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This is not a normal book review in several ways. First, I am not attempting
to review the entire book, of which part 1 consists of an edition, translation,
and notes on Papyrus Fouad 267A by Jean-Luc Fournet and Anne Tihon,
followed in part 2 by a lengthy commentary by Tihon on the astronomical
aspects of the text. Rather, I am reviewing only the annex, which consists
of tables and a summary analysis by Raymond Mercier. Second, since in
the opening paragraph of his summary analysis Mercier points out that
‘there is room for a concise analysis of the model, as seen from a more
purely mathematical perspective’, my review will of necessity have more
mathematical and technical content than a normal book review. Third, my
own analysis depends heavily on the analysis and reconstruction of the
underlying tables in the papyrus by Alexander Jones that was circulated
in 2009 and published in 2010a, and on a preliminary analysis of the solar
model underlying the papyrus by John Britton that was circulated in 2009,
both based on the report by Tihon on the investigation of the papyrus at a
conference in 2007 that was published in 2010.
P. Fouad 267A appears to be a worked example of the calculation of the
Sun’s position for a date in ad 130. Two main parts of the papyrus are
preserved. The first part, on the recto, gives the intermediate and final results
of what is apparently a calculation from tables of the increment in mean
solar longitude using three different year lengths, corresponding to tropical,
sidereal, and mean (what we call Julian) years. The results are fragmented
but nevertheless are complete enough to allow a full reconstruction of the
mathematical basis underlying the tables [Jones 2010a, 41n46]. The second
part, on the verso, is even more fragmented and gives the final tropical and
sidereal solar longitudes as well as a calculation from a table of ascensions
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of the declination of the Sun and the length of seasonal hours on the date of
the example. In particular, nothing survives regarding the computation of
the equation of center connecting the mean and true longitudes. Hipparchus
is prominently mentioned several times in the first part, once regarding a
sidereal year length and once regarding observations related to a summer
solstice in −157.
Mercier’s mathematical analysis is, as I will show below, quite unconven-
tional. I will, therefore, first present a standard and fully conventional analysis,
primarily to see if it works. The conventional eccentric solar model is shown
in Figure 1, p. 92 below. The Sun at S moves around the ecliptic, a circle of
radius 𭑅 and center C, at a constant speed as seen from C. The Earth is at O,
a distance 𭑒 from C, so the apparent speed of the Sun is slowest when the
Sun is at the apogee A and fastest when at the perigee P. The mean anomaly
𭛼 is ∠ACS and the true anomaly 𭜅 is ∠AOS. The equation of center 𭑞 is
∠CSO and by convention 𭛼 + 𭑞 = 𭜅, so 𭑞 is negative when 𭛼 < 180° and
positive when 𭛼 > 180°. The Earth-Sun distance 𭜌 = 𭑂𭑆 is determined by

𭜌2 = (𭑅 + 𭑒 cos 𭛼)2 + (𭑒 sin 𭛼)2

and, by the law of sines applied to △CSO, we have
sin 𭑞 = −(𭑒/𭜌) sin 𭛼 = −(𭑒/𭑅) sin 𭜅.

The papyrus distinguishes three frames of reference for the solar motion.
One is based on a year of very nearly 365¼ days and plays no role in
the following. The frames that do play a role are the sidereal and tropical
frames. In the sidereal frame, longitudes are measured from a point fixed
relative to the background stars, while in the tropical frame the longitudes are
measured from the vernal equinoctial point determined by the intersection
of the ecliptic with the celestial equator. The sidereal speed 𭜔𭑠 of the Sun in
the papyrus is determined from the period relation 37,4731⁄3 revolutions in
37,500 Egyptian years of 365 days, and the tropical speed 𭜔𭑡 is determined
from the relation 37,4742⁄3 revolutions in 37,500 years. The difference in
these speeds, 𭜔𭜋 = 𭜔𭑡 − 𭜔𭑠, is due to precession and is 8° in 625 years, or
1° in 781⁄8 years [Jones 2010a, 29–30, 43n46].
In Figure 1, the directions of the sidereal and tropical zero-points are shown.
As a consequence of precession, the tropical zero-point will rotate relative to
the sidereal zero-point in the clockwise direction with speed 𭜔𭜋. Relative to
these directions, the mean and true longitudes of the Sun are, for a longitude
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Figure 1. Conventional eccentric solar model

