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In the last 20 years or so, the interest of historians of mathematics in Diophan-
tus has grown in a significant way, changing deeply our perception of his
mathematical work. Fabio Acerbi’s book contributes to a better knowledge
of this Greek mathematician and his methods.
‘We know nothing about the life of Diophantus’. These are the opening
words of Acerbi’s introduction to his commented edition of Diophantus’ De
polygonis numeris. In effect, it is rare for a mathematician of such fame and
calibre to be so unknown from a biographical point of view. As to when he
lived, the references only allow us to put his terminus post quem in the sec-
ond century bc (thanks to a citation by the mathematician Hypsicles) and his
terminus ante quem in the second half of the second century ad (thanks to a
citation in Ptolemy’s Almagest), an enormous span of three centuries! Acerbi
does not seem very convinced by the attempts at providing more precise
dates found in Paul Tannery’s important edition of the Opera omnia of Dio-
phantus [1893–1895] and I share his doubts. So it seems appropriate to forego
any speculative hypothesis and concentrate instead on Diophantus’ work.
There are a great number of questions that make this kind of study fasci-
nating. First and foremost, there is the history of the transmission of the
text and the events surrounding the circulation of the various manuscript
copies. Then, there is the philological reading of the text itself, the distinction
between the original text and various interpolations, the comparison of differ-
ent manuscript copies, and so forth. There is also the reading that is more
properly mathematical, in the context of the reality of the period in which
the author was working. Finally, there is the reading that the mathematicians
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of different periods have given the work and its influence, direct or indirect,
on the development of mathematics itself.
Acerbi’s long introduction (133 pages out of a total of 243) is actually ded-
icated in large part to Diophantus’ principal work, the Arithmetica.1 He
devotes a rich chapter to the transmission of the Greek text of the Arith-
metica and examines the history of the various manuscript copies that exist
in the world.2 There are 31 such manuscripts (not all of which contain the
same range of material) and these are traditionally divided into two streams,
Planudean and non-Planudean, according to the whether they descend from
the annotated transcription (dated to the end of the 13th century) by the
Byzantine intellectual and religious scholar, Maximo Planudes. The manu-
script that was studied most by the first modern historian, Paul Tannery is
the Diophantus Matritensis (Madrid, Biblioteca Nacional, Ms. 4678). It too
has an interesting history. Written in the 11th century, it was brought to
Messina, probably together with other Greek manuscripts after the Turkish
conquest of Constantinople, by Costantino Lascaris, who annotated it. After
the failed revolt in Messina, it was carried to Madrid by the Duke of Uzeda
and has been in the Royal Library of the Spanish capital since 1712.
The Arithmetica has come down to us in mutilated form: of the 13 books
that initially comprised it, effectively only six have arrived through Byzantine
copies, with four more coming through the Arabic translation of Qusţā ibn
Lūqā, datable to the second half of the 11th century, although the copy studied
today was discovered only in 1971.3According to themost creditable scholars,
the Greek manuscripts transmit books 1–3 and most probably 10–13; the
Arabic manuscripts, books 4–7. The De polygonis numeris, however, has
come down to us in almost all the Greek codices containing the Arithmetica.
Acerbi’s De polygonis numeris is the first Italian edition but interest in it
goes beyond the mere fact of language. In effect, each new edition in the
Diophantine corpus makes a significant contribution to the solution of the

1 Unfortunately, there is no comparison of the text of the Greek and the Arabic man-
uscripts, which are only mentioned in passing.

2 For a description of the existing manuscripts, see Allard 1980 (which, however, I was
unable to consult). The fascinating story of the transmission of the Greek texts can
be found, for example, in Allard 1984, 317–331.

3 See Rashed 1974–1975, 97–122. The transcription is found in Sesiano 1982 and in
Rashed 1984.
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numerous historiographical problems tied to the work of this ‘mysterious’
mathematician from Alexandria, problems to which the contribution of a
scholar of Acerbi’s calibre is significant. Besides the problems of a strictly
philological nature (obviously also important for any mathematical interpre-
tation of the work), the works of Diophantus have always aroused passionate
debates among historians. Not only is there the difficulty of dating the works
with certainty but their place in the context of Greek mathematics also turns
out to be quite complex. One of the problems that has always fascinated
historians of mathematics concerns the ‘algebraic’ content of the work. This
problem can be viewed from three standpoints:
(a) from that of Greek ‘geometric algebra’,
(b) from that of Diophantus’ influence on Arabic algebraists, and
(c) from that of the impact of the reading of the first editions of the
Arithmetica on developments of European algebra in the 16th and
17th centuries.

All three standpoints are developed by Acerbi in §2 of the introduction.
The first, (a), raises a topic that is hotly debated. As is known, in book 2
(and in books 5–6) of the Elements, Euclid develops a geometrical treatment
of the solution to quadratic equations. This fact has given rise to relentless
discussions: indeed, his treatment has to be interpreted either as a geomet-
rical translation of a pre-existing algebraic treatment (which must go back
to the Pythagoreans and, according to some, even to the Babylonians) or as
a radically different vision of the problems being treated. The connection
between this kind of problem and those proposed and solved by Diophantus
is evident.
As an example, Acerbi cites proposition 2.5 of the Elements:
If a straight line is cut into equal and unequal segments, then the rectangle
contained by the unequal segments of the whole together with the square on the
straight line between the points of section equals the square on the half. [Heath
1956, 1.382]

In Figure 1, p. 263below, the segment in question is 𝐴𝐷, which is cut by 𝐵
into two equal parts and by 𝐶 into two unequal parts. The proposition states
that the rectangle 𝐴𝐶 ⋅ 𝐶𝐷 plus the square on 𝐵𝐶 is equal to the square on
𝐵𝐷. In algebraic terms, if 𝐴𝐶 = 𝑥 and 𝐶𝐷 = 𝑦, we have the identity:
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Figure 1.Euclid, Elem. 2.5
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Diophantus refers to this proposition in the determination of Arith. 1.27, in
which it is said:
To find two numbers such that their sum and product are given numbers. The
square of half the sum must exceed the product by a square number, ἔϲτι δὲ
τοῦτο πλαϲματικόν. [Heath 1910, 140]

