaenomenis explicandis sufficiant’ [11].
No translation is furnished by Mamiani, but by way of helping the
reader I will give mine: ‘No more causes of natural things should
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be admitted than those which are true, and which are sufficient to
explain the phenomena of those things’. Having first thought up
the law of brevity I wonder why Sanderson did not proceed to write
up the Principia. Mamiani comments: ‘Thus, the transformation of
concepts is the key to understanding the innovative procedures of the
new science’ [12]. Are rules concepts? Maybe they are in Mamiani’s
mind. Further, what are the ‘innovative procedures’ referred to here?
Another little linguistic puzzle, it seems to me.

I shall give a second example of how terminological and method-
ological issues impinge on the questions raised by this collection by
looking at two essays, Nauenberg’s and Wilson’s, since both investi-
gate Newton’s researches on lunar motion but from quite opposite
methodological standpoints. I will try to explain why Nauenberg’s
historiographic approach obscures instead of illuminating Newton’s
physico-mathematical procedures, while the historical sensitivity of
Wilson’s splendid essay furthers our understanding of them.

Nauenberg wishes to show that by 1686 Newton had developed a
perturbation method to deal with Keplerian motions in general, and
that such method ‘corresponds to the variation of orbital parameters
method first developed in 1753 by Euler and afterwards by Lagrange
and Laplace’ [189] (emphasis added). The evidence for Nauenberg’s
claim lies in a fascinating text by Newton, only published in the 20th
century [see Whiteside 1967–1981, 508–537]. First and foremost, we
may ask, what does Nauenberg mean by ‘correspond’? No clue is to
be found in his essay. Since the mathematics in Nauenberg’s essay is
complex, I will not go into the details of his argument here. However,
I should like to suggest an example of what ‘correspond’ might in fact
mean in a context with which the reader may be more familiar and
which has the added bonus of being mathematically much simpler.

In modern textbooks, you may have come across Galileo’s time-
squared law of free-falling bodies expressed as a simple proportional-
ity, in the following notation for example:

s ∝ t2

where

s = space
t = time
∝ = ‘proportional to’.
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Sometimes you may also have found an algebraic equation expressing
Galileo’s time-squared law such as

s = kt2,

where k is a constant. Galileo did not use any form of symbolic or
algebraic notation, though. Algebra was totally alien to him. He
wrote the proportionality of space and the square of time in plain
natural language, in the mathematical style of Euclid. He would
not have used an algebraic formula (let alone admit a ratio between
two non-homogeneous quantities such as space and time). Yet I sus-
pect that in Nauenberg’s view the formula above, or the equation,
would correspond to Galileo’s result rather unproblematically. But
this is simply not the case. The thought processes required to arrive
at and understand equations are largely different from those under-
lying Galileo’s mathematical natural language. As long as you are
interested in Galileo’s thought processes, you would do well not to
succumb to the lure of superficial correspondences.

By the same token there is not much notation in Newton’s writ-
ings that is relevant to our subject. In the manuscript on lunar mo-
tion, which is in Latin, Newton mostly makes use of natural language
in order to express proportionalities; and at times he has recourse to
a very simple algebraic notation in which ratios are written down
as fractions, exactly as he does in the Principia. In addition, his
reasoning depends on powerful visual representations based on geo-
metric diagrams—so much so that a modern reader accustomed to
our textbooks in mechanics, cast in the language of college calculus,
might be struck dumb by the Principia, precisely because it is a work
of geometry wholly in the style of Euclid’s Elements. On the other
hand, I have counted 107 formulas involving Leibnizian and func-
tional notation in Nauenberg’s essay! All of this symbolism would
have been totally alien to Newton, precisely as the above formula for
the time-squared law would have been alien to Galileo. Briefly, then,
what Nauenberg does is this. He re-writes or (as we might say in
order to do justice to the author, since there is an element of creativ-
ity here) divines Newton’s procedures in the Leibnizian language of
the calculus or, to be sure, in one of its many modern guises; and
then he claims that the same procedures were ‘re-discovered’ later
by the continental mathematicians who had adopted and developed
the Leibnizian calculus. Thus, he argues that Newton’s method for
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studying lunar motion corresponds to the variation of orbital para-
meters method first developed in 1753 by L.Euler and afterwards by
Lagrange and Laplace. He seems to be motivated, I think, by the
illusion that all of Newton’s procedures are mechanically ‘re-writable’
in a homogeneous mathematical style.