of apogee 𭐴, 𭐿 = 𭛼 + 𭐴 and 𭜆 = 𭜅 + 𭐴, and so 𭑞 = 𭜆 − 𭐿. Note that, for any
moment in time, the numerical values of the mean and true longitudes of
the Sun and the longitude of the apogee depend on the directions of these
zero-points, but that the angles of mean anomaly 𭛼, true anomaly 𭜅, and the
equation of center q are independent of the frame of reference.
The papyrus computes an example for a date 𭑇3 = +130 Nov 9 at 3 am or
JD 1768852.625 (all dates are relative to Alexandria). The author, presumably
using tables based on the period relations given above, computes the change
in three mean longitudes by summing the changes in 37,788 Egyptian years
of 365 days, three 30-day months, 19 days, and 21 hours. Thus, the ‘ancient’
epoch 𭑇0 of the tables was 13,792,729.875 days earlier on −37, 632 Jun 2
at 6 am or JD −12, 023, 877.25. It will be useful to consider also a ‘modern’
epoch 𭑇1 37,500 Egyptian years after 𭑇0, which is −158 Oct 2 at 6 am
or JD 1,663,622.75, and a date 𭑇2 for a summer solstice associated with
Hipparchus which is −157 Jun 26 at some ‘hour of day’, meaning during
daylight, with the numeral of the hour unfortunately missing on the papyrus.
The two sums that we need have been reconstructed [Jones 2010a, 29–30,
43n46] and are the sidereal increment in mean longitude with a value of
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154; 33, 53°and the corresponding tropical value 278; 15, 18°. The mean
anomaly of the true Sun on the date 𭑇3 is about 156; 15°, so we assume that
154; 33, 53° is also the value of the solar mean anomaly 𭛼. It then follows
that the mean anomaly was zero at time 𭑇0 and that the solar apogee is
sidereally fixed [Britton 2009]. We further assume that the solar motion is
eccentric and that 𭑒/𭑅 has the Hipparchan value 2; 30/60 = 1/24. Then, the
equation of center

𭑞 = arcsin(−(𭑒/𭜌) sin 𭛼) = −1; 3; 55°,

which is close to the equation of center of the real Sun (about −0; 56, 43°)
and, hence, 𭜅 = 𭛼 + 𭑞 = 153; 29, 58°. The papyrus gives the true sidereal
longitude of the Sun as 𭜆𭑠 = 228; 29, 44°; so the longitude of the apogee in
the sidereal frame is

𭐴𭑠 = 𭜆𭑠 − 𭜅 = 74; 59, 46°
and the mean sidereal longitude is

𭐿𭑠 = 𭜆𭑠 − 𭑞 = 229; 33, 39°.
The papyrus also gives the true tropical longitude of the Sun as 𭜆𭑡 =
224; 20, 18°. Thus, we find

𭐴𭑡& = 𭜆𭑡 − 𭜅 = 70; 50, 20° and
𭐿𭑡& = 𭛼 + 𭐴𭑡 = 225; 24, 13°.

Note that by using the frame independence of 𭛼, 𭜅 and 𭑞 we have been
able to deduce the tropical values without ever using the tropical value
278 : 15, 18° computed using the tables. The difference in longitude of the
sidereal and tropical zero points is

𭜆𭑠 − 𭜆𭑡 = 𭐿𭑠 − 𭐿𭑡 = 𭐴𭑠 − 𭐴𭑡 = 4; 9, 26°.
The mean sidereal longitude at the ancient epoch 𭑇0 is

𭐿𭑠(0) = 229; 33, 39° − 154; 33, 53° = 74; 59, 46° = 𭐴𭑠 = 𭐴𭑠(0)
and so 𭛼 = 0 at 𭑇0, as assumed. Since the increment in tropical mean
longitude from the ancient epoch 𭑇0 to 𭑇3 is 278; 15, 18°, and since the
increase in precession is 123; 41, 25, the tropical mean longitude at 𭑇0 was