Problem 1.27 is obviously related to the solution of quadratic equations. If
the numbers sought (𝑥, 𝑦) have a given sum (𝑎) and a given product (𝑏), then
they both satisfy the equation 𝑡2 −𝑎𝑡 +𝑏 = 0 and, recalling that, if 𝑥 and 𝑦 are
the two solutions to the equation, 𝑎 is their sum and 𝑏 is their product, the
given condition is equivalent to requiring that the discriminant (𝑎/2)2 − 𝑏
be a perfect square, thus allowing the problem to have rational solutions
(the only kind sought by Diophantus).
It is, for example, precisely in commenting on this proposition (which in his
text is number 30) that Bachet de Mezirac puts it into a strict relation to the
rule for solving quadratic equations (which he expresses as a canon). It is
from here that the first move is made in the long (and still ongoing) tradition
of interpreting the work of Diophantus in ‘protoalgebraic’ terms.
Without dwelling too long on these aspects, I should like to repeat that
Acerbi declares himself starkly opposed to such interpretations. He expresses
himself thus:
Va sottolineato che l’‘algebra geometrica’ non èmai stata intesa come unmale
minore interpretativo atto a rendere ragione agli occhi di un lettoremoderno di
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certe caratteristiche dei lemmi lineari. La pretesa era invece che i ‘greci’, come
i babilonesi prima di loro, ragionassero davvero algebricamente ma avessero
più o meno inconsapevolmente provveduto a coprire il nucleo matematico
‘vero’ con un velo geometrico. É straordinario che un’interpretazione così
rozzamente anacronistica, frutto di un abbaglio storiografico che è durato
quasi un secolo e che perdura tuttora tra gli interpreti di Diofanto, possa aver
ottenuto credito. La connessione con l’algebra sta ovviamente nella testa degli
interpreti moderni, e i testi non offrono il minimo appiglio che corrobori questa
tesi. [18]

It should be underlined that ‘geometric algebra’ has never been understood
as a lesser interpretive evil aimed at rendering to the eyes of a modern reader
understanding of certain characteristics of linear lemmas. The claim instead
was that the ‘Greeks’, like the Babylonians before them, reasoned in a truly alge-
braic way but had covered—more or less consciously—the ‘true’ mathematical
nucleus with a geometric veil. It is astonishing that such a grossly anachronistic
interpretation, the fruit of a historiographical blunder that lasted for almost a
century and that still today persists among the interpreters of Diophantus, could
have acquired credibility. The connection with algebra obviously lies in the
minds of modern interpreters and the texts do not offer the least evidence that
corroborates this thesis.4

Later, I will come back to this debate, which seems to me to be extremely
interesting historiographically.
In the meanwhile, I will continue this rapid survey of Acerbi’s text, which
goes on to examine indeterminant problems, that is, problems admitting an
infinite number of solutions. Among these by far the most famous is Arith.
2.8. The fame of this problem is primarily due to the notes in the margin of
the copy of the celebrated edition by Bachet de Mezirac owned by Fermat:
Cubum autem in duos cubos, aut quadratoquadratum in duos quadrato-
quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in
duas ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas non caperet.

On the other hand, it is impossible to separate a cube into two cubes, or a
biquadrate into two biquadrates, or generally, to infinity, any power except
a square into two powers of the same exponent. I have discovered a truly
marvellous proof of this, which however the margin is not large enough to
contain. [Heath 1910, 144–145]

4 All unprovenanced translations are my own.
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As is known, the theorem stated by Fermat was proved by Andrew Wiles in
1994. But it was all the indeterminant problems (called ‘Diophantine prob-
lems’ in number theory) that guaranteed the Greek mathematician’s fame.
It is interesting to retrace with Acerbi the Diophantine solution to 2.8. The
problem—I rely on Heath’s English translation and its symbols—is this:

To divide a given square number into two squares.

Given a square number 16.
𝑥2 one of the required squares. Therefore 16 − 𝑥2 must
be equal to a square.
Take a square of the form (𝑚𝑥 − 4)2, 𝑚 being any
integer and 4 the number which is the square root
of 16, e.g. take (2𝑥 − 4)2 and equate it to 16 − 𝑥2.
Therefore 4𝑥2 − 16𝑥 + 16 = 16 − 𝑥2

or 5𝑥2 = 16𝑥 and 𝑥 = 16
5 .

The required squares are therefore 256
25 ,

144
25 . [Heath 1910, 145–146]

It is best said right away that Heath’s translation is extremely liberal, while
Acerbi’s follows the text much more faithfully. It can in any case be noted
that Diophantus’ solution is really indeterminant. We need only change the
coefficient 𝑚, giving it arbitrary positive integer values, to obtain an infinity
of solutions (with the exclusion of the choice 𝑚 = 1 since in that case the
solution is null). This is important because, in this solution, as in few others,
the purely exemplifying nature of the choice of the initial numbers is (almost)
explicit. Hence, while it is true that ‘the fact that other linear substitutions
𝑦 = 𝑡𝑥 − 4 would have yielded a solution to the original problem as well,
tends not to be mentioned’ [Schappacher 2005, 13], it is also true that in
reality Diophantus indicates here with sufficient clarity the possibility of
such an arbitrary choice. Here, the translation is fundamental because what
counts lies precisely in the details.
In the Greek text, as transcribed by Tannery [see Plate 1, p. 266below], it
can be seen immediately, at least I believe so, that Heath’s translation of
the third paragraph already begins with the presumption that Diophantus
is perfectly aware of the general solution, (𝑚𝑥 − 4)2, 𝑚 being any integer.
But this is a translation that is only partly faithful to the original. The more
literal translations of «πλάϲϲω…πλευρά » are those by Norbert Schappacher,
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Plate 1.Diophantus, Arith. 2.8
[Tannery 1893–1895, 90.11–18]

Let us take the square of some multiple of 𝑥 minus the number whose square
makes 16. [2005, 13]

and Acerbi,
Formo il quadrato da quanti si voglia numeri meno tante unità quanto è il lato
di 16u.