Recent Newton scholarship, however, has argued convincingly
that most of Newton’s fundamental results were not reached by
means of a secret analysis and then subsequently dressed up in a
geometrical style, such as that found in the Principia. Newton’s rea-
soning processes were originally quite different [see, e.g., De Gandt
1995]. To represent them in a Leibnizian symbolism is arbitrary
and unwarranted. Instead of deepening our understanding of the ob-
jects of historical research, such representation obliterates its very
substance. Further, it has also been forcefully suggested that the
development by which the continental mathematicians of the 18th
century gradually transformed the Principia into the new language
of the Leibnizian calculus was neither a ‘re-writing’ of results, nor a re-
discovery of methods that Newton had guarded from public scrutiny.
On the contrary, that process was a formidable intellectual enterprise
which mobilized the most creative mathematical minds of the 18th
century [cf. Guicciardini 1999 and Blay 2002].

Let us now turn to Wilson’s essay. One key element shapes Wil-
son’s argumentative strategy. He wishes to compare the method by
which both Newton and the later continental mathematicians tack-
led the problem of the Moon’s apsidal motion (on which more in a
moment). However, Wilson resists the temptation to read backwards
into Newton’s approach the language of Leibniz.1 Imagine the orbit
of the Moon around the Earth. It is an ellipse, though one that is
very nearly circular. But for the sake of visualization now imagine
the orbit as markedly elliptical, like that of a returning comet, for

To be sure, he uses a form of Leibnizian calculus to voice, so to speak,1

some of the assumptions that he believes guided Newton’s analysis; but
he does not attribute the formulas themselves to Newton, nor, crucially,
does he draw conclusions on the basis of the magical art of divining the
existence of Leibnizian formulas inside the Newtonian mind. On page 167,
for instance, Wilson explicitly shows a genuine Newtonian formula together
with the modern notational equivalent with which he works. He is very
careful to distinguish the two, though.
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example. Now, the apsidal motion is the slow motion by which the
ellipse itself rotates around the central body. It is called ‘apsidal’
because astronomers call ‘apses’ the points furthest and nearest to
the body orbited by another body, in this case the intersections of
the orbit and the major axis of the ellipse. Newton failed to solve
the problem of the motion of the Moon’s apses. In Wilson’s words,
Newton’s ‘brave conclusion’ is worthless because of a fatally flawed
assumption [168], the technical details of which are irrelevant here.
Why did the great Newton make such an error? Was it because he
did not have at his disposal the powerful notational system of the
Leibnizians? The answer is complex. True, he did not have the cal-
culus in the form of Leibniz’ symbolism. But, in Wilson’s view, what
appears to be the ultimate constraint on his reasoning strategies is
that Newton visualized the apsidal motion as the motion of a rotat-
ing ellipse. That was the real hindrance in his understanding of the
phenomenon. And this is the high point, historically most reveal-
ing, in Wilson’s essay. Newton’s thought processes do not proceed
from formulas to their physico-geometrical meaning. It is meaning
in the form of the visual representation of phenomena that guides
his mathematical procedures.

The problem of apsidal motion was solved later on in continental
Europe by Clairaut, L. Euler, and d’Alembert. When Clairaut first
realized that the visual representation of the rotating ellipse was
misleading, he was relieved. For, previously, he had had to come to
terms with the only hypothesis that could save the appearance of the
motion of the Moon, the abandonment of the very law of universal
gravitation (in the form of the inverse square of the distance).