𭐿𭑡(0) = 𭐿𭑡 − 278; 15, 18° = 307; 36, 56°
and the tropical apogee at 𭑇0 was

𭐴𭑡(0) = 𭐴𭑡 − 123; 41, 25° = 307; 36, 56°.
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Once again, then, 𭛼 = 0, providing a consistency check on the entire recon-
struction. The longitudinal difference of the sidereal and tropical zero points
is

𭐿𭑠(0) − 𭐿𭑡(0) = 127; 50, 51°.
Similarly, at the modern epoch 𭑇1, we find

𭐿𭑠(1)& = 194; 59, 46°,
𭐿𭑡(1)& = 187; 8, 55°,  and

𭐴𭑡(1)& = 67; 8, 55°.

So 𭛼 = 120° and 𭐿𭑠(1) − 𭐿𭑡(1) = 7; 50, 51°.
At the modern epoch 𭑇1 = −158 Oct 2 at 6 am the increment in mean
longitude since 𭑇0 and, hence, the value of the solar mean anomaly, is exactly
120°. The increment in precession is also 120°; so the increment in tropical
mean longitude is exactly 240°. The tropical longitude of the bright star
Regulus, which was often used as a reference star in antiquity, was very near
to 120° at this time. Perhaps these facts are more than coincidences and
played a role in the foundation of the solar model; but if so, the details of the
connection remain obscure, at least to me. It is also the case that exactly five
days prior to 𭑇1, hence, on −158 Sep 27 at 6 am, Hipparchus reported an
autumn equinox according to Ptolemy’s account in the Almagest [Toomer
1984, 133]; and indeed the conventional model we are discussing as well
as Mercier’s model discussed below agrees very closely with the report of
Hipparchus. Mercier suggests that the foundation of the solar model might
have been somehow connected to that event but once again the connection
remains obscure.
The papyrus gives the date but not the hour of the summer solstice in −157;
so we have to pick the hour that results in 𭜆𭑡 = 90°. That hour is about 9 pm;
so 𭑇2 = 1, 663, 890.375. This hour conflicts with the papyrus phrase ‘hour
of day’ which seems to suggest that the solstice occurred before sunset.
Mercier’s analysis begins with a discussion of the tabulated sums in the
papyrus. He gives the period relation underlying the speed in precession,
𭜔𭜋 but for the sidereal and tropical speeds he gives only the numerical values
𭜔𭑠 = 0.9856 and 𭜔𭑡 = 0.985635068493, both in units of degrees per day.
Both numbers are correct but it would surely have been more informative
to give the underlying period relations, which are simple rational fractions.
Next, Mercier assumes that the sidereal quantity 154; 33, 52° is the mean
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anomaly of the sidereal Sun and then, assuming an eccentric model, he finds
a sequence of (𭐸, 𭐴𭑠) pairs, with 𭐸 = 𭑅/𭑒, that are solutions to the equation

𭛼 + 𭐴𭑠 = 𭜆𭑠 + sin−1(sin(𭜆𭑠 − 𭐴𭑠)/𭐸),

which is simply the equation 𭛼 + 𭑞 = 𭜅 given above. Mercier solves his
version of the equation by iteration, even though it is simple to solve directly
as shown above. For values of 𭐸 between 22 and 26, and so for values of 𭑒
between 2.31 and 2.73, the only resulting value of 𭐴𭑠 that is near an integer,
namely, 𭐴𭑠 = 74.997° = 74; 59, 49°, is paired with the Hipparchan value
𭑒/𭑅 = 1/24. He then concludes that the sidereal apogee must be exactly 75°,
so that the mean longitude is

𭐿𭑠 = 𭛼 + 75° = 229; 33, 52°.
Turning to the tropical quantity 278; 15, 18°, Mercier recognizes that this is
far too large to be a mean anomaly if the true longitude is the papyrus value
𭜆𭑡 = 224; 20, 18°; so he subtracts 120° from it and gets a value 158; 15, 18°,
which he then treats as a mean anomaly 𭛼′ in the tropical frame. He then
proceeds to solve

𭛼′ + 𭐴𭑡 = 𭜆𭑡 + sin−1(sin(𭜆𭑡 − 𭐴𭑡)/𭐸).