I form the square of as many numbers as are desired minus as many units as
are in the side of 16u.

I am not at all a philologist but I believe that we can understand how the
‘translation’ of the symbols used by the Greek mathematician into modern
algebraic symbols (even though necessary and useful for comprehending the
text) can lead to serious misunderstandings. Acerbi’s text is always attentive
to these problems. In any case, what appears clearly is the perfect awareness
on Diophantus’ part of the completely general nature of his solution and of
the existence of infinite solutions to the questions posed. It is now interesting
to go back with Acerbi to the problem of the presence of elements of algebra
(or at least protoalgebra) in the Arithmetica.
In my opinion, two questions should be clearly distinguished: that relating
to the effective presence of protoalgebra in the Diophantine text and that
regarding the influence of that text on the birth and development of algebra.
With regard to the second point, there should be no doubt that, from the very
first Arabic translators and commentators to the algebraists of the 16th and
17th centuries, Diophantus has been read in an algebraic key. Indeed, we can
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say that the interest in his work developed precisely in concomitance with
the development of algebraic techniques. What Schappacher calls the ‘first
renaissance of Diophantus’ takes place in parallel with what is recognized
as the first Arabic text of algebra, the Al-jabr by al-Khwārizmī. In effect,
Qusţā ibn Lūqā’s translation of the first seven books of the Arithmetica can
be dated to 870, just a few months after the publication of the volume by
al-Khwārizmī. Thus, the translation is strongly influenced (in terminology
and in symbolism) by the new algebra and it is in the same way that the
Diophantine text is interpreted by later readers. Acerbi thus rightly under-
lines that we are dealing with an algebraic reading of Diophantus and not
with a direct influence of the Greek mathematician on the formation of an
algebraic language:
È Diofanto che è tradotto in linguaggio algebrico, non Diofanto che induce la
rivoluzione algebrica. [25]

It is Diophantus who is translated into an algebraic language, not Diophantus
who leads the algebraic revolution.

The ‘second algebraic renaissance’, that carried out by the algebraists of
the 16th and 17th centuries, has similar characteristics. As is known, after a
first attempt at editing Diophantus’ Arithmetica (by Giuseppe Auria at the
beginning of the 16th century), the first real impact of Diophantus’ work
on the nascent algebraic culture of the West came from Bombelli’s Algebra
of 1572 [repr. 1966]. Here it is interesting to read what the algebraist from
Bologna says in his own words:
Essendosi ritrovato un’opera greca di questa disciplina [l’Algebra] nella li-
braria di Nostro Signore in Vaticano, composta da un certo Diofante Alessan-
drino, Autor Greco, il quale fu a’ tempo di Antonin Pio, & havendomela fatta
veder Messer Antonio Maria Pazzi Reggiano, pubblico lettore delle Matem-
atiche in Roma, e giudicatolo con lui Autore assai intelligente de numeri
(ancorchè non tratti de numeri irrationali, ma solo in lui si vede un perfetto
ordine di operare) egli, & io, per arricchire il mondo di così fatta opera ci
dessimo a tradurlo, e cinque libri (delli sette che sono) tradutti ne habbiamo; lo
restante non havendo potuto finire per gli travagli avenuti all’uno, e all’altro,
e in detta opera habbiamo ritrovato, ch’egli assai volte cita gli Autori indiani,
col che mi ha fatto conoscere, che questa disciplina appo gl’indiani prima fu,
che à gli Arabi. [Bombelli 1966, 8–9]

There being found a Greek work of this discipline [scil. algebra] in the library
of Our Lord in the Vatican, composed by a certain Diophantus of Alexandria, a
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Greek author who lived in the time of Antoninus Pius, and having been shown it
by Mr Antonio Maria Pazzi from Reggio Emilia, a public lecturer in mathematics
in Rome, and along with him deeming the author to be quite knowledgeable
about numbers (though he does not treat irrational numbers but still in him is
seen a perfect order of working), he and I, to enrich the world with such a well-
made work, set about translating it. Five books (of the seven that there are) we
have translated; we have not been able to finish the remaining books owing
to the troubles that have befallen both of us. In said work we found that he
many times cites the Indian authors, by which he has made me know that this
discipline was first known by the Indians before the Arabs.

I transcribe the entire quotation by Bombelli because, in spite of his dis-
concerting statement that he had seen that Diophantus ‘many times cites
the Indian authors’, it appears to me to confirm Acerbi’s statement: just as
for Arabic mathematics, so too in the case of the West, the introduction of
algebra preceded, and did not follow, the comprehension of Diophantine
mathematics. However, it should also be said that all of the early algebraists
found it entirely natural to ‘read’ Diophantus in light of the ‘algebraic rev-
olution’. That is particularly true for the reading of the editio princeps by
Bachet de Mezirac (1621).
It can be stated without any doubt that the insistence of Bombelli and the
early algebraists on the ‘algebraic’ reading of the Diophantine text was pro-
foundly motivated by ‘ideology’. Their aim in fact was to give a ‘classical’
pedigree to algebra, freeing it from the purely practical status that it had
assumed since the work of the abacus masters. Diophantus was, like Euclid,
Apollonius, and Archimedes, to be counted among the noble fathers of the
new mathematics: the search to rediscover the thread connecting the new
problems and the classical tradition of geometry would continue through-
out the whole of the 17th century, identifying above all in the methods of
‘geometric analysis’ the direct antecedent of the modern integration of alge-
bra and geometry. In this way would Viète, Descartes, Schooten, Newton,
and great number of others express themselves. In more recent times, in a
historiographical context no longer tied to the problems of active research,
Frederick Zeuthen proposed reading both the Conics of Apollonius and book
2 of the Elements in terms of the so-called ‘geometric algebra’. The heated
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debate about such questions has characterized a series of interventions by
various historians. But we will not enter into that here.5