We may now ask: What made the achievement of the continen-
tal mathematicians possible? We may begin to shape an answer as
follows. The continental mathematicians had long abandoned the
geometric style of the Principia. They put absolute faith in, and
staked their reputations on, the power of Leibnizian algorithms, even
when the meaning, in terms of visual representations, of the mathe-
matics they were developing escaped them. Wilson’s essay shows a
facet of this achievement with plenty of historical insight.
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Results

Alan Shapiro’s essay is concerned with Newton’s work on diffraction
and the reasons that delayed the publication of the Opticks [1704].
Its principal strength lies in its being based on first hand knowledge
of the relevant manuscripts and worksheets. It is often assumed
that what kept Newton from publishing the Opticks was his rivalry
with Hooke; and that when the latter died, Newton felt that the
right moment to publish his researches on optics had come. Shapiro,
however, tells a different and more intriguing story. The fact is that
Newton had developed a model of diffraction based on a hypothesis
that later on proved untenable. Diffraction is the phenomenon that
causes beams of light to bend when passing close by an object’s edges.
It is revealed by patterns of light and darkness in the image of the
object projected onto a screen. Newton eventually abandoned the
early model after he had satisfied himself that experimental data
could not possibly fit the model’s predicted patterns. Whatever the
reasons may be that really determined Newton’s delay in publishing
the Opticks, an issue concerning which Shapiro offers a balanced
discussion, Shapiro’s essay shows the riches still awaiting Newton
scholars in the form of manuscript materials (unfortunately) spread
in libraries all over the world.

Michel Blay shows another way in which manuscript resources
may illuminate this kind of historiography. He has delved into the
records preserved in Paris of sessions of the Royal Academy of Sci-
ence in order to illustrate the genesis of new concepts, such as that of
instantaneous speed in the work of Pierre Varignon. By comparing
Varignon’s algorithmic treatment of motion problems with Newton’s,
Blay casts light on the profound transformation that led the con-
tinental mathematicians to shape a Leibnizian version of rational
mechanics. Research on manuscript material is powerfully revealing,
and there are serious limitations to what historians can achieve by
simply considering published material. Bruce Brakenridge’s essay is
devoted to the concept of curvature in Newton’s dynamics. Brak-
enridge gives us an account whose intricacies could never have been
disentangled but for the wealth of manuscript material published by
Whiteside [106]. Curvature is the amount of ‘crookedness’ of a curve
at any single point. It was this concept that was central, at various
stages, to Newton’s investigations of the nature of the forces acting
on bodies moving along curved paths.
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Let us go back to the ‘public’ Principia. I am very sympathetic
to Smith’s essay. Smith is first of all an engineer, as I was some
time ago. So I read with great pleasure his essay on book 2 of the
Principia, on motion in fluids, a part of the Principia for which the
scholarly literature is scant if there is any at all to be found. Smith
believes that what he calls ‘Newton’s style’ in book 2 is no different
from the style of the rest of the Principia. The Newtonian style, in
Smith’s view, is a global approach to natural philosophical inquiry, a
‘sequence of idealizations, each of which is used to draw conclusions
from phenomena, and which together comprise successful approxima-
tions in which residual discrepancies between theory and observation
at each stage provide an evidential basis for the next stage’ [251]. Re-
grettably, the technical aspects of book 2 prevent me from discussing
the details of Smith’s nicely articulated argument, once again; but
I found his analysis of what we might call Newton’s ‘construction
of the idealization of fluid resistance’ utterly convincing. Fluid resis-
tance is tricky. It depends on so many factors that experimentation
with bodies moving in real, viscous fluids may easily become baffling.
Newton came up with pendula, for example, as a means to getting a
handle on the phenomena of motion in fluids. But ingenious as this
was, the data yielded by pendular oscillations remained confusing
even for him. All in all, according to Smith, fluid resistance resisted
Newton’s empirical attempts to decipher its intricacies.

I should also mention Feingold’s paper on the relationship be-
tween Newton and the Royal Society. More specifically, the ques-
tion posed by the author [78] is: ‘What were the consequences for
the fortunes for the Society of Newton’s uncompromising conviction
concerning the primacy of mathematics in the domain of natural
philosophy. . . ?’ I confess that I do not incline much to sociological
analyses: interesting as the story recounted by Feingold is per se,
how it illuminates the subject of the book escapes me. In addition,
valuable information is to be found in the essays by Cohen on the
influence that Huygens’ Traité de la lumière exerted on Newton’s de-
cision not to have his name printed on the frontispiece of the Opticks,
and by Westfall on the technological developments that made possi-
ble the mathematization of nature in early modern Europe.

In conclusion, we owe a profound debt of gratitude to the editors
for assembling such a valuable collection of essays. Anybody who is
seriously interested in Newton’s achievement should read this book
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and plunge into the wealth of fascinating arguments that I have only
begun to outline in this review.
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