Once again he finds that for 22 < 𭐸 < 26, the only value of 𭐴𭑡 close to an
integer is

𭐴𭑡 = 67.003° = 67; 0, 11°.
Since this 𭐴𭑡 is also paired with 𭐸 = 24, he concludes that the tropical apogee
must be exactly 67°, so that the mean tropical longitude is

𭐿𭑡 = 𭛼′ + 67° = 225; 15, 18°.
At this point Mercier has departed far from any conventional solar model. He
has assumed that, at the same moment in time, 𭑇3 = +130 Nov 9 at 3 am, the
Sun has two mean anomalies, 154; 33, 52° and 158; 15, 18° and, hence, two
values of the equation of center 𭑞, −1; 4, 8° and −0; 55, 0°, and true anomaly
𭜅, 153; 29, 44° and 157; 20, 18°. He also assumes that both apogees, 𭐴𭑠 = 75°
and 𭐴𭑡 = 67°, are fixed in their respective frames for all time. Since those
frames move with respect to each other with the speed 𭜔𭜋, the Sun in this
scheme will in general have two distinct apogees. For example, at the time
𭑇3 of the example, the sidereal apogee 𭐴𭑠 is 75° and the zero-points of the
sidereal and tropical frames are, in Mercier’s scheme, 𭐿𭑠 − 𭐿𭑡 = 4; 18, 34°
apart; so the tropical apogee 𭐴𭑡 is, relative to the sidereal zero-point, at
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67° + 4; 18, 34° = 71; 18, 34°.
But since the direction of the apogee is a unique direction in space that all
observers would agree upon, namely, the direction in which the Sun has the
slowest angular speed, this is a physically impossible situation.
In any event, Mercier’s relations for the time dependence of the mean longi-
tudes are

𭐿𭑠(𭑡)& = 229; 33, 52° + 𭜔𭑠(𭑡 − 𭑇3),
𭐿𭑡(𭑡)& = 225; 15, 18° + 𭜔𭑡(𭑡 − 𭑇3), and

𭐿𭜋(𭑡)& = 𭐿𭑡(𭑡) − 𭐿𭑠(𭑡)
& = 4; 18, 34° − 𭜔𭜋(𭑡 − 𭑇3).

However, when these equations are used to compute the true longitudes at
𭑇3, one finds

𭜆′𭑠 = 228; 29, 57°and
𭜆′𭑡 = 224; 20, 6°,

which do not match the papyrus values 228; 29, 44° and 224; 20, 18°. Since
the papyrus gives the mean and true longitudes to two fractional places of
precision, this sort of discrepancy must be expected from the rounding of the
apogees, which by Mercier’s calculation differ from integers in the second
fractional place by about 0; 0, 11°. However, at the time 𭑇0 of the ancient
epoch, Mercier’s relations yield

𭐿𭑠(0)& = 75°,
𭐿𭑡(0)& = 307°,  and

𭐿𭜋(0)& = 128°;

and at the time 𭑇1 of the modern epoch,
𭐿𭑠(1)& = 195°

& = 𭐿𭑠(0) + 120°,
𭐿𭑡(1)& = 187°

& = 𭐿𭑡(0) + 240°,  and
𭐿𭜋(1)& = 8°

& = 𭐿𭜋(0) − 120°

.