The reading of Diophantus’ work and, above all, the reflections on the kind
of problems proposed in his book is relevant also for modern number theory,
which can be said to have originated in Fermat’s study of Bachet’s edition of
Diophantus. Here, for example, is how André Weil introduces his admirable
history of number theory:
One might similarly try to record the date of birth of the modern theory of
numbers; like the god Bacchus, however, it seems to have been twice-born.
Its first birth must have have occurred at some point between 1621 and 1636,
probably closer to the latter date. In 1621, the Greek text of Diophantus was
published by Bachet, along with a useful Latin translation and an extensive
commentary. It is not known when Fermat acquired a copy of this book…nor
when he began to read it; but, by 1636,…he had not only read it carefully, but
was already developing ideas of his own. [Weil 2007, 1–2]

Going back to the thread of Acerbi’s statement, while we can reasonably
affirm that ‘it is Diophantus who is translated into an algebraic language, not
Diophantus who leads the algebraic revolution’, the relationship to number
theory is muchmore complex, even ifWeil’s observation does not at all imply
(nor did Weil intend such an implication) that Diophantus was a precursor
of Fermat, who read him with the eyes of a modern mathematician.
From a historiographical point of view, aside from the unquestionable im-
portance of the influence of the reading of the Arithmetica on developments
in algebra and number theory, two important questions remain:
(1) Into which tradition is the work of Diophantus to be inserted?
(2) What, independent of later readings, is the mathematical language
of the Arithmetica?

With regard to the first question, it is well known that a considerable num-
ber of historians of mathematics have emphasized a presumed connection
with Babylonian mathematics. Although it seems to me that such a con-
nection—defended by historians of mathematics and mathematicians of the
calibre of Neugebauer [1934, 245–259] and Van der Waerden[1954]—is based
on clues that are too fragile, I believe that Acerbi’s dismissal of the question
is excessively perfunctory. (With regard to Neugebauer, he says that ‘he

5 On this question, see Saito 2004, 383–480.
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saw connections that were non-existent but strategic for him in maintaining
the pretext of paleo-Babylonian algebra’ [14] ). Instead, I find more cogent
Acerbi’s careful and in-depth examination of the studies of arithmetic on
the part of Greek mathematicians, in particular Archytas, Nicomachus, and
Iamblichus, regarding the insertion of different kinds of proportional means
(arithmetic, geometric, harmonic, and so on) among given numbers. The
examination of this rich mathematical tradition concludes, obviously, in an
interesting and detailed account of what can be said, without fear of con-
tradiction, to be ‘the most substantial treatment of number theory in the
Greek corpus previous to the Arithmetica’, that is, of books 7–9 of Euclid’s
Elements.
Aside from the admirable (and very well known) theorems contained in
these books (the algorithm of the greatest common divisor, the infinity of
prime numbers, and so forth), Acerbi rightly turns his attention to some of
the basic definitions, whose complete interpretation also requires attention
to linguistic aspects: e.g., to that of a number (‘a multitude composed of
units’) and, above all, that of a part (‘the less of the greater when it measures
the greater’ [Heath 1956, 2. 277] ), that is, a divisor, to those of plane and
solid numbers (respectively, ‘two numbers having multiplied one another’
and ‘three numbers having multiplied one another’ [Heath 1956, 2. 278] ).
It should be noted, as Acerbi does, that plane and solid numbers are not
mutually exclusive: e.g., 30 is both a plane number (10×3) and a solid number
(2 × 3 × 5).
Again in the context of this classification of number, book 9 of the Elements
concludes with some theorems regarding perfect numbers, that is, numbers
whose sum of their parts (i.e, their divisors excluding the number itself) is
equal to the number itself, e.g., 6 (= 1 + 2 + 3), 28 (= 1 + 2 + 4 + 7 + 14), and
so forth. The last proposition, Elem. 9.36, which Acerbi [36] rightly defines
as ‘the true τέλοϲ [aim] of the arithmetic books’, is, in Heath’s translation:
If as many numbers as we please beginning from an unit be set out continu-
ously in double proportion, until the sum of all becomes prime, and if the sum
multiplied into the last make some number, the product will be perfect. [Heath
1956, 3.421]

In other words, if a prime number is the sum of powers of 2, that number
multiplied by the last power in the sequence from 1, will give a perfect
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number. In the case of 28, for example, 7 is a prime number and the sum of
1 + 2 + 4, powers of 2; thus, 28 (= 4 × 7) will be a perfect number.
This proposition, like all in the arithmetic books, is important for the study
of polygonal numbers. In fact, written in another way, since the sum of 𝑛
powers of 2 (beginning with 0) is 2u� − 1, if 2u� − 1 = 𝑀 is prime, proposition
9.36 can be rewritten:

2u�−1 × (2u� − 1) = 𝑀 × (𝑀 + 1)
2 is a perfect number.

Hence, the perfect numbers identified by Euclid6 are polygonal numbers (to
be precise, triangular numbers). There is also another profound connection
between book 9 of the Elements and Diophantus’ De polygonis numeris:
Euclid’s book makes systematic use of the properties of the sums of elements
in geometric progression (such as those of the powers of 2), while the Dio-
phantine text studies polygonal numbers that are the sum of elements in
arithmetic progression.
Thus, we have arrived at the central theme of Acerbi’s book, the critical
edition and study of Diophantus’ De polygonis numeris. As already said, that
study, although it constitutes the focus of the author’s attention, occupies
only a small part of the volume.
Let us, however, proceed in order: the text of De polygonis numeris is in-
serted, at least in part, in all of the Greek manuscripts that contain the books
of the Arithmetica. But, in spite of that, numerous scholars, starting with
Tannery, have cast doubt on its paternity. Personally, I do not believe that
there is good reason to doubt the traditional attribution, though I note with
Rashed and Houzel [2013, 4], that ‘La différence, non seulement d’arithmé-
tique mais de style, ne peut pas que surprendre’ (‘the difference, not only of
arithmetic but of style, cannot help but surprise’).

6 The history of Elem. 9.36 is very interesting. The primes of type 𝑀are called Mer-
senne primes and their study offers many open questions. While Euler proved that
the even perfect numbers are necessarily of the type identified by Euclid, it is not
actually known if there are any odd perfect numbers; it is only known that if they
exist, they must be extremely large. It is worth noting that Nicomachus had already
stated (but proved incorrectly) that there do not exist any odd perfect numbers.
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Returning to the contents of the text, it must be said that the polygonal num-
bers are given by the sum of the first consecutive elements of an arithmetic
progression always beginning with 1. They are divided into:

∘ triangular numbers, when the common difference is 1, that is, the
progression of integers that gives rise to the numbers 1, 3 (= 1 + 2),
6 (= 1 + 2 + 3), 10 (= 1 + 2 + 3 + 4), 15 (= 1 + 2 + 3 + 4 + 5),…

∘ square numbers, when the common difference is 2: thus, 1 (= 12),
4 (= 1 + 3 = 22), 9 (= 1 + 3 + 5 = 32), 16 (= 1 + 3 + 5 + 7 = 42),
25 (= 1 + 3 + 5 + 7 + 9 = 52),…

∘ pentagonal numbers, when the common difference is 3: thus, 1, 5 (=
1 + 4), 12 (= 1 + 4 + 7),… and

∘ hexagonal numbers, when the common difference is 4: thus, 1, 6 (=
1 + 5), 15 (= 1 + 5 + 9),…

and so forth.
The study of the properties of polygonal numbers goes back to the tradition
of the Pythagorean school but there is no doubt that the first proofs that have
come down to us are precisely those of Diophantus. The term ‘polygonal’
attributed to these numbers comes from the fact that the arithmetic progres-
sions can be obtained by arranging the numbers according to geometric
shapes and bordering them with gnomons. For greater clarity, I provide the
figures of the first series:7

Triangular Numbers

Square Numbers

Pentagonal Numbers

Hexagonal Numbers

7 The images are taken from the website of wikipedia.
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In his definition, Diophantus says (as translated by Acerbi):
Ciascuno dei numeri aumentati di un’unità a partire dalla triade è poligonale
primo a partire dall’unità ed ha tanti angoli quanta è la molteplicità delle
unità in esso e suo lato è il numero di seguito all’unità, il 2. E sarà il 3
triangolare, il 4 quadrato, il 5 pentagonale e questo di seguito.8 [41]

Each of the numbers augmented by a unit beginning from the triad is polygonal
prime beginning from unity and has as many angles as is the multiplicity of the
unit in it and its side is the number following unity, 2. And 3 will be triangular,
4 square, 5 pentagonal, and so on.

Thus, every number (except for 2) is polygonal in different ways: it is polyg-
onal prime when it is the first of the progression after unity. In any given
polygonal number, the number of angles is equal to the polygonal prime
that generates it and a side equal to 2 (the side of every prime polygonal)
augmented by a unit for each step of the progression beginning with the
prime polygonal. Thus 15 is a triangular number (three angles and side 5) but
also hexagonal (six angles and side 3) and 15-angles (15 angles and side 2).
Rather than go into the details of the individual propositions, which are
in any case described with great accuracy by Acerbi, I will come to that
which—even according to Diophantus himself—constitutes the goal of the
entire booklet. This is to explore how to recognize a number as polygonal
and determine its side. Naturally, since every number is a polygon, one must
specify which polygon is being dealt with, that is, to identify the number of
it angles or its ‘species’. Thus, the central problem addressed in Diophantus’
work is: given an integer, can we establish if it is polygonal of a certain angle?
To this end, the first point highlighted by Acerbi is that of putting into a
mathematically significant form the intuitive concept of ‘figurate’ or polyg-
onal number, as illustrated on page 272. This objective is achieved, as said
earlier, by defining the 𝑘 − 𝑚𝑜 polygonal number of 𝑃 angles as the sum
of 𝑘 + 1 terms of the arithmetic progression that begins with 1 and from
the difference between elements 𝑟 = 𝑃 − 2. In this way, the definition is
put into a form that is mathematically clear. Diophantus’ answer is that a

8 Heath’s translation is actually too synthetic and neglects various aspects of the Dio-
phantine definition: ‘All numbers from 3 upwards in order are polygonal, containing
as many angles as they have units, e.g., 3, 4, 5 etc.’ [Heath 1910, 247].
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polygonal number 𝑁 must be such that 8𝑁(𝑃 − 2) + (𝑃 − 4)2 is a square.
This is condition (a).
Bachet de Mezirac had already noted that, while it is true that condition (a)
is necessary, it is not sufficient, giving as examples the fact that 8 × 2(5 − 2) +
(5 − 4)2 = 49 is a square but that 2 is not a pentagonal number, and that
8×4(7−2)+(7−4)2 = 169 = 132 is a square but 4 is not a heptagonal number.
Acerbi rightly observes that these counterexamples cannot be considered
valid because the solutions where 𝑁 < 𝑃 are ‘obviously’ to be discarded. (I
remind the reader that by definition 𝑃 is the smallest element different from
1 in the progression,) In any case, the fact remains that the sufficiency of
condition (a), even with the obvious added condition 𝑁 > 𝑃 , was not proved
by Diophantus.
The other objection, this too present in Bachet, concerns the fact that the
Diophantine definitionmentioned above is not applied to either the triangular
numbers (for which 𝑃 − 4 = −1) or to the square numbers (for which
𝑃 − 4 = 0). Acerbi justly criticizes the answer given by Hultsch [1876] to this
problem, namely, that Diophantus was capable of manipulating negative
numbers and zero, an idea that is unanimously rejected by historians today.
Instead, Acerbi’s convincing argument is simply that the formula given
by Diophantus is a generalization of the known cases of triangular and
square numbers, which thus do not enter into the typology presented by
the proposition. As is easily verified, the triangular numbers 𝑇 satisfy the
relation 8𝑇 +1 = 8𝑇(𝑃 −2)+1 = square, while the square numbers Q satisfy
the relation 8𝑄(𝑃 − 2) = square. Both cases satisfy what Diophantus said in
the introduction to De polygonis numeris:
Any polygonal multiplied into a certain number depending on the number of
its angles, with the addition of to the product of a certain square also depending
on the number of the angles, turned out to be a square. [Heath 1910, 247]

This characterizing property is proposed as the generalization of square
numbers. As can be seen, the Diophantine proposition responds perfectly to
what is proposed.9

9 It is precisely in this context, that is, in comparing his proposition with what was
proved by Hypsicles, a mathematician who lived in the second century bc, that Dio-
phantus cites Hypsicles, a tenuous datum in dating Diophantus, if one assumes that
he wrote the De polygonis numeris.
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The last propositions of the De polygonis numeris teach how to determine
the side of a given a number of a given species, and how to determine a
number given its side (and species).
Proposition 5 is mutilated. It says: ‘Given a number, find in how many ways
it can be polygonal’. The proposition, proved by Bachet in a way that is
unconnected with what has come down to us from the text of Diophantus, is
hypothetically reconstructed by Wertheim [1897, 121–126] and Heath [1910,
256]. Acerbi offers an interesting appendix that reprises what he himself has
already been published [2011, 548–560] and offers a new, more convincing
reconstruction, which I will not repeat here.
As said earlier, theDe polygonis numeris is a work that does not receivemuch
attention from historians and number theorists. Acerbi’s reconstruction and
commentary effectively brings this work to the notice of scholars and situates
it in a more harmonious way within the Diophantine corpus.
On the other hand, as is known, this treatise also played an important role
in Fermat’s thinking. Without going into these aspects, which are in any
case rather well known, I should like to mention another marginal note in
Bachet’s edition, yet again incomplete because of the ‘lack of space’. I am
talking about observation 46, in reference to the proposition already cited
that makes it possible to determine the polygon from a given side and vice
versa. Fermat writes, extending the concept of figurate number to arbitrary
dimensions:
I will set out here, without demonstration, a very beautiful and very remarkable
proposition that I have discovered: In the natural progression starting at unity,
the product of an arbitrary number times its immediate successor makes double
the triangle of the first number. If the multiplier is the triangle of the number
immediately following, we have three times the pyramid of the first number. If it
is the pyramid of the number immediately following, we have the quadruple of
the ‘triangulotriangulaire’ of the first number, and so on indefinitely, following
a uniform and general rule. I deem that a more beautiful or general theorem re-
garding numbers could not be stated. I have neither the time nor the space to put
the demonstration in this margin.10 [trans. from http://science.larouchepac.com/
fermat]

Another famous observation by Fermat regarding polygonal numbers is
no. 18, a remark on Bachet’s comment on Diophantus, Arith. 4.31 containing

10 Pengelley 2013 describes an interesting use of the square in a large didactic project.

http://science.larouchepac.com/fermat
http://science.larouchepac.com/fermat
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an unproved proposition stating that every number, if it is not a square, is
the sum of at most four squares. Fermat observes in the margin:
What’s more, there is a very beautiful and altogether general question which I
have been the first to discover. Every number is: either triangular, or the sum of
2 or 3 triangles; Either square, or the sum of 2, 3, or 4 squares; Either pentagonal,
or the sum of 2, 3, 4, or 5 pentagons; and so on indefinitely, whether it be
of hexagons, heptagons, or any polygons; this marvelous proposition can be
enunciated generally by means of the number of angles. I cannot here give
the demonstration, which depends on numerous and abstruse mysteries of the
Science of Numbers. I have the intention of dedicating an entire Book to this
subject and thus, in this part of Arithmetic, I intend to make shocking progress
beyond the formerly known limits.11 [trans. from http://science.larouchepac.com/
fermat]

On the other hand, Bachet had dedicated to precisely this work two long
appendices, which Fermat read and assiduously commented on. That he
was an attentive reader of not only the results but also of the methods used
by Diophantus in theDe polygonis numeris is also confirmed by Michael Ma-
honey, Fermat’s biographer, regarding the importance of Bachet’s reflection
on the use of the sums of progressions:
In the realm of summation formulas for the powers of integers Fermat’s
Archimedean model…could offer little inspiration.… Instead Fermat found his
inspiration in Bachet’s appendix to Diophantus’ treatiseOn Polygonal Numbers.
[Mahoney 1994, 229]

It is precisely on the methodological aspects of this work that Acerbi dwells.
Regarding the methods of solution used by Diophantus, by means of a
linguistic and mathematical-philological argument, Acerbi distinguishes Dio-
phantus’ methods of analysis from the classical ones set forth by Pappus.
The differences are significant: Diophantus omits a genuine synthesis in
his argumentation and the approach of the Arithmetica appears to work
more by reduction than to be an actual analysis. (The method of reduction
consists in transforming an expression into an equivalent expression until it
obviously assumes the form of what is hypothesized in the statement of the
proposition, e.g., the form of a square.) Another method that Acerbi identifies,
especially in the De polygonis numeris, is what he calls a ‘chain of givens’.
This is an argument of the type ‘if A is a given (by hypothesis), then B will

11 Fermat’s proof is not known; the theorem was proved by Cauchy in 1813.

http://science.larouchepac.com/fermat
http://science.larouchepac.com/fermat
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also be given and, thus, also C and, thus,…’ until what is sought is obtained
as a given. Here again, this concerns variants of the analytical method and
Acerbi does well to examine them all with such care.
His examination focuses on problems akin to those indicated at the beginning
about geometrical algebra:
(1) Is it possible to identify a method used by Diophantus in the solution
of problems?

(2) Or is it a case of inventions that are efficacious in each individual
situation but unconnected to each other?

A very clear and peremptory answer, shared by many scholars, is that given
by Hankel:
Of more general comprehensive methods there is in our author no trace dis-
coverable: every question requires a quite special method, which often will not
serve even for the most closely allied problems. It is on that account difficult
for a modern mathematician even after studying 100 Diophantine solutions to
solve the 101st problem; and if we have made the attempt, and after some vain
endeavours read Diophantus’ own solution, we shall be astonished to see how
suddenly he leaves the broad high-road, dashes into a side-path and with a quick
turn reaches the goal, often enough a goal with reaching which we should not
be content; we expect to have to climb a toilsome path, but to be rewarded at the
end by an extensive view; instead of which our guide leads by narrow, strange,
but smooth ways to a small eminence; he has finished! He lacks the calm and
concentrated energy for a deep plunge into a single important problem; and in
this way the reader also hurries with inward unrest from problem to problem as
in a game of riddles, without being able to enjoy the individual one. Diophantus
dazzles more than he delights. [Hankel 1874, 159; trans. in Heath 1910, 54–55]

The search for these general methods led to the beginning of the ‘algebraic’
reading of Diophantus’ text, a reading of which I spoke earlier and which
often turns out to be historically insufficient.
Recently, following the rediscovery of Diophantine books in Arabic, the dis-
cussion has been taken up again in terms that I find interesting but which are
not mentioned in Acerbi’s book. I will permit myself to mention them here.
One interpretation worth noting is related to the reading of Diophantus’
text not so much through the filigree of algebra as much as through that of
modern number theory and, thus, of algebraic geometry. Perhaps the first
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to advance this line of interpretation was Isabella Bašmakova [1974],12 who
published a study on Diophantus and Diophantine analysis. According to
this point of view, number theory in Diophantus is traced to aspects relating
to the study of algebraic curves and to the search for their rational points.
For example, the search for Pythagorean triads comes down to the search
for the rational points of the circumference 𝑥2 + 𝑦2 = 𝑧2.
With regard to this attempt at interpretation, Schappacher’s stand is drastic:
Certain historians of mathematics try to surpass the mathematicians in blending
modern inspiration with Diophantus’ alleged thoughts. The worst example
of this thoughtless tendency is given by the Russian historian of mathematics
Bašmakova in her book on Diophantus. [Schappacher 2005, 27–28]

This judgment is much too harsh. Much more interesting, I believe, is the
nuanced judgment of Houzel and Rashed:
Quoique « forcée» et ne pouvant pas prétendre au titre d’historique, cette
lecture d’I. G. Bašmakova a le mérite d’expliquer les procédures réglées en
usage dans les Arithmétiques, procédures qui laissent supposer un ordre précis
qu’aucune autre lecture n’était en mesure d’expliciter. [Rashed and Houzel
2013, 43]

Although ‘forced’ and unable to claim to be history, this reading of I. G. Baš-
makova has the merit of explaining the procedures set in use in the Arithmetica,
procedures that suggest a specific order that no other reading has been able to
explain.

In any case, Bašmakova’s reading paved new roads for interpretation.
Thus, Weil, who guarded against attributing to Diophantus a role as pre-
cursor of modern algebraic geometry but nevertheless read the Greek text
with the eyes and language of a 20th-century mathematician, deepened
Bašmakova’s insight. Here I will limit myself to citing this significant passage:
On ne peut pas manquer d’être frappé déjà chez Diophante, de la fréquence
avec laquelle reviennent les équations qui définissent de courbes de genre 0
ou 1, et du fait que ce sont toujours les mêmes méthodes que Diophante mette
en ouvre pour les résoudre. [Weil 1981, 398]

12 This is actually a translation of the original Russian text of two years earlier. See
Bašmakova 1997 for an English translation.
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One cannot fail to be struck already in Diophantus, by the frequency with which
equations that define curves of genus 0 or 1 turn up, and the fact that it is always
the same methods that Diophantus puts to work for the solution.

This point of view concerning Diophantus’ work has been amply developed
by Houzel and Rashed in many studies of Arabic mathematics. The two
scholars write:
Si donc nous refusons de lire dans les Arithmétiques les notions de la géométrie
algébrique et celle de l’Analyse diophantienne contemporaine, nous proposons
en revanche de conserver ces moyens théoriques, mai au seul titre d’instru-
ment, comme outil théorique qui permet d’identifier les méthodes et aussi de
mieux connaitre les liens entre les 280 problèmes traités par Diophante et
d’éclaircir la structure de son livre. [Rashed and Houzel 2013, 43–44]

So while we refuse to read into the Arithmetica concepts of algebraic geometry
and contemporary Diophantine analysis, we propose instead to retain these
theoretical means but only as an instrument, as a theoretical tool that permits us
to identify methods as well as to understand better the connections among the
280 problems addressed by Diophantus and to clarify the structure of his book.

This appears to me to be a useful comparative methodology.
A different attempt in the effort to find a methodological thread in the work
of Diophantus, comes from another well-known scholar of the subject, Jean
Christianidis. This is a very different line of thinking: not a key for reading but
for the exposition of Diophantus’ actual intentions in writing the text. Here
is how Christianidis presents the method used by the Greek mathematician:
We are now in a position to present Diophantus’ general method of arithmetical
problem solving….

The canon of Diophantus for solving arithmetical problems:

(1) Invention–transfer of the problem (in its instantiated version) to the
framework of the “arithmetical theory”, i.e., transformation of the prob-
lem into an equation;

(2) Disposition—transformation of the equation into its final form, and
finding the unknown number;

(3) Computation of the numbers sought; and
(4) Test proof. [Christianidis 2007, 300]
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He adds:
Diophantus’ intention in the Arithmetica is not to present a theory for solving
algebraic equations. His goal…was to elaborate a canon on the basis of which
several arithmetical problems could be treated and to demonstrate how this
canon should be used in practice. [Christianidis 2007, 303]

As we see, there are a great number of different interpretations of the pres-
ence of a unifying method in the work of Diophantus, which are sometimes
in clear contrast with each other and sometimes mutually complementary.
Acerbi’s account is particularly tied to the philological aspects and merits
attentive study.
I have attempted to give an idea of a field of study that has interested math-
ematicians and historians of mathematics for at least 1000 years, and that
appears not to have exhausted its potential. Before closing, I should mention
an ulterior field of interest for these problems, that of didactics. I refer here to
a recent publication by Anne Michel-Pajus who examines Acerbi’s work on
polygonal numbers [2011] in detail, focusing especially on the propositions
pertaining to the determination of the side of a polygonal number of a given
species and vice versa, as an example of argumentation in which we go
from the formula to the algorithm and conversely:
We chose this text, because Diophantus gives three presentations for the same
mathematical property: one with a ‘rhetorical formula’, and one with an al-
gorithm, then the inverse algorithm…. Teachers are used to going from the
algorithm to the formula, as the formula is more familiar to them (and to current
students). We see here how Diophantus extracts an algorithm from a formula.
This is a commonplace task in elementary mathematics. [Michel-Pajus 2012,
376]

It seems to me that these diverse uses also show how a careful analysis of
the text can clarify methodological questions of no small importance.

bibliography
F. Acerbi, ‘Completing Diophantus, De polygonis numeris, Prop. 5’.Histo-
ria Mathematica, 38:548–560.

Allard, A. 1980. Diophante d’Alexandrie, Les arithmétiques. Histoire du
texte grécque, édition critique, traductions et scolies. Allard Fonds
Nationaux de la Recherche Scientifique. Brussels.



281 Aestimatio

Allard, A. 1984. ‘Un exemple de transmission d’un texte grec scientifique.
Le Mediolanensis Ambrosianus A91 sup., un manuscrit de Jean
Vincent Pinelli prêté à Mathieu Macigno’. Les Études Classiques
52:317–331.

Bašmakova, I. 1974. Diophant und diophantische Gleichungen. Basel.
1997. Diophantus and Diophantine Equations. Washington.

Bombelli, R. 1966. Algebra. Milan. 1st edn 1572.
Christianidis, J. 2007. ‘The Way of Diophantus: Some Clarifications on
Diophantus’ Method of Solution’. Historia Mathematica 34:289–305.

Hankel, H. 1874. Zur Geschichte der Mathematik in Altertum und Mittel-
alter. Leipzig.

Heath, T. L. 1910. Diophantus of Alexandria: A Study in the History of
Greek Algebra. Cambridge, UK.
1956. trans. Euclid: The Thirteen Books of the Elements. 2nd edn. 3
vols. New York.

Hultsch, F. 1876–1878. Pappi Alexandrini collectiones. Berlin.
Mahoney, M. 1974. The Mathematical Career of Pierre de Fermat. 2nd
edn. Princeton.

Michel-Pajus, A. 2012. ‘Historical Algorithms in the Classroom and in
Teacher-Training’. Pp. 371–379 in Proceedings of the Workshop
‘History and Pedagogy of Mathematics 2012’ (Daejon, Korea, 16–20
July 2012). Accessible at http://www.hpm2012.org/Proceeding/Work-
shop/W3-3.pdf.

Neugebauer, O. 1934. ‘Zur geometrischen Algebra’. Quellen und Studien
zur Geschichte der Mathematik, Astronomie, und Physik 3:245–259.

Pengelley, D. 2013. ‘Figurate Numbers and Sums of Numerical Powers: Fer-
mat, Pascal, Bernoulli’. Available at http://www.maa.org/sites/default/
files/images/upload_library/46/Pengelley_projects/Project-10/figurates-
sums-project.pdf (accessed 12 July 2014).

Rashed, R. 1974–1975. ‘Les travaux perdus de Diophante’. Revue d’histoire
des sciences 27:97–122, 28:3–30.
1984. ed. Diophante. Les arithmétiques. Livres IV–VII. 2 vols. Paris.

http://www.hpm2012.org/Proceeding/Workshop/W3-3.pdf
http://www.hpm2012.org/Proceeding/Workshop/W3-3.pdf
http://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-10/figurates-sums-project.pdf
http://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-10/figurates-sums-project.pdf
http://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-10/figurates-sums-project.pdf


Aldo Brigaglia 282

Rashed, R. and Houzel, C. 2013. Les arithmétiques de Diophante. Berlin.
Saito, K. 2004. ‘Book II of Euclid’s Elements in the Light of the Theory
of Conic Sections’. Pp. 139–178 in J. Christianidis ed. Classics in the
History of Greek Mathematics. Dordrecht/Boston/London.

Schappacher, N. 2005. ‘Diophantus of Alexandria: A Text and Its History’.
Accessible at (accessed 11 July 2014).

Sesiano, J. 1982. ed.Books IV toVII of Diophantus’Arithmetica in theAra-
bic Translation Attributed to Qusţā ibn Lūqā. Berlin/Heidelberg/New
York.

Tannery, P. 1893–1895. ed. Diophanti Alexandrini opera omnia. 2 vols.
Leipzig.

Unguru, S. 2004. ‘Methodological Issues in the Historiography of Greek
Mathematics’. Pp. 383–461 in J. Christianidis ed. Classics in the His-
tory of Greek Mathematics. Dordrecht/Boston/London.

van der Waerden, B. 1954. Science Awakening. Dordrecht.
Weil, A. 1981. ‘Sur les origines de la géométrie algébrique’. Compositio
mathematica 44:395–406.
2007. Number Theory: An Approach through History from Hammu-
rapi to Legendre. 2nd edn. Boston/Basel/Berlin.

Wertheim, G. 1897. ‘Die Schlussaufgabe in Diofants Schrift über Polygo-
nalzahlen’. Zeitschrift für Mathematik und Physik, 42:121–126.


	34 Brigaglia on Acerbi