All of these integer values at the two epochs are certainly more pleasing
than the epoch values found above using the conventional solar model and
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assuming that the papyrus values for the true longitudes have been correctly
computed.
Thus, the question arises: Can something be changed in the conventional
analysis so that we recover these same integer values? The answer to that
question is ‘Yes’, if we assume some mistakes on the part of the person who
computed, in the lost lines between the recto and verso, the true longitudes in
the papyrus. First, the writer computed the sidereal longitude nearly correctly.
At time 𭑇3, he would get the mean anomaly 𭛼 = 154; 33, 53 but the equation
of center 𭑞 = −1; 4, 9° instead of the correct −1; 3, 55° and, hence, the true
longitude 𭜆𭑠 = 228; 29, 44° instead of the correct 228; 29, 58°. Such an error
in the second fractional place of the equation 𭑞 is hardly surprising and
could arise from any number of ways during the relatively complicated
computation of

𭑞(𭛼) = arcsin⎛⎜
⎝

−𭑒 sin 𭛼

√(𭑅 + 𭑒 cos 𭛼)2 + (𭑒 sin 𭛼)2

⎞⎟
⎠

or it might be that the writer was correct but that his tables for the equation
of center to two fractional places, unprecedented in antiquity as far as we
know, were faulty in the seconds place.
At this point, the writer could get the true tropical longitude by simply
subtracting from 𭜆𭑠 the effect of precession at time 𭑇3, which is given by
128° − 123; 41, 25° = 4; 18, 35°, so his computed true tropical longitude
would be 𭜆𭑡 = 224; 11, 11° instead of the correct 224; 11, 23°. However, it
seems our writer instead took the longer route of computing the tropical
longitude from first principles. Knowing the increment in mean longitude at
time 𭑇3 from his tables as 278; 15, 18, he should have computed the apogee
at the same time from precession as 𭐴𭑡(3) = 307°+123; 41, 25° = 70; 41, 25°.
But it seems that here he makes a major mistake, adding only 120°, the effect
of precession from 𭑇0 to 𭑇1, but omitting the precession effect+3; 41, 25 from
𭑇1 to 𭑇3. Thus, he got 𭛼 = 158; 15, 18° instead of the correct 154; 33, 53°
and using this value for 𭛼 he got 𭑞 = −0; 55, 0 instead of the correct (for the
wrong 𭛼) −0; 55, 12. So his final true tropical longitude is 𭜆𭑡 = 224; 20, 18°
when it should be 224; 11, 23°.
Of course the writer—perhaps he was a student—should have realized that
he was making errors when he got different values for 𭛼 and then for 𭑞 in
the sidereal and tropical frames. Maybe that explains why he, or perhaps
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more likely, his teacher tore the papyrus in half and threw it into the trash
bin where it was found many centuries later.
In conclusion, Papyrus Fouad 267A introduces us to a new solar model from
antiquity similar to, but differing in many details from, the solar model of
Ptolemy’s Almagest. Unfortunately, the summary mathematical analysis pro-
vided by Raymond Mercier in the annex is severely flawed. Mercier proposes
a mathematical model that has several properties that are completely unphys-
ical: mean anomaly 𭛼, true anomaly 𭜅, and equation 𭑞 have different values
in different reference frames; the apsidal lines of the solar orbit point in differ-
ent directions in different reference frames; and the proposed equations for
the time dependence of the mean longitudes do not reproduce the actual val-
ues from which those equations were determined. Strangely enough, Mercier
makes no attempt to explain these utterly unphysical features; indeed, he
does not even acknowledge them. Perhaps, if the underlying mean and true
longitudes found in the papyrus were really inconsistent, such departures
from convention could be justified. But as shown above, all the data in the
papyrus are easily explained assuming conventional ideas well known in
antiquity. Therefore, while there are many reasons to commend the book
by Fournet and Tihon, the contents of the annex are not among them.
After this review was submitted, two additional papers related to P.Fouad
267A appeared. First, Jones 2016 contains both an English translation of the
Greek text and a very extensive analysis of the astronomy found on both the
recto and the verso of the document, and discusses how it fits into the context
of what is known from many other solar models from antiquity. Second,
Tihon and Fournet 2016 translates and discusses the contents of a small
fragment now understood to be the upper part of the verso of P.Fouad 267A.
The paleography of the new fragment appears to date the fragment and,
hence, P.Fouad 267A to the third century ad instead of the second century
tentatively suggested by the date ad 130 of the mean motions.
